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Abstract— Emerging non-volatile memory (NVM) architec-
tures are considered as a replacement for DRAM and storage
in the near future, since NVMs provide low power consumption,
fast access speed, and low unit cost. Due to the lower write-
endurance of NVMs, several in-memory wear-leveling techniques
have been studied over the last years. Since most approaches
propose or rely on specialized hardware, the techniques are
often evaluated based on assumptions and in-house simulations
rather than on real systems. To address this issue, we develop
a setup consisting of a gem5 instance and an NVMain2.0
instance, which simulates an entire system (CPU, peripherals,
etc.) together with an NVM plugged into the system. Taking a
recorded memory access pattern from a low-level simulation into
consideration to design and optimize wear-leveling techniques as
operating system services allows a cross-layer design of wear-
leveling techniques. With the insights gathered by analyzing the
recorded memory access patterns, we develop a software-only
wear-leveling solution, which does not require special hardware
at all. This algorithm is evaluated afterwards by the full system
simulation.

I. INTRODUCTION

The ongoing research in the field of non-volatile memory
(NVM) is distributed over a large amount of different topics
and uses a variety of methods to evaluate and analyze the
proposed solutions. Most of the research has in common that
the targeted platforms do not exist. The reason is that the
market rarely provides systems with NVMs and that the tech-
nical details about the available systems are difficult to acquire.
Thus, researchers evaluate their approaches based on detailed
models or simulations, which focus on the NVM property of
interest. For instance, a model for detailed simulation of access
latencies usually does not provide a detailed simulation of the
physical aging effects inside of the memory cell.

The area of software based wear-leveling algorithms faces
a similar issue. To evaluate a wear-leveling algorithm, the cell
aging has to be determined for the execution of typical bench-
mark applications. Aging-aware wear-leveling algorithms also
require the knowledge about the current cell aging during
the execution as an input to the wear-leveling algorithm. To
achieve this, the majority of works assumes the write count
to a memory region to be provided by the memory hardware.
This information is possibly processed by a physical model to
determine a precise estimation of the cell age. Since hardware
that provides a write count of memory regions is rarely
available, these approaches are usually evaluated by a sim-
ulation of the memory write distribution after the application

of the wear-leveling algorithm. The original memory access
behavior of a benchmark application can be collected by a
trace writing simulation for instance. Due to this evaluation
methodology, several side-effects of the execution of the
wear-leveling algorithm might not be simulated properly, e.g.,
cache pollution due to the algorithm execution, operating
system interaction or timing related application behavior. To
overcome this shortcoming, the simulation has to include as
many components of the system as possible. For example, a
simulation which also includes the memory subsystem with a
cache hierarchy covers the cache pollution of the wear-leveling
algorithm by default.

In this paper, we introduce a simulation setup to design and
evaluate software-only wear-leveling algorithms. This implies
that the algorithms do not require precise aging information
from the memory hardware. Nevertheless, a functional simu-
lation of such a hardware component could also be integrated
into the simulation setup, which would allow the evaluation of
several other wear-leveling algorithms in a similar way. The
proposed simulation setup is based on the gem5 simulator [5],
which is a cycle accurate full-system simulator. Hence, the
hardware components of the simulated platform (e.g. MMU,
interrupt controller, FP unit) are simulated on a functional
level. This provides a sufficient amount of details to simulate
the influences of an algorithm on the operating system and
the underlying memory hardware. We combine the system
simulator with the NVM simulator NVMain2.0 [15], which
can be integrated into gem5, such that all memory accesses are
forwarded to the NVMain2.0 implementation and can be ap-
plied to a physical memory model. Furthermore, NVMain2.0
allows us to collect detailed information about every memory
access in a trace file, which can be analyzed subsequently.

Based on the memory trace file, we provide mechanisms to
analyze the memory access behavior regarding the target of in-
memory wear-leveling, respecting the changed memory access
behavior due to the underlying operating system and hardware.
Additionally, we isolate the analyzed application from the
operating system, which enables a separate analysis of the
application and the operating system. The novel contributions
of this paper are:

o The simulation setup (gem5 + NVMain2.0), which sim-

ulates the target hardware platform on a functional level.

o Analyzing methodology for the output trace files of the

simulation setup, which analyze the memory access be-



havior regarding in-memory wear-leveling, i.e. the write
distribution of the application over the memory space.

o A case study on the design of a software-only in-memory
wear-leveling algorithm, including the extraction of de-
sign targets from an initial application memory behavior
analysis and an end-to-end evaluation of the algorithm,
deployed in the simulation setup.

This paper first provides a brief overview of the related
work, describing existing NVM simulators as well as the
methodology used to evaluate in-memory wear-leveling al-
gorithms in Section II. Subsequently, the technical details
about the simulation setup are discussed in Section III. After
demonstrating the usage of the simulation setup in the case
study of an in-memory wear-leveling algorithm in Section IV,
the paper gives an outlook on performance improvements
(Section V) and concludes in Section VI.

II. RELATED WORK

Several publications target the area of NVM system sim-
ulations due to the unavailability of real systems. Besides
low level simulation on the cell or circuit level [8], [11],
[14], [18], NVMs are simulated from the CPU perspective
of read and write accesses in [3], [11], [15], [17]. These
simulations usually require to capture the memory accesses
from the CPU and pass it to the NVM simulator. This can
be achieved in hardware, either by plugging special hardware
into the DIMM slot of a PC [3] or by using advanced
hardware architectures which combine a CPU and FPGA in
one chip [I1]. Alternatively, the NVM simulation can be
implemented entirely in software and process memory access
information from system simulators [15]. Regardless of the
chosen simulator implementation, these simulations usually
focus on a precise simulation of the NVM regarding timing,
energy consumption, etc. The memory access behavior of
the application and the resulting effects are only considered
indirectly.

For the research in the area of in-memory wear-leveling, one
of the most important aspects is the memory access behavior
of the application, respectively the resulting memory access
behavior of the final setup including wear-leveling. Therefore,
recent publications do not focus on precise NVM simulations,
but acquire the application’s memory access behavior and
apply it to in-house simulations of the wear-leveling algorithm
[10], [12], [13], [16], [19]. This method usually lacks a
precise simulation of the executing environment, including
interactions of the application with the system and effects of
the wear-leveling on the application execution.

To bridge this gap, in this paper we proposes a simulation
setup that analyzes the memory behavior of an application,
including applied maintenance algorithms like wear-leveling,
but also simulates the entire executing system in detail,
including a simulation of the NVM.

III. SIMULATION SETUP ARCHITECTURE

The main purpose of our simulation setup is to allow
a precise analysis of the memory access behaviour of an
arbitrary application. Hence, it must include all interactions
of the application with the operating system services and the
underlying hardware, as they also influence the memory access
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Fig. 1. Overview of the simulation setup

behaviour. To achieve this, our simulation setup centrally
consists of a cycle-accurate full-system simulator, i.e. gem5
[5], which provides the functional simulation of the under-
lying hardware. As the main application of this simulator,
we execute a lightweight runtime system, which is equipped
with the essential operating system services the application
requires to be executed. The subsequent execution of the target
application inside of the runtime system then results in a
precise simulation of the memory behaviour of the application
in a real-world system. Figure [ illustrates the orchestration
of the three main components (gem5, runtime system, and
application) to the final simulation setup. It is shown that
memory accesses are caused directly by the application as well
as indirectly by the runtime system. Both types of memory
accesses are processed by the simulator and captured in a
memory trace, which represents the memory access behaviour
of the application.

Besides capturing the memory accesses, an application
usually performs, a meaningful analysis of these accesses is
highly desired. For this purpose, the application’s memory can
be separated into the distinct memory segments the application
uses, i.e., stack, text, data, and bss. Our simulation
setup applies several isolation techniques to ensure that ac-
cesses of the application to each of these specific segments
target a separate part of memory. As a result, the memory
accesses can be identified by their access address later on.
Furthermore, this allows a separate analysis for each memory
segment. In addition to the applied isolation, the traced mem-
ory accesses can thus be processed and evaluated regarding
different targets. For the purpose of wear-leveling for instance,
the accumulated write counts to fixed-sized memory blocks
needs to be determined. For the purpose of resource allocation
planning, the memory consumption over time might be a very
important aspect to consider. Our simulation setup processes
the captured memory trace according to the desired target. The
result of this process is a summarized representation of the
important memory access behaviour of the target application.

The scope of this section is to point out the technical
details of our simulation setup. The technical architecture is
presented in Section III-A. Subsequently, the implemented
isolation techniques and the impact on the simulation are
described in Section III-B. This section concludes with an
overview of the processing of the recorded memory traces in
Section III-C.



A. Technical Architecture

As shown in Figure 1, the simulation environment consists
of four layers:

1) The host system (a powerful linux server).
2) A gem5 / NVMain 2.0 instance.

3) The lightweight runtime system.

4) An arbitrary application.

For completeness, we provide technical details of the four
layers:

1) The choice of a Linux machine as the host system is
due to the compatibility with gem5 and the possibility to
comfortably process the results from gemS.

2) The cycle-accurate simulator represents the second layer
of the simulation setup together with the memory simulator. In
this setup, we use the full system mode of gem5 to be able to
also capture system calls and operating system services in the
resulting memory trace precisely. Due to the support in gemsS,
we choose the ARM 64 bit implementation as the simulated
CPU. The CPU model is the DerivO3 CPU, which is the most
advanced CPU offered by gem5 [5], including pipelining and
out-of-order execution. As the simulated machine, we apply
the VExpress_GEMS5_V2 machine, which offers commonly
available components in ARM-based embedded systems, like
an interrupt controller and a uart controller. The NVMain 2.0
simulator is deployed as a plugin for gem5 [15]. All memory
accesses issued during the simulation are forwarded to the
NVMain2.0 implementation. NVMain2.0 applies all accesses
to a model of the underlying NVM hardware, which includes,
for instance, latencies and energy consumption. Furthermore,
NVMain2.0 allows to write a trace of all memory accesses.
The trace file includes the memory controller cycle, the access
type (read or write), the access address, the old memory
content and the new memory content for each memory access.
This configuration allows us to capture all memory accesses
and to collect precise information about each of these accesses
for a subsequent analysis.

3) As the third layer of our simulation setup, we deploy a
custom runtime system as the main control flow, executed in
gem5. Due to the full system mode of gem5, the simulated
program has to perform several operating system services,
like hardware initialization, interrupt handling and memory
allocation. As stated before, the memory accesses caused by
all these services are also part of the simulation result, since
they are executed inside of the simulated program. Further-
more, as the runtime system only implements the necessary
services in a simple way, it is easy to extend and evaluate
new operating system services, for instance to perform wear-
leveling for NVMs. As a last important aspect, the custom
runtime system implementation allows a precise control of
the memory placement. Not only special, separated addresses
can be chosen for memory allocations during runtime, but
also different memory segments can be placed to separated
memory regions during the linking of the runtime system.
As these memory segments can be identified by their access
address in the simulation result (i.e., the memory access trace),
the memory behaviour of different operating system services
or the different memory segments of the application can
be analyzed separately. To achieve this, the runtime system

introduces additional symbols into the compiled binary, which
can be identified by their memory address in the binary. These
symbols are used as markers for the beginning and ending of
memory regions of interest'.

4) The fourth layer of the simulation setup is the analyzed
application. The application is compiled into the same bi-
nary as the runtime system, which saves the overhead for
loading the application. After the runtime system initialized
the hardware and set up the required drivers and services,
the entry point of the application is executed. The runtime
system applies further isolation techniques to separate the
memory accesses from the runtime system and the application
to allow a distinct analysis of them. The application can
request operating system services by performing the according
system calls or by directly calling library functions, provided
by the runtime system.

B. Application Isolation

To clearly distinguish between memory accesses from the
runtime system and memory accesses from the application,
both have to target distinct, identifiable memory regions for
every access. To achieve this, the runtime system applies a
generic spatial isolation. Additionally, an interrupt isolation
is applied to separate the stack from the runtime system and
from the application.

1) Spatial Isolation: As explained before, the runtime sys-
tem has the ability to control the memory layout of the loaded
binary during the linking process. This allows the runtime
system to place the text, data, bss, and stack segments
of the application into different memory regions, separated
from the according memory segments of the runtime system.
This method ensures that the application can be analyzed
separately from the runtime system. In consequence, this
allows an isolated analysis of the memory accesses caused
by the application code. Therefore, the memory behaviour of
the application can be analyzed separately from the operating
system.

2) Interrupt Isolation: The aforementioned spatial isolation
applies a static separation of the memory regions, but does not
ensure that all memory accesses target their specific region
during runtime. For compiler generated code this can be
assumed due to the specification, but for the interrupt imple-
mentation of the runtime system an additional technique has
to be applied. Interrupts may be driven by external timers or
other sources, which request an interrupt during the execution
of the application. The usual procedure to handle the interrupt
is to save necessary CPU registers on the stack, to be able to
resume the execution of the interrupted application. For this
purpose, the current stack pointer is normally used, which
implies that the interrupt handling causes memory accesses to
the application’s stack, even if the interrupt handler belongs
to the runtime system. To avoid this problem, we use an
ARMVS specific feature that allows to use different exception
levels, where a separate stack pointer can be assigned to each
exception level [1]. The assignment of the lowest exception

'To unambiguously identify a memory region by the traced access address,
the remapping of the memory (virtual memory) has to be respected. Either the
mapping is known at every time (by logging changes) or the runtime systems
applies an identity mapping only.
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Fig. 2. Exemplary memory layout of a simulation instance

level (ELO) to the application and a higher exception level
(EL1) to the runtime system causes every interrupt during the
application to be handled on EL1. The hardware automatically
switches to the stack pointer of EL1, thus the runtime system’s
stack is used to save the registers’. Applying this method, all
memory accesses due to interrupt handling are guaranteed to
target the runtime system’s stack and not the application’s
stack.

The combination of both isolation techniques makes sure
that the memory accesses of the application and the runtime
system are completely separated and thus can be analyzed
separately.

C. Trace Processing

After the isolation techniques are applied, the resulting
memory trace has to be analyzed. NVMain2.0 provides the
following information for every memory access in a trace file:
< Memory controller clock cycle, Read or write access,
Access address, Old memory content, New memory content,
Causing CPU core >
Due to the aforementioned separation of the memory, the
access address can be used to identify the causing software
element of the memory access. In a first step, this is used as a
filter to discard memory accesses, that are not meaningful for
the analysis. For instance, when the purpose of this simulation
setup is to analyze the application behaviour, the memory
accesses of the runtime system are not important and can
be discarded. Furthermore, only the memory behaviour of
a benchmark phase might be desired to be analyzed and a
start-up and initialization phase can be discarded. Figure 2
illustrates an exemplary memory layout of the simulation
setup.

After filtering out unimportant memory accesses, the re-
maining accesses should be aggregated into a meaningful
summary of the memory usage behavior. As this paper tar-
gets the purpose of in-memory wear-leveling, we focus on
aggregating the write-count to specific memory regions, since
the aging of memories is influenced mainly by the total
number of writes®. For the aggregation of the write accesses,
the memory architecture has to be taken into account. For
each write operation, an entire cache-line is written to the

2 A similar technique could also be applied without special hardware support
when the interrupt handler switches the stack pointer first. However this would
require to store the other stack pointer in memory.

3For some NVM technologies, it has been shown that not only the number
of writes is important for the cell aging [7], but also for instance the time
interval between writes. However, the further required information for the
advanced cell age determination can usually also be extracted from the
memory trace, by applying according physical models.
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Fig. 3. Exemplary memory write-count aggregation analysis

memory. In our case, the cache-line size is 64 bytes. Hence,
during the analysis, we increase the write-count of the entire
64 byte cache-line for every write. After the aggregation,
the write-count distribution can be illustrated graphically.
The graphics can include the information about the different
memory segments as well, which allows an interpretation of
the memory usage behaviour of the distinct memory segments.
Figure 3 illustrates a graphical representation of the analysis
result. The memory space (x axis) is indicated with the distinct
memory segments, thus the write-counts can be distinguished.
Furthermore, the illustration indicates the boundaries of 4 kB
virtual memory pages with grey vertical lines. The results
originate from the execution of a simple bitcount benchmark
and a data decompression benchmark, using the lightweight
patched frame of reference compression [20]. In this example,
an intensive memory usage at the top of the stack can be
observed.

IV. CASE STUDY: PROGRAM REGION ANALYSIS AND
DEDUCED WEAR-LEVELING SCHEMES

Figure 3 gives an example of how the proposed simulation
setup can be used to analyze the memory access behaviour of
an application in the context of in-memory wear-leveling. This
section intends to make further use of the simulation setup
features to provide a detailed analysis of the application’s
memory write access behaviour. Based on the observed be-
haviour, a wear-leveling scheme is deduced, implemented and
again evaluated with the simulation setup. Many of the wear-
leveling mechanisms proposed in the literature are evaluated
based on specific models or simple simulators, but an end to
end evaluation, where the wear-leveling algorithm is deployed
to a real or at least fully simulated system, is rarely provided.
Our simulation setup offers the possibility to analyze the
access behaviour of an applied wear-leveling algorithm in the
same way as the access behaviour of the bare application.
Thus, the impact of the wear-leveling mechanism can be
analyzed in detail and with respect to all influences of the
execution of the mechanism on the target system.

In this section, first a set of benchmark applications is exe-
cuted in our simulation environment and analyzed in the con-
text of in-memory wear-leveling in Section IV-A. After this,
a wear-leveling algorithm is proposed to tackle the observed
situation and presented in Section [V-B. Subsequently, the end
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to end analysis is performed and the resulting memory access
behaviour of the simulation of the wear-leveling algorithm is
provided in Section I'V-B.

A. Benchmark Application Analysis

To get an overview of the memory access behaviour re-
garding writes of some embedded applications, we executed
four benchmark applications in our simulation environment.
The simple bitcount and data decompression benchmark are
already presented in Figure 3. The bitcount application iterates
over an array of numbers and counts the 1 bits of these
numbers. This is done by a static set of instructions. The data
decompression benchmark (pfor) processes batches of com-
pressed numbers, decompresses them locally and aggregates
them afterwards. The other two benchmarks (sha and dijkstra)
are taken from the mibench security and networking suite [9].
All benchmarks are executed in the simulation environment
and the write accesses of the application are isolated in the
postprocessing. Figure 4 illustrates the resulting write-count
distributions graphically. Note that due to the logarithmic scale
of the y axes a value of 0 is not shown in the plots.

The results of the memory analysis can be collected for
every memory segment and interpreted separately:

e text: As the text segment contains the compiled binary
CPU instructions, it is only read during the program exe-
cution. For wear-leveling analysis, the text segment is less
important, because it is never written. The wear-leveling
algorithm only has to make sure that the physical memory
from the text segment contains a logical segment, which
is written from time to time.

e data / bss: The data and bss segments both store
global variables and objects from the application. The
usage of these variables highly depends on the applica-
tion. For the pfor benchmark, we observed that the data
and bss segments are not used for writing data at all.
The bitcount, sha, and dijkstra benchmarks only write to
a small part of the data and bss segment. Nevertheless,
this part is written intensively and has to be taken into
account for the wear-leveling decision.

e stack: The stack segment is the most interesting seg-
ments in the context of wear-leveling. It is used for
local variables and objects, as well as to store necessary
information for each function call. As a result, the write
behaviour to the stack is not completely controlled by the
application, but also by the compiler generated code for
function calls. Our results show that the write pattern to
the stack is different for each of the analyzed benchmark
applications. Generally, the applications write intensively
to small parts of the stack, while other parts of the stack
are never written. The part of the heavily written stack
memory also differs for the applications.

In summary, the analysis results of the four benchmark ap-
plications point out two key needs for a wear-leveling mech-
anism. First, the wear-leveling mechanism has to be aware
of the not written memory regions and has to redirect write
accesses to these regions to ensure they are used equally often
as the written memory regions. Second, the wear-leveling
mechanism has to be aware of the small but intensively
used memory regions, especially inside of the stack segment.
The wear-leveling algorithm has to recognize the write-count
to these memory regions, or a similar metric, to swap the
memory regions in a way that the total write-count to each
memory region incrementally reaches the same level. This
requirement makes the wear-leveling algorithm aging-aware.
The incremental leveling of the write counts also omits the
need to persist a state of the wear-leveling algorithm during
reboots.

B. Page Swapping Wear-Leveling

As a demonstration in this paper, we apply a fairly simple
wear-leveling algorithm to the previously mentioned scenario.
The algorithm is purely software-based, which means no
additional hardware is required to perform the wear-leveling.
Therefore, we do not have to equip the simulation environment
with a simulation of the additional hardware. The details of
the algorithm implementation are briefly stated subsequently.

First, the wear-leveling algorithm achieves the previously
mentioned aging-awareness with a runtime sorting approach.
During runtime, the current memory age is estimated by
sampling write accesses to the memory. The sampled write
accesses are aggregated to larger memory regions and man-
aged in a data structure. We utilize a sorted RB-Tree [4], hence
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Fig. 5. Simulation-based evaluation of the wear-leveling algorithm

the currently least written memory region can be determined
easily. The algorithm periodically decides to exchange a
memory region which was heavily written in the last period
with the least written memory region. Therefore, the currently
least written memory region likely is targeted by writes in the
next period and will not be the least written region. Hence, the
too heavily written logical regions target all physical memory
regions over time. This achieves the incremental leveling of
the number of writes over all memory regions.

Second, whenever the algorithm determines a logical mem-
ory region to be swapped to another physical memory region,
the actual swapping is performed using the virtual memory
pagetables. By swapping the physical mapped page of two
virtual pages and copying the content from one physical
page to the other, the logical perspective of the application
is maintained. After this operation, the writes to one virtual
memory page target the other physical memory page and vice
versa, which precisely achieves the required wear-leveling
action. The usage of the virtual memory subsystem limits
the algorithm to a granularity of virtual memory pages, i.e.,
4 kB, which makes the approach coarse-grained. Nevertheless,
this approach is a generic, aging-aware, software-only wear-
leveling algorithm.

C. End-to-End Analysis

To demonstrate the purpose of analyzing an algorithm with
the proposed simulation setup, we execute the previously de-
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Fig. 6. High-level evaluation of the wear-leveling algorithm

scribed wear-leveling algorithm on the benchmark applications
shown in Figure 4. The memory write behaviour is captured
with the same mechanism as before, but the application in
contrast contains the wear-leveling implementation in addition.
Hence, the resulting plots in Figure 5 contain all interactions
of the wear-leveling algorithm with the runtime system and
the hardware, as for instance the MMU driver, the pageta-
bles, and an interrupt mechanism to trigger wear leveling
actions*. Figure 5 does not display the wear-leveling result
under several assumptions about the execution of the wear-
leveling algorithm, but displays the real memory trace of the
executed wear-leveling algorithm in contrast. In comparison,
Figure 6 shows a high-level evaluation of the implemented
wear-leveling algorithm. The application’s bare memory trace
(Figure 4) is processed by a high-level model of the wear-
leveling algorithm, which tracks the internal data structures
and maintains an artificial virtual memory remapping table.
Focusing on the wear-leveling algorithm itself, the analysis
results show that the wear-leveling works under the given
conditions. Due to the granularity of virtual memory pages, the
result contains non-uniform patterns within the single pages,
but the incremental leveling of the write-counts is achieved.
Focusing on the difference between the high-level and
simulation-based evaluation, the comparison shows various

4Note that the mentioned interactions only have partial influence on
the visible plots, since the plots are already filtered and shrinked to the
application’s memory size.



differences. First, the timepoints of the wear-leveling actions
are slightly shifted, as the high-level evaluation does not take
overheads, e.g. for interrupt handling, into account. Thus,
the intra-page write patterns differ between the two results.
Second, the model for the sampling mechanism of the write
accesses lacks of accuracy, leading to a slightly different
number of wear-leveling actions. This can be observed in the
evaluation of the pfor application.

To summarize, the simulation setup presented in this paper
is used to analyze four benchmark applications and process
their memory write behaviour in the context of in-memory
wear-leveling. The results are used to deduce required wear-
leveling schemes, which are implemented and deployed back
to the simulator afterwards. This end-to-end analysis evaluates
the implemented wear-leveling algorithm, respecting all inter-
actions with the underlying operating system and the executing
hardware. The results can be used to determine the quality of
the wear-leveling algorithm and to deduce further required
wear-leveling schemes, for instance an algorithm targeting a
finer granularity. A comparison to a high-level analysis, which
does not require a real implementation of the wear-leveling
algorithm at all, points out there is a lack of preciseness in
the evaluation, leading to different results.

V. PERFORMANCE IMPROVEMENT AND ALTERNATIVE
SIMULATORS

Due to the need of a full-system simulator in the aforemen-
tioned setup, the performance faces a certain drawback. This
can be mainly observed by two effects. First, the simulations
are very time consuming and computations are generally slow.
For example, an application running for one second on a native
2GHz machine requires multiple hours of simulation time.
This is caused by the fact that the entire CPU and machine
is simulated in software as a Linux application. Second, the
trace volume for the memory trace file is large. NVMain2.0
by default writes the trace file as a human readable text
file, including precise information for every single memory
access. The volume of this trace file limits the speed of
subsequent analyses, as the file has to be loaded and processed.
Furthermore, with a slow main memory / disk configuration
on the simulation host, the process of writing the trace file
could also limit the simulation speed itself.

To overcome these performance impacts, several improve-
ments can be applied to the simulation setup. In this section,
first the possible improvements for the simulation speed are
discussed in Section V-A. Afterwards, the potential to reduce
the volume of the memory traces is presented in Section V-B.

A. Simulation Speed Improvements

The main reason for the low performance is the gap between
a native system and the simulation of functional units on a
cycle level by gem5. Every functional unit is simulated by a
software component, including a precise model to simulate the
appropriate behavior of the functional unit. The composition
of the functional units to the CPU and further peripherals
leads to the execution of many instructions for the simulation
of a single CPU cycle. Thus, many CPU cycles on the host
machine have to be spent to simulate a single CPU cycle of
the target.

As the accuracy of the simulation has to be maintained, the
only possibility to speed up the simulation is to avoid the ex-
ecution of the aforementioned instructions at each simulation
cycle. One possibility is to not simulate the target hardware,
but to rather run the application directly on the native target
platform. This only requires an additional mechanism to
extract the detailed information, which are usually gathered
through the simulator. In our simulation setup, the type and
target of memory accesses have to be extracted during the
software execution. The further techniques presented in this
paper can be applied based on this information, regardless
of the source and the acquiring method of the information.
Bao et al. [3] propose a hardware setup using an FPGA
board, which is plugged in the DRAM slot of a machine
and snoops the memory accesses to the DRAM module, to
collect the memory access information of a standard computer.
Furthermore, similar simulators are being proposed, which
make use of on-chip FPGAs to also snoop and collect the
memory access information [1 1], [14]. Either way, the concept
to snoop memory accesses of a real device is significantly
faster than a device simulation and provides the possibility to
trace memory accesses of the CPU for further analysis.

However, the requirement of an on-chip FPGA or a com-
plex, specialized hardware setup limits the choice of target
platforms and implies a strong dependency on the platform
specific memory subsystem. As an alternative, we consider to
use the CPU integrated hypervisor mode to extract and process
the memory access information. Traditionally, the hypervisor
is used to supervise, preempt and switch the execution of
multiple operating system. To achieve this, the hypervisor
mode is equipped with advanced privileges to control the
operating system. As part of these, the hypervisor can setup
a memory configuration for the execution of the underlying
operating system. This allows the hypervisor to configure the
memory in a way that every memory access is trapped to the
hypervisor and thus can be processed. The wide availability of
hypervisor extensions makes this approach easily applicable.
Furthermore, memory accesses are considered on the software
execution level and do not require precise knowledge about the
underlying memory subsystem. As a drawback, we expect this
approach to face a higher overhead than a hardware (FPGA)
based solution. Nevertheless, it may still be a significant
improvement compared to the full-system simulation.

B. Trace Volume Improvements

The performance of our simulation setup is also reduced
by the large size of the resulting memory trace files. For a
simulation of a program, which runs for some seconds on the
native platform, the size of the memory trace reaches several
gigabytes easily. Beside the fact that storing multiple gigabytes
usually requires some storage management, the processing
of the trace files is time consuming. To apply the filters
and further aggregation mechanisms on the traced memory
accesses, the entire trace file has to be loaded and processed,
which consumes additional time. We are developing several
solutions to reduce the impact of the large trace file volume.

One approach is to directly apply the filters and aggrega-
tions during the simulation process, which omits the steps of
writing out the trace file and reading it in again for the purpose



of processing. The drawback of this approach is the loss of
information due to the early applied filters and aggregations.
The targets of the analysis have to be determined before
running the simulation or the simulation has to be repeated for
every analysis target. A considerable hybrid solution could be
to perform the analysis during the simulation, but still write
out the conventional trace file. While this does not overcome
the issue of storing large trace files, it improves the speed of
the first analysis and allows arbitrary analyses later on.

Another approach is to reduce the volume of the trace file
by applying lossless and lossy compression mechanisms. By
default, the NVMain2.0 trace files contain human readable
information for every memory access, which is space con-
suming without compression. One straightforward mechanism
to reduce the size is to switch to another binary encoding of
the trace file, for instance, one that stores a cache line in 64
bytes instead of 130 characters. Further looseless compression
(e.g. delta encoding for the clock cycle) can be applied on this
basis afterwards. Also lossy compression can be applied by
filtering out information in the trace file that is not used for
any analysis. For instance, the CPU core of the memory access
can be omitted for a single core simulation, as well as the old
memory content for read operations.

In a test, we changed the trace-writer to a binary format with
variable length for every data field. Additionally, the controller
cycle information and the access address are delta encoded.
This ensures that the trace file is still readable in a subsequent
order and every single access can be further processed. The
original trace file size (human readable) of 244 MB can
be reduced by this simple encoding to 165 MB, which is
an improvement of 32%. Note that a larger improvement is
possible, e.g., gzip [6] reduces the size by 91, 7%. However,
the proposed format allows trace rewriting and processing with
extreme low overhead for decompression.

VI. CONCLUSION

In this paper, we propose a simulation setup for the anal-
ysis of application’s memory access behavior, which takes
the underlying operating system and hardware into account.
This allows to analyze algorithms, which target the mem-
ory behavior (e.g. wear-leveling algorithms), with respect to
the modified write behavior, for instance due to operating
system interactions and a changed caching behavior. As a
demonstration of our setup, we perform a case study on
the development of a specialized software-only wear-leveling
algorithm. The simulation results are used to specify the target
of the algorithm as well as to evaluate the algorithm in the
full setup.

Since the performance of the simulation setup was identified
as a significant drawback during our experiments, we propose
several modifications to increase the simulation speed as
well as to decrease the produced trace volume size. This
also includes alternative simulation environments, which are
hardware-aided.

Our simulation setup is available at [2]. We appreciate not
only software based solutions to be analyzed by this frame-
work, but also functional simulations of proposed hardware
controller to be integrated and evaluated.
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