technische universitat
dortmund

Christian Hakert, Kuan-Hsun Chen, Jian-Jia Chen

Department of Computer Science, TU Dortmund, Germany
https://Is12-www.cs.tu-dortmund.de/

Citation: https://doi.org/10.1145/3380446.3430624

BIBTEX:
@inproceedings { mlcad2020@intelliheap,
author = {Hakert, Christian and Chen, Kuan-Hsun and Chen, Jian-Jia},
title = {Can Wear-Aware Memory Allocation be Intelligent?},
booktitle = {2020 ACM/IEEE Workshop on Machine Learning for CAD (MLCAD 4AZ20), November 164AS20, 2020, Virtual Event, Ice- land},

year = {2020}
}

©Owner/Author | ACM 2020. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published
in Source Publication, https://doi.org/10.1145/3380446.3430624.

Ia computer
science 12

https://ls12-www.cs.tu-dortmund.de/
https://doi.org/10.1145/3380446.3430624
https://doi.org/10.1145/3380446.3430624

Can Wear-Aware Memory Allocation be Intelligent?

Christian Hakert, Kuan-Hsun Chen, Jian-Jia Chen
christian.hakert@tu-dortmund.de,kuan-hsun.chen@tu-dortmund.de,jian-jia.chen@cs.tu-dortmund.de
TU Dortmund, Design Automation for Embedded Systems Group

ABSTRACT

Many non-volatile memories (NVM) suffer from a severe reduced
cell endurance and therefore require wear-leveling. Heap memory,
as one segment, which potentially is mapped to a NVM, faces a
strong application dependent characteristic regarding the amount
of memory accesses and allocations. A simple deterministic strategy
for wear leveling of the heap may suffer when the available action
space becomes too large. Therefore, we investigate the employment
of a reinforcement learning agent as a substitute for such a strategy
in this paper. The agent’s objective is to learn a strategy, which is
optimal with respect to the total memory wear out. We conclude
this work with an evaluation, where we compare the deterministic
strategy with the proposed agent. We report that our proposed
agent outperforms the simple deterministic strategy in several cases.
However, we also report further optimization potential in the agent
design and deployment.

CCS CONCEPTS

« Computing methodologies — Markov decision processes;
« Hardware — Aging of circuits and systems;

ACM Reference Format:

Christian Hakert, Kuan-Hsun Chen, Jian-Jia Chen. 2020. Can Wear-Aware
Memory Allocation be Intelligent?. In 2020 ACM/IEEE Workshop on Machine
Learning for CAD (MLCAD °20), November 16—20, 2020, Virtual Event, Iceland.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3380446.3430624

1 INTRODUCTION

Arising technologies for non-volatile main memory (NVMM), such
as phase change memory (PCM) or ferroelectric RAM (FeRAM),
require additional maintenance and wear-leveling due to the severe
reduced cell write endurance compared to classic DRAM or SRAM.
The literature covers by now a variety of wear-leveling approaches,
which operate on various levels, for instance inside the memory
controller, in the operating system or even on the application level.
Heap memory, however, depends strongly on the usage of the ap-
plication, i.e. how often the application performs malloc calls and
how the application uses the allocated memory. Many so-called
wear-aware allocators are proposed in the literature, which aim to
place memory requests not only along the objective of fast alloca-
tion time or low fragmentation, but also with the target objective to
optimize the total wear out of the underlying physical memory. A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MLCAD °20, November 16—20, 2020, Virtual Event, Iceland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7519-1/20/11...$15.00
https://doi.org/10.1145/3380446.3430624

straightforward approach is to implement a deterministic strategy,
where for instance a memory request is always placed to the coldest,
i.e. the least often written, memory region. In addition, not only the
allocation process can be wear-aware, but also after answering the
malloc requests, physical memory locations may be exchanged by
utilizing the memory management unit and virtual memory. This
leads to runtime decisions, which also have to encounter the wear
out of the memory.

In this paper, we propose a novel concept for runtime remapping
and investigate a heap allocation design where not only the physical
location of entire memory pages can be remapped, but also allocated
memory portions (memory chunks), which may be smaller than
one page, can be recombined into different memory pages. This
yields an even larger degree of flexibility to map memory chunks
to the physical memory. Given this degree of flexibility, making
the right decision of mapping chunks to a page and to a physical
page respectively becomes an increasing complex task and one
interesting research question is whether a simple strategy makes
good decisions or whether a self learning, decision making machine
learning agent can even further improve the wear-leveling.

To answer this question, we propose one possible design of such
a machine learning agent. The design is realized as a reinforcement
learning agent, since it is supposed to learn a good strategy for
runtime remapping on its own. For training, the agent only needs
to be provided with the immediate reward from the system, which
can be generated from the current memory wear out. More specifi-
cally, our agent is design with Q Learning [15] which is a popular
approach for model free learning and fits our needs. We aim to find
a minimal state description for the agent, which still fulfills the
Markov property but does not carry much overhead. This approach
explicitly targets small embedded systems, since usually a small
and fixed set of software is executed and not many programs are
executed in an interleaved manner. Our design intends to learn
the memory access properties of the software set and optimizes
among them. We evaluate our proposed agent on a set of bench-
marks from the Olden benchmark suite [1, 12], which are dedicated
benchmarks for dynamic data structures and therefore for heap
memory. We compare the runtime decisions of our proposed agent
with a possible deterministic design for runtime remapping, which
always remaps the most heavily written memory chunk to the next
fitting free slot, in the evaluation of this paper.

Our novel contributions:

e The investigation of a novel heap memory allocation concept,
where allocated memory chunks can be recombined to memory
pages after the allocation

o A design proposal for a reinforcement learning agent to decide
for runtime recombination of memory chunks, which follows the
allover target of optimizing the total memory wear out.

e An evaluation of our proposed agent, which compares the agents
decisions with a deterministic recombination strategy.

https://doi.org/10.1145/3380446.3430624
https://doi.org/10.1145/3380446.3430624

2 RELATED WORK

Wear aware heap allocation is tackled with several approaches in
the literature. Wang et al. propose NVMalloc, which provides a
memory allocation interface [14]. The strategy is to not allocate the
same physical memory two times within one time interval. This
relaxes the stress on the memory. Yu et al. push this even further
with WAlloc [18]. The allocation of memory requests follows the
Less Allocated First Out policy, which means that for each and every
memory request the less allocated physical memory block is chosen
to serve the request. This levels the number of allocations across all
memory blocks. Huang et al. include write count approximations
in Quail [6], which also provides a memory allocation interface.
Quail monitors the number of write accesses to virtual memory
pages and remaps the page to a free physical page once it exceeds
a certain amount of write accesses. UWLalloc further improves
the management of physical memory and the detection of hot
memory blocks [9]. These blocks are excluded from the allocation
at a certain time. Although all these allocation algorithms can grow
rather complex and are able to achieve several improvements in the
wear leveling, they still make decisions by a deterministic policy.
To the best of our knowledge, no wear-aware allocator exists which
tries to replace this design principle with a more complex machine
learning policy. Deng et al. propose Memory Cocktail Therapy
(MCT) [2], which utilizes various machine learning approaches to
choose a proper combination and configuration of existing NVM
maintenance mechanisms. This approach, however, does not aim
to find optimized policies for wear-leveling itself, it rather selects
and configures pre-defined wear-leveling algorithms to achieve the
desired objective.

To design a memory allocator, which uses machine learning to
make advanced wear-aware decisions, several machine learning
algorithms could be considered. Supervised learning exists in many
flavours but always follows the concept of learning correlations
from given training examples [8]. In order to design a wear-aware
memory allocator with supervised learning, the machine learning
algorithm would need to be trained with training data from an
ideal wear-aware memory allocator. Therefore we do not consider
supervised learning here. Unsupervised learning [5] in contrast
would not require training samples from a perfect allocator and still
could classify the memory allocation requests along criteria which
correspond to the memory wear out. Nevertheless the mapping
decision can be based on these criteria, it still has to follow some
given strategy. Reinforcement learning [13], as a remaining algo-
rithm, interacts with the real system during training and requires
a reward, which can be generated from the environment, with-
out following some given wear-leveling policy. The reinforcement
learning agent then aims to find an optimal behavior policy on its
own to achieve the best reward. Therefore we use reinforcement
learning in this work to learn a strategy to place memory requests
to physical locations, based only on a simple reward mechanism.

3 QLEARNING

This section gives a broad overview about the reinforcement learn-
ing methods, on which the proposed agent in this paper is based on.
Q learning, as one flavour of reinforcement learning, is introduced
by Christopher Watkins in [16] and is shown to converge under
given conditions in [15]. Q learning is a model-free reinforcement

learning approach, therefore no model of the environment is re-
quired. An agent learns a policy for optimal behavior based on
immediate rewards, which are provided by the environment.

3.1 Environment Representation

Since Q learning is model-free and does not require a model of the
environment to be provided, it assumes a generic structure of the
environment, which can be described by a Markov decision process
(MDP). The environment is assumed to reside in a given state s, € S
at the time point n. From each state, the agent decides for an action
ap € A, which will push the environment into a successor state
f € S. This transition must only depend on the current state s, and
the chosen action ay:

Proby(s, f) = Prob(sp+1 = f | sn = s,an = a) (1)

Furthermore, the environment is assumed to provide an immediate
reward rp, at each time point n, which again only depends on the
current state s, and the chosen action a,,. For practical application,
the problem, which the agent should solve, has to be observable up
to a certain degree, such that a state representation can be gener-
ated, which follows the aforementioned condition. Additionally, an
immediate reward has to be generated by the training environment,
which follows the mentioned condition.

Once states and actions are know, the central source of informa-
tion for the agent is to know the total expected reward Q : SXA — R,
which does not only include the immediate reward r;, earned for
choosing ay, in state sp, but also considers the agents future deci-
sions and the immediate rewards for them. As the future decisions
and thus the future rewards depend on the policy 7 along which
the agent chooses decisions, Q is also dependent on . Throughout
this paper, the proposed agent follows the e-greedy policy [17],
i.e. it always tries to select the action ap, where the total expected
reward is maximal:

ap = argmax Q(sp, a) (2)
acA

€
|A]
ter, a random action is chosen from time to time, which ensures

exploration. This leads to the specific definition of the Q function:

Randomly, with a probability of where € is a given parame-

O(sn,an) =rp+y- maj‘C O(sn+1,a) (3

y is the total expected reward discount factor, which prevents the Q
function from considering an infinite time horizon when 0 <y < 1.
Assuming the Q function is perfectly known, the agent decides for
the best decision in every time step. Thus, the allover goal of Q
learning is to learn a proper surrogate function Q’ based only on
the given immediate rewards, which is then used to support the
agents decisions.

3.2 Q Function Approximation

During runtime, the agent is initialized with some surrogate func-
tion Q. The agent then defers actions based on this function and
therefore receives immediate rewards from the environment. This
forms one training tuple for every executed action:

(Sn»an, Tn, Sn+1) 4)

The tuple contains the current state, the taken action, the earned
immediate reward and the successor state. Each of these tuples can

be used to compute an update of the surrogate function:
Qupdare(sman) =1ty maxQnerca) ()

This updated value then can be used to incrementally train the
surrogate function:

Ql(sn, an) < Q’(sn, an)+A- (Q;pdate(s"’ an) — Q,(Sns an)) (6)

A here denotes the training rate for the surrogate function.

Further modifications exist to improve the quality of the agent
further. One is to employ an additional surrogate function Q”” as the
target function [11], which decouples the training of the prediction
function Q’ from the values of the prediction function itself. The
updates for the prediction function then are calculated in a slightly
different manner:

4 — ”
Qupdate(s"’a”) =ty ng Q7 (sn +1,0) 7)

From time to time with a given frequency, the target function is
replaced with a recent snapshot of the prediction function. Another
modification, which is also employed in the later proposed agent,
is experience replay [10]. Instead of computing an update value
for the prediction function, whenever a training tuple comes in,
training tuples are first stored in a replay buffer. To compute update
values, a random sample of training tuples is extracted from the
replay buffer then and the update values are computed for these
training tuples. This can help to overcome temporal correlation in
the training tuples.

The final question is how the agent encodes and stores the surro-
gate function Q" and Q”’. An intuitive solution would be to maintain
a value table S X A X R, which holds one row for each value com-
bination of the function. With a huge state and action space this
may lead to serious efficiency problems and furthermore, updates
only apply to a single row of the table. An alternative is to use
regression models, which try to fit some function to the computed
update values of Q’. In this paper, we use multi layer perceptron
(MLP) neural networks for this approximation. Instead of letting
the network learn the function Q’ : S X A — R based on the update
values, we restructure the network to predict all total expected
rewards for all actions at once:

Q’: S — R ®)

The training data for this network then is inferred by modifying
only the corresponding output element with the updated Q” func-
tion value. The usage of the MLP regression model eventually in-
troduces an additional tuning parameter, i.e. the learning rate of
the neural network. Updating the target function, however can be
done by simply copying the weights from the prediction function
to the target function from time to time.

4 WEAR-AWARE ALLOCATION AGENT

In order to adapt Q learning, two basic requirements are as follows:
1) the state of the problem needs to be described in a description,
which fulfills the Markov property (Equation (1)), and 2) each com-
bination of state and chosen action must lead to a particular imme-
diate reward. Wear-leveling, which is performed for the allocation
of heap memory, resides as a software application in the scope of
the allocation mechanism of the operating system. Considering the
entire operating system memory footprint may provide a sufficient

virtual memory pages

S | P S L
S v S eV

physical memory pages ——
Figure 1: Virtual memory page overlaying
state description, which fulfills the Markov property but is practi-
cally impossible due to the high complexity. Therefore, it is crucial
to design a state description which fulfills the Markov property
but carries no unused overhead. We detail our design and state
description for heap wear-leveling in this section.

4.1 Heap Allocation Structure

When memory requests are arbitrarily placed in the memory space,
remapping to other physical addresses is usually limited to the
granularity of the virtual memory subsystem. In order to provide
an increased freedom of remapping memory chunks to physical
locations, we propose a novel heap allocator structure, which yields
a largely increased action space for relocating memory chunks to
new physical locations.

We allocate one or more separate virtual memory pages for each
allocation request which are subsequently mapped to the allocated
physical memory. By aligning the allocated memory chunks at fixed
boundaries, we can map multiple virtual memory pages to the same
physical memory page, as shown in Figure 1. This also allows a
remapping during runtime, as long as no overlapping happens in
the physical memory pages. Since this mechanism is implemented
with virtual to physical address translation, it is transparent to the
application and does not require any additional or special applica-
tion support.

The allocator splits the memory pages into equal sized subpages
with the size of 4096 - ZL" such that chunks with different sizes can
be still combined into one physical memory page. The free space
management within pages then is done with the buddy allocation
strategy [7]. Please note that the initial assignment of a newly
requested memory chunk is not decided by the agent but is done
randomly.

4.2 State Representation

Since the state representation has to cover the deterministic state of
the allocator status to fulfill the Markov property, it has to be clari-
fied on which information wear-leveling and relocation decisions
are based on. The first important aspect is the absolute age of phys-
ical memory pages, which should be considered for wear-leveling
decisions. The second aspect is the relative age of memory chunks,
i.e. how intensive a memory chunk aged the memory since the
last remapping. This encodes the write behavior of the application.
Since this can change during runtime, it has to be included in the
state. Finally, the current mapping from virtual memory chunks to
physical pages should be included in the state representation, such
that chunks with a high relative age can be mapped to physical
pages with a low absolute age, for instance.

To summarize all these information into a compact state descrip-
tion, which can be easily parsed by the MLP regressor, we construct
a state vector to describe the state as shown in Figure 2. The vec-
tor holds 2 consecutive entries for every subpage. If, for instance,
10 pages exist in the system and each page has 8 subpages, the

«—————— page 0 subpage 0 relative age
«——— page 0 subpage 0 absolute age
«———————— page 0 subpage 1 relative age
«——— page 0 subpage 1 absolute age

« state vector -

Figure 2: State vector

vector holds 160 entries. Entries at even indices hold the relative
age of the chunk, which is mapped to the physical subpage at the
index i = vector index/2. Entries at odd indices hold the absolute
age of the physical subpage at index i. For all entries, the values
are normalized according to the maximum relative memory chunk
age, respectively the maximum absolute subpage age. Note that we
gather the age information by runtime sampling of write accesses,
as proposed by Hakert et al. [3]. Therefore, the realization is mostly
independent from specific hardware features.

4.3 Agent Actions

The state vector is used as the input for the agent, i.e. as the input
for the MLP regressor. The output then is a vector of total expected
rewards for each possible action. Thus, the number of actions needs
to have a fixed size, such that the regressor architecture does not
need to change during runtime. We implement the actions in such
a way, that one action is available per possibly existing memory
chunk. The number of possibly existing memory chunks is a fixed
number, since there cannot be more memory chunks than subpages.
Each action then leads to the following steps:

(1) Identify the mapped memory chunk targeted by this action (the
chunk may cover multiple subpages or may not exist).

(2) Search for other free subpages to map this chunk to (next fit).

(3) Apply the remapping of the chunk to the new target.

4.4 Agent Realization

Plugging all together, the wear-aware remapping agent for heap
allocated memory is implemented straight forward. The application
is interrupted after a certain amount of memory write accesses and
the state vector is generated from the access count approximations.
From the inferred total expected rewards, the desired action is
chosen according to the e-greedy policy. The action is applied and
the application continues to run until the next maintenance interrupt.
Subsequently, the allover wear-out from the memory is determined
and an average indicator is calculated on the count of writes per
byte according to Equation (9).

mean_write_count

f= ——)

max_write_count

This indicator builds the immediate reward for the action chosen in
the last maintenance interrupt. When the memory is not properly
wear leveled, this number is near to 0, when write accesses are
distributed mostly uniform, this number is near to 1. If the agent
selects an action, which targets a not existing chunk, the immediate
reward is set to —1. The training tuple is formed and stored in the
replay buffer. With a configured rate, the agent then samples tuples
from this buffer and updates the model.

5 EVALUATION

In order to evaluate our proposed reinforcement learning agent
we compare our proposed wear-aware agent (Section 4) with a
simple deterministic strategy, but also with a blind random strat-
egy. As benchmark applications, we chose three applications from

the Olden benchmark suite [1, 12]: The "Barnes & Hut N-body
force computation” (BH), the "Electromagnetic wave propagation
in a 3D object" (EM3D) and the "Perimeters of regions in images"
(PERIMETER). We selected these benchmark applications because
they repeatedly perform allocations and de-allocations. We limit
the evaluation to 3 benchmarks due to the effort for instrumenting
the code and the computational effort for the simulations.

mean_write_count
AE= ——=— ="~ (10)
max_write_count
The evaluation compares the strategies along their achieved en-
durance Equation (10) over simulation time. This number indicates
the current wear leveling of the memory. This metric differs from
Equation (9) in the fact that it is computed on the real write count
per memory byte and not based on the runtime estimation.

5.1 Simulation Setup

We execute the benchmarks in a realistic memory simulation setup
[4] to get the full memory access trace as a result. We further in-
strument the malloc calls in such a way, that we get the memory
requests as an additional simulation result through a debug channel.
This allows us subsequently to form a set of chunks, each bench-
mark allocates and a series of memory accesses, targeting each
chunk. We carry this information into an in-house simulation of
our memory allocator, where we virtually place memory chunks
at according physical locations while encountering all technical
limitations (subpages always have a fixed offset within pages). The
execution of the benchmark is simulated by redirecting the recorded
memory accesses according to the current mapping. We invoke the
maintenance strategy with a fixed frequency (i.e. after every 1024th
write access) and modify the mapping accordingly. The state repre-
sentation for the agent and the immediate rewards are generated
as described in Section 4.

Throughout intensive experiments, we found a set of parameters
for the reinforcement learning agent, which is used in all simula-
tions. The MLP regressor has the entire state as the input layer,
which is #pages - 8 - 2 since there are 8 subpages per page. The
output layer has the size of #pages - 8 since there is one possible ac-
tion per chunk, respectively per subpage. The MLP has two hidden
layers, the first with the same size as the input layer and the second
with the same size as the output layer. The replay buffer contains
up to 500 elements, where 4 tuples are extracted in each training
step, which happens every 8th inference of the agent, i.e. after 8
training tuples are appended. The target function is updated after
16 training intervals; The learning rate A is set to 1 initially and
slowly decreases to 0.1 during training; The total expected reward
discount factor y is set to 0.8. Eventually, the MLP training rate is
set to 0.2.

The memory space is 64 X 4kB for the BH and EM3D benchmark
and 256 X 4kB for the PERIMETER benchmark. For all strategies,
memory chunks are randomly assigned to subpages on their initial
allocation. For every benchmark application, we run the following
maintenance strategies:

(1) base: No runtime maintenance is applied.
(2) simple: The "hottest" chunk is determined by finding the sub-
page with the highest absolute age. The according chunk action

T T T T T T T T T T T
0.15 |- .
4 0.1r _— base
< — simple
0.05 |- _— random
agent refreshed
0L 1 1 1 1 1 | L | | agent memorized
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
simulation time 10°
(a) BH benchmark
0.4 T T —
0.3 .
m | _— base
< 02 _— simple
_— random
o1r agent refreshed
0 1 | | | 1 | 1 | | | ——— agent memorized
—0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
simulation time 104
(b) EM3D benchmark
0.15 T T T T T T T T T T T
0.1f .
m base
<< simple
0.05 |- random
agent refreshed
0Lk]]]] | | | | [agent memorized

0.4

0.5 1

simulation time

0.6 0.7 0.8 0.9

-10%

(c) PERIMETER benchmark
Figure 3: Achieved endurance for memory simulations

is applied, i.e. the chunk is relocated to the next fitting free
subpage.

(3) random: A uniform sampled random chunk is chosen and the
chunk action is applied.

(4) agent refreshed / memorized: The reinforcement learning
agent selects the chunk action. Agent refreshed means that the
agent starts with an empty weight file while agent memorized
means that the agent already was executed on the benchmark
once and thus is pre-trained.

5.2 Result and Discussion

Figure 3 illustrates the achieved endurance (AE) (Equation (10))
during the simulation time for all benchmarks and maintenance
strategies. Note that the simulation time for the benchmarks is
different, which stems from the varying execution time of the algo-
rithms in the benchmarks. Table 1 summarizes the improvement of
the mean values of the achieved endurance for each a pair of two
strategies. First, it can be observerd that the general quality of the
wear-leveling is very benchmark dependent. For the PERIMETER
benchmark huge differences in the maintenance strategies can be
observed, while for EM3D all strategies achieve somewhat similar
results. The simple strategy turns out to not improve, but rather
degrade the achieved endurance for PERIMETER. The simple strat-
egy of always targeting the "hottest” chunk may suffer when the
access behavior is changing a lot and the "hottest" chunk changes
regularly. In this case, accesses are already distributed without any
maintenance. For EM3D, in contrast, the simple strategy does not
degrade the endurance and improves by 0.4% in average. For BH the

simple strategy slightly degrades the endurance by 0.6% in average.
Due to the fact that for all strategies memory chunks are randomly
allocated to physical locations on their initial allocation, already a
good, randomized wear-leveling happens even without any runtime
maintenance strategy. For the investigated benchmarks, it can be
clearly reported that the simple design cannot achieve a significant
endurance, indeed the endurance is degraded.

Considering the achieved endurance of the memorized agent,
an improvement can be observed for most benchmarks. For BH,
the agent achieves 1.7% more endurance than the baseline in av-
erage, for EM3D 0.2% and for PERIMETER 0.03% less endurance.
In comparison to the simple strategy, BH improves the endurance
by 2.4% in average, PERIMETER by 6.2% and EM3D degrades the
endurance by 0.2% in average. It can be further observed that the
second execution of the agent improves upon the first execution
of the agent. This draws the conclusion that a crucial key to the
performance of the agent is the amount of available training data.
This conclusion is also supported by investigating the mean squared
error (MSE) of the training process of the MLP. For EM3D, the MSE
has an average value of 85173 during the first run and a mean of
2698 during the second run. Also for PERIMETER. the mean MSE
is 2159173 during the first run and 1295676 during the second run.
Only for BH, the mean MSE value is bigger for the first run (3173)
then for the second run (23364). First, the improvement of the MSE
in the second run indicates that the agent already reacted better
to some scenarios then in the first run, therefore also the allover
achieved endurance improves. Second, the absolute high values of

BH EM3D PERIMETER
base — simple -0.659% 0.413% —6.292%
base — agent ref. —0.162% —2.256% —0.514%
base — agent mem. 1.750% 0.202% —-0.028%
base — random 0.457% —0.585% —0.576%
simple — agent ref. 0.643% —2.669% 5.778%
simple — agent mem. 2.408% —0.211% 6.263%
simple — random 1.115% —0.998% 5.716%
random — agent ref. -0.473% —1.671% 0.062%
random — agent mem. 1.293% 0.787% 0.547%

Table 1: Mean AE improvements!

the MSE indicate that the agent by far does not behave optimal and
there is improvement potential.

5.3 Discussion

Summarizing the observations from the conducted experiments,
we see that the simple wear-leveling strategy does not perform op-
timally in our benchmarks. Even deciding randomly for relocations
achieves a better result, which highlights the random strategy as a
universal applicable strategy. Since the action space is limited and
for every performed wear-leveling action the memory mapping
changes, random intuitively seems quiet suitable. This is because
over time all memory chunks and all subpages are targeted. How-
ever, although the proposed reinforcement learning agent cannot
outperform the random strategy by far, it adapts to the specifics of
the benchmarks. The memorized agent performs better than the
random strategy in all benchmarks.

The results also point out that training data is an essential key
to the performance of the reinforcement learning agent. The agent
starts to make decisions completely untrained and only gets the
runtime behavior of the memory as an input. During all the bench-
mark run, this leads to a few thousands of training tuples only,
which are not sufficient to fit the internal MLP model properly to
the estimated Q function. With a pre-trained agent both, an im-
provement of the wear-leveling and a better fitting of the internal
model can be observed. For further improvement of the agent, a
better training scenario should be considered. The agent could be
pre-trained offline or the random strategy could be applied first
until the internal model of the agent approximates the Q function
up to a certain degree. Although we do not have these methods in
our proposed agent, we still report that the agent properly adapts
to the situation and achieves reasonable wear-leveling.

6 CONCLUSION

In this paper, we investigate wear-aware heap memory allocation
for arising non-volatile main memories. We consider a novel heap
allocation structure which yields a larger action space for the com-
bination and recombination of single allocated memory portions to
physical memory locations. Due to the growing action space, we
challenge simple deterministic designs of wear-aware heap alloca-
tion and propose a possible design of an intelligent heap allocation,
which is realized with a reinforcement learning agent. We choose

Each row of the table compares two strategies. The difference of the achieved en-
durance of the strategies mentioned in the firsat column is averaged over the simulation
time. Agent mem. here always indicates the memorized agent. Agent ref. indicates the
refreshed agent.

reinforcement learning because we only need to extract the im-
mediate reward as training data from the environment and do not
need to generate supervised training tuples.

Our evaluation points out that the simple design may degrade
the memory lifetime, while even a uniform random strategy can
achieve a reasonably good result. Our reinforcement learning agent
also adapts to the specific memory access patterns of the benchmark
application and outperforms the random strategy.

7 OUTLOOK

In this work, we observe a significant improvement in the allocator
when it already was trained on the benchmark once before. Towards
this, one approach would be to pre-train the agent on recorded data.
Another approach would be to execute the random strategy at first
and train the agent meanwhile without letting it make strategy
decisions. Furthermore, it has to be investigated if the agent only
improves when pre-trained on the given benchmark application or
if it even can improve when pre-trained on other application.

ACKNOWLEDGEMENT

This paper is supported in parts by the German Research Founda-
tion (DFG) Project OneMemory (CH 985/13-1).

REFERENCES

[1] M. C. Carlisle and A. Rogers. Software caching and computation migration in

olden. Technical Report TR-483-95, Princeton University.

Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry Hoffmann, and Frederic T

Chong. Memory cocktail therapy: a general learning-based framework to opti-

mize dynamic tradeoffs in nvms. In Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 232-244, 2017.

[3] Christian Hakert, Kuan-Hsun Chen, Pual R Genssler, Georg von der Briiggen, Lars
Bauer, Hussam Amrouch, Jian-Jia Chen, and Jorg Henkel. Softwear: Software-
only in-memory wear-leveling for non-volatile main memory. arXiv preprint
arXiv:2004.03244, 2020.

[4] Christian Hakert, Kuan-Hsun Chen, Mikail Yayla, Georg von der Briiggen, Sebas-
tian Blomeke, and Jian-Jia Chen. Software-based memory analysis environments
for in-memory wear-leveling. In 2020 25th Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pages 651-658. IEEE, 2020.

[5] Geoffrey E Hinton, Terrence Joseph Sejnowski, Tomaso A Poggio, et al. Unsuper-
vised learning: foundations of neural computation. MIT press, 1999.

[6] Kaixin Huang, Yijie Mei, and Linpeng Huang. Quail: Using nvm write monitor
to enable transparent wear-leveling. Journal of Systems Architecture, 2020.

[7] Kenneth C Knowlton. A fast storage allocator. Communications of the ACM, 1965.

[8] Erik G Learned-Miller. Introduction to supervised learning. I: Department of
Computer Science, University of Massachusetts, 2014.

[9] W.Li, Z. Shuai, C. J. Xue, M. Yuan, and Q. Li. A wear leveling aware memory
allocator for both stack and heap management in pcm-based main memory
systems. In 2019 Design, Automation Test in Europe Conference Exhibition (DATE).

[10] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine learning, 8(3-4):293-321, 1992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.

Human-level control through deep reinforcement learning. Nature, 2015.

[12] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data
structures on distributed memory machines. ACM Transactions on Programming
Languages and Systems, 17(2), March 1995.

[13] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

[14] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann. Nvmalloc:
Exposing an aggregate ssd store as a memory partition in extreme-scale machines.
In 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

[15] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning.

[16] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.

[17] Michael Wunder, Michael L Littman, and Monica Babes. Classes of multiagent
q-learning dynamics with epsilon-greedy exploration. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10). Citeseer, 2010.

[18] S. Yu, N. Xiao, M. Deng, Y. Xing, F. Liu, Z. Cai, and W. Chen. Walloc: An
efficient wear-aware allocator for non-volatile main memory. In 2015 IEEE 34th
International Performance Computing and Communications Conference (IPCCC).

[2

—
jan

	Abstract
	1 Introduction
	2 Related Work
	3 Q Learning
	3.1 Environment Representation
	3.2 Q Function Approximation

	4 Wear-Aware Allocation Agent
	4.1 Heap Allocation Structure
	4.2 State Representation
	4.3 Agent Actions
	4.4 Agent Realization

	5 Evaluation
	5.1 Simulation Setup
	5.2 Result and Discussion
	5.3 Discussion

	6 Conclusion
	7 Outlook
	References

