technische universitat
dortmund

Splitn Trace NVM: Leveraging Library OSes
for Semantic Memory Tracing

Christian Hakert, Kuan-Hsun Chen, Simon Kuenzer, Sharan
Santhanam, Shuo-Han Chen, Yuan-Hao Chang, Felipe Huici and

Jian-Jdia Chen

Department of Computer Science, TU Dortmund, Germany
https://Is12-www.cs.tu-dortmund.de/

Citation: https://doi.org/10.1109/NVMSA51238.2020.9188136

BIBTEX:

@inproceedings { hakert2020nvmsa,

author = {Hakert, Christian and Chen, Kuan-Hsun and Kuenzer, Simon and Santhanam, Sharan
and Chen, Shuo-Han and Chang, Yuan-Hao and Huici, Felipe and Chen, Jian-Jia},

title = {Splitn Trace NVM: Leveraging Library OSes for Semantic Memory Tracing},
booktitle = {9th Non-Volatile Memory Systems and Applications Symposium (NVMSA) },

year = {2020},

keywords = {kuan, nvm-oma, }

©2020 |IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

CS I2 e

https://ls12-www.cs.tu-dortmund.de/
https://doi.org/10.1109/NVMSA51238.2020.9188136

Split'n Trace NVM: Leveraging Library OSes for
Semantic Memory Tracing

Christian Hakert*, Kuan-Hsun Chen*, Simon Kuenzer', Sharan Santhanam?, Shuo-Han Chen?,
Yuan-Hao Chang?, Felipe Huici', Jian-Jia Chen*
*Department of Informatics, TU Dortmund, Germany
t NEC Laboratories Europe GmbH, Germany
¥ Institute of Information Science, Academia Sinica, Taiwan

Abstract—With the rise of non-volatile memory (NVM) as a
replacement for traditional main memories (e.g. DRAM), mem-
ory access analysis is becoming an increasingly important topic.
NVMs suffer from technical shortcomings as such as reduced
cell endurance which call for precise memory access analysis
in order to design maintenance strategies that can extend the
memory’s lifetime. While existing memory access analyzers trace
memory accesses at various levels, from the application level with
code instrumentation, down to the hardware level where software
is executed on special analysis hardware, they usually interpret
main memory as a consecutive area, without investigating the
application semantics of different memory regions.

In contrast, this paper presents a memory access simulator,
which splits the main memory into semantic regions and en-
riches the simulation result with semantics from the analyzed
application. We leverage a library-based operating system called
Unikraft by ascribing memory regions of the simulation to the
relevant OS libraries. This novel approach allows us to derive
a detailed analysis of which libraries (and thus functionalities)
are responsible for which memory access patterns. Through
offline profiling with our simulator, we provide a fine-granularity
analysis of memory access patterns that provide insights for the
design of efficient NVM maintenance strategies.

Index Terms—unikernel, system simulation, memory simula-
tion, memory analysis

I. INTRODUCTION

Beside the total amount of accesses, memory access patterns
can have a large impact on the performance and lifetime
of emerging memories. For non-volatile memory (NVM) in
particular, certain patterns can result in severely reduced
memory lifetime due to a very limited cell endurance. To
design mitigation solutions, it is imperative to be able to
accurately measure and analyze such access patterns.

In this paper, we propose a novel simulator concept, where
we combine a library-based operating system called Unikraft
[9] with a full-system simulator and subsequent memory trace
analysis (the latter based on our previous work [7]). A library
operating system splits its functionality into fine-granularity
libraries, and often provides clear APIs to be able to seam-
lessly exchange libraries (e.g., different memory allocators
or schedulers). We leverage such fine-grained libraries to
split the memory and analyze the memory access behavior
of each library in isolation; this allows us to assess each

978-1-7281-8482-1/20/$31.00 ©2020 IEEE

library individually, based on its memory access behavior, with
respect to arbitrary metrics.

To allow isolated library analysis, we propose two tech-
niques: static memory analysis and dynamic memory analysis.
For static memory analysis we investigate the final linked
OS image, including all libraries and application. We identify
statically allocated main memory regions (i.e. text, data, bss)
and map them to the originating library by comparing compiler
symbols with the pre-compiled libraries; this results in a per-
library memory map which we apply to the memory trace,
acquired by our simulator.

For dynamic memory analysis, the aim is to achieve the
same output, but for run-time allocated memory (i.e. stack,
heap). We extend a full-system simulator to trace-out the pro-
gram counter of every issued memory access. In combination
with the static library-memory map, we can therefore map
each memory access to the library that triggered the access.

We conduct a case study by analyzing both, the static
and the dynamic allocated memory regions on a per-library
basis in order to determine the effect of the caused memory
access pattern on the memory wear out. This subsequently
provides important insights into which libraries to tackle first
when designing solutions to improve memory lifetime. Our
methodology is not limited to the presented simulation setup,
it can also operate with other library based operating and
other memory access simulators. In short, our main research
contributions are:

o An extended memory access simulator, built on top of a
full-system simulator, which leverages Unikraft, a library
operating system. Our implementation provides the neces-
sary hardware drivers for Unikraft to be used with the gem5
full-system simulator [3].

« A static analysis module that maps static memory regions of
the final linked binary to the originating libraries, allowing
for fine-granularity, per library tracing of memory accesses.

e A dynamic analysis module that determines the issuing
library for each memory access. This allows us to further
analyze dynamic allocated memory (i.e. stack and heap), but
also investigate the difference between ownership and usage
of static allocated memory.

o A case study that uses both methods to show how individual
libraries impact the lifetime of main memory.

II. RELATED WORK

Work in the literature proposes many different ways how
to analyze the memory access behavior of computer appli-
cations. Capturing of memory accesses is proposed to be
done on various levels. Bao et al. propose HMTT [2], which
is a hardware based memory simulator that uses an FPGA
between the processor and the memory DIMM to snoop
all memory accesses. A less invasive method is provided
by the combination of the gemS5 full-system simulator [3]
and the non-volatile memory simulator NVMain2.0 [13]; this
setup simulates an entire system, including CPU, memory
and peripherals. The simulator then allows users to trace all
memory accesses. Nethercote et al. propose Valgrind [11],
which is a method that hooks in at the application level and
requires code instrumentation such that every memory access
can be traced out.

The aforementioned mechanisms are subsequently used to
analyse applications memory behavior. Jiang et al. focus on
a memory analysis of computing frameworks (e.g. Hadoop)
by investigating hardware characteristics (e.g. cache behavior)
[8]. They employ Intel’s VTune Amplifier [I] to collect
architectural metrics, but also conduct their analysis on the
HMTT platform to acquire the full memory trace. Nalli et
al. present a benchmark suite with various applications [10],
using the gem5 simulator to analyze memory traces and to
investigate the memory behavior of these applications. Byma
et al. perform an analysis of the usage of heap allocated
memory [4] by instrumenting the code, in a similar manner as
Valgrind [11] does. Consequently, they analyse the memory
behavior of their application based on these data.

To the best of our knowledge, all this work focuses on global
analysis of the target applications. They usually compute
metrics for the overall memory behavior and do not try to
divide the application into separate functional units that can
be analyzed isolated. In this work, we propose a novel method
to achieve this, where we employ the library based operating
system Unikraft within a full-system simulator. We exploit
the organization into libraries for the memory analysis to
investigate the memory pattern of each library in isolation.

III. SIMULATOR ARCHITECTURE

In this paper, we propose an entire setup for isolated mem-
ory access pattern simulation and analysis. This setup features
two important components: 1) the full-system simulator, which
allows us to trace out all memory accesses during the execution
of an operating system, and 2) the software we run on top
of this simulator, which then allows us to trace back every
memory access to the software library, which caused the
access. As mentioned in Section II, there exists a variety
of methods to acquire a memory trace from an executing
operating system. It is beyond the scope of this paper to assess
memory simulation methods and choose the best among them.
We utilize the full-system simulator gem5 [3] in combination
with the NVM simulator NVMain2.0 [13] in this work for
the following reasons. First, full-system simulations are not
invasive and do not influence the memory behavior of the

analyzed application. Second, full-system simulations can be
run as an application on common linux computers, which eases
the processing of simulation results. Third, the combination of
gem5 and NVMain2.0 is already well studied for analyzing
memory access patterns by us in [7]. We base our methods on
top of this work to provide a simulation setup for advanced
memory access pattern analysis, while we maintain broad
compatibility with the existing methods.

The previous simulation setup [7] ships with a custom
operating system, which is dedicated to separate the memory
accesses from the application and the operating system. This
is crucial to analyze the isolated memory behavior of an
application, but not suited to investigate the interplay between
the application and the single components of the operating
system. Therefore, we use Unikraft as the operating system,
which we execute on top of the full-system simulator. Unikraft
is a library based operating system and therefor divides the op-
erating system functionalities into small libraries. By analyzing
the memory access pattern of each library separately, we can
investigate the interplay between the application and all the
libraries and the effects on the memory access patterns. Our
implementation provides the required code modifications and
device drivers to run Unikraft on gem5. Unikraft itself provides
a large source repository with a wide choice of libraries, which
allow many applications to run within Unikraft. Therefore,
the choice of Unikraft not only allows us to perform precise
analysis later on, it also allows to run different applications
and analyze them. Since we still employ NVMain2.0 in the
simulation process, we achieve a precise timing simulation of
the underlying NVM.

IV. MODULAR ANALYSIS

As mentioned before, we utilize the library structure of
unikraft to analyze the memory access pattern of every library
separately. This allows the generation of single memory traces
for libraries like memory allocation, boot code, scheduling
all the way to libraries such as openssl and boost [14]. OS
primitive libraries reside in the main Unikraft repository, while
all others have own repositories that can be separately added to
a build configuration. Once configured, Unikraft’s build system
builds all libraries and links them together, generating a single
executable binary file with a single memory address space.

1) Binary Analysis and Memory Trace Indication: As men-
tioned before, the linker merges all separate libraries and
modules into one single address space, meaning that, for
instance, the text segments of all libraries, are merged into
one global text segment to keep all the compiled binary code
spatially close. While the applications performance may bene-
fit from this technique, it makes its analysis more complex. To
overcome this, we extend the existing simulation setup with a
post-simulation analysis module which traces back the original
software component for every memory section.

In detail, during compilation debug symbols are added to the
final, single address-space binary file. These symbols indicate,
among others, the memory location of variables, arrays or
functions. The symbols are each placed at the first byte of

the corresponding variable, array or function. Therefore, the
memory region between two symbols belongs to the high level
construct from the first symbol. The symbols are generated
during compilation and not changed (only placed) during
linking. As a result, symbols can be found in the single pre-
compiled libraries as well as in the final linked binary file.
Due to the fact that symbols are unique, symbols from the
final linked binary can be linked to a single library.

With the help of these symbols we scan the final, compiled
binary for all symbols and check, for each symbol, from which
library it comes from. This tells us that the memory region
between this and the next symbol belongs to that library. We
subsequently create a library-memory map that we can use
for static analysis (e.g., to determine how much memory each
library consumes). Once we run the simulator and receive the
memory trace, we take the library-memory map into account
to indicate the libraries in the memory trace'. The memory
trace itself contains access to the main memory, therefore
accesses which may be covered by caches are not considered,
since they also have no influence on the memory. Basically,
all analysis modules from [7] can be still combined with this
library map as long as they output a result which includes
memory addresses.

To analyze memory wear-out later in this paper, we focus on
the cumulative number of write accesses per byte to analyze
the lifetime impact of software on main memory. Conse-
quently, we first extend the analysis script to calculate wear-out
indicators for each library by only taking their corresponding
memory cells into account; this provides a quantitative value
of the impact on memory lifetime of every library. We further
extend the analysis script to produce a plotted memory write
count map, coloured by single libraries, allowing for separate
analysis of the memory access patterns of each library.

2) Dynamic Memory Analysis: As detailed above, we uti-
lize the compiler-generated symbols to identify the memory
regions of each library. Naturally, this only works for static
allocated memory (text, data, bss), but not for dynamically
allocated memory (heap and stack). To overcome this, we
introduce a specialized analysis module that collects further
information during the simulation. To estimate, for a given
memory access, which library triggeres it, we investigate the
current program counter.

Note that this does not necessarily reveal the memory own-
ership, since libraries can access memory of other libraries.
This method rather indicates how frequent which library uses
a certain memory region. Additionally, the current program
counter only indicates the currently executing library and not
the calling library, which is responsible the access. Although
stack frames (caused by function calls) could be investigated to
track down a memory access to the most outer calling library,
it is unclear how far the calls should be traced back. For
instance, the most outer calling function would always be the

Note that we use an identity mapping between virtual and physical memory
addresses. When an arbitrary mapping is used, the virtual memory address
has to be traced out next to the physical address by the simulator to lookup
a write access in the library-memory map

libl — memory trace

program counter address content

lib2 —

lib3

lib4 —

. TR texXt —

g L { compare U T 111171
= ’ write distribution per library

E -

El ’

'_g

l —

Fig. 1: Dynamic memory trace analysis’

initialization function of the thread, which would not deliver
any new insight. Since it is not clear how to properly figure
out the responsible function call, we only focus on the current
program counter.

To provide this functionality, we first extend gem5 /
NVMain2.0 to pass the program counter along with a memory
request issue to the memory subsystem and to the memory
trace writer. Because gem5 is a full system simulator, this
information can be extracted easily. This leads to an additional
column in the tracefile of our simulation setup that records the
program counter address together with each memory access.

As a second step, we provide an analysis module that in-
terprets the additional information in the tracefile. Leveraging
the static library-memory map and the program counter, we
can identify the library that issued the memory request. The
text segment is static and distinctly separated by functions
by the compiler, thus any address within the text segment
(i.e. every value the program counter can have) belongs
unambiguously to one function of one library. We scan the
memory trace access by access, identify the calling library
of each access and aggregate the number of writes per cell
for every library separately. This mechanism is illustrated in
Figure 1. This mechanism has no further limitations: it can be
applied to every memory region and can analyze the memory
traces separately. While such an analysis is crucial to analyze
dynamic managed memory regions (e.g. stack, heap) for each
library, it can also be applied to statically-allocated memory
regions (e.g. data, bss). By doing this, the analysis can give
insights into which library is actually using memory owned
by other libraries.

V. CASE STUDY: SQLITE DATABASE

The previous section details our setup for an advanced
simulation environment, which allows further and detailed
analysis of single operating system components when it comes
to recording accesses to non-volatile main-memory. To il-
lustrate which types of insights can be gathered by using

2The figure illustrates how the memory trace from the simulator is processed
to analyze the memory write distribution for each library separately. For
each access (i.e. line in the memory trace), the issuing program counter is
compared with the text segment fragments of the libraries and in therefore,
the issuing library is identified. The access address is then used to increment
the corresponding counter in the write distribution for this specific library.

such a simulator, we provide a case study on the memory
lifetime impact of an SQLite database application, analyzing
the memory access patterns of each individual library and
noting which libraries have the biggest impact on memory
wear out and thus memory lifetime; this kind of analysis can
provide key insights into the design of specialized, minimal
wear-leveling mechanisms.

A. SQLIite TPC-H Implementation

As the application, we run the TPC-H [5] queries Q1 and
Q6 on a scaled lineitem table (500 rows) in a Unikraft SQLite
image. To provide this functionality, the image includes an
sqlite3 implementation [12], the required system libraries
(libc and libpthread) for sqlite, a virtual file system layer
(libvfscore) used to store the database, and an application that
populates the table and executes the query. These libraries are
all available from the Unikraft source repository®. All these
are configured into one instance of Unikraft and executed on
top of our simualtion setup.

In this case study, we utilize our proposed simulation setup
to separate memory traces for each library and identify mem-
ory access hotspots, which finally have the biggest influence
on the memory lifetime, when they target NVM with low write
endurance. As a consequence of this result, specific software
components can be replaced by alternative implementations
or can be mapped to volatile memory or be tackled by wear-
leveling, thus the memory lifetime can be increased. The most
drastic influence on memory lifetime is the hotspot where
the highest amount of writes is applied to the same memory
region, because this memory region would wear-out first. In
the following, we analyze static allocated memory regions
(data and bss), as well as a dynamic allocated memory region
(stack) for such memory hotspots and determine, from which
operating system library they stem from.

B. Static Memory Analysis

We begin by investigating the statically-allocated memory,
i.e. the data and bss segments. Although the text segment is
statically allocated, it only experiences read accesses during
execution and thus it is not meaningful to analyze it when
considering memory wear out. The data and bss segment
both store program data, such as variables, arrays or datatype
instances. Each library therefore has a different memory usage
on the data / bss segment and therefore has different semantics
for accessing the memory, leading to different memory access
patterns for each library. Figure 2 shows the output of our
simulation setup for the data and bss segment of the TPC-H
Q1 and Q6 benchmark. As a first observation, it can be seen
that the application (red) has no present memory regions in the
data / bss segment. This stems from the fact that the application
only coordinates the sql calls and printing of the results; as

3https://www.github.com/unikraft

4The figures show the cumulative number of writes (y axis) over the
memory bytes of the data and bss segment (x axis). The ownership of the
memory regions by the libraries is indicated by the colours (legend on the
right). Note that the y axis is in logarithmic scale, thus memory regions with
zero write accesses cannot be indicated.

libsqlite
! libvfscore

' 'TPC-H Q1 data / bss |

libsqlite

T T
3 ! newlibc .
! ! - app
<
=3 libsglite
§] libpthread
E : libvfscore
T i libsglite libgems
] ‘ libnewlibe
56 kB
main memory
libsqlite) '
,’ libvfscore libsqlite
; /TPC-H Q6 data / bss |
T T
3 ! newlibc
1 1 —
<
=3 ®
=) libsglite
s
3 [libpthread
° .
§ @- libsglite libvfscore
libgem5
3 | libnewlibc
=] ot
2

56 kB
main memory

Fig. 2: data / bss section for TPC-H QI and Q6*

a result, no program memory is needed, since everything can
be stored locally on the stack. As expected, the sql library
(libsqlite) takes a central role during the benchmark execution,
which also can be seen in the memory hotspot at the end of the
data / bss segment. Analyzing the data / bss segment, libsqlite
and libvfscore result in the most evident memory hotspots and
thus represent prime candidates for wear-leveling mitigation
(or for being relocated to volatile memory).

C. Dynamic Memory Analysis

As we noted in [7], dynamic memory (i.e. the stack)
causes much more intensive write hotspots than the statically-
allocated segments (i.e. data, bss). Nevertheless, the stack
may be allocated to non-volatile memory with limited write-
endurance for various technical reasons, therefore the hotspots
should be identified.

We apply our method for dynamic memory analysis (Sec-
tion IV-2) to analyze write accesses to the main stack. As
our benchmark is a single-core benchmark, only one stack is
required. If, however, multiple stacks are used, they can be
all analyzed separately. To know the position of the stack,
we instrument Unikraft with a simple debug output on the
allocation of thread’s stacks. In Figure 3, we illustrate the
amount of write accesses to the stack by each library. Note
that the lines only count the accesses each library performs,
therefore the “real” amount of write accesses to the stack
is given by the sum of all lines. This illustration allows to
easily identify the library that would degrade stack memory
the fastest: libpthread. Although the static analysis shows that

https://www.github.com/unikraft

TPC-H Q1 stack

. app

libsqlite
libpthread

write count

libvfscore
libgem5

libnewlibc

16 kB
stack memory

TPC-H Q6 stack

®-

libsqlite
libpthread

libvfscore

write count

libgem5

libnewlibc

16 kB

stack memory

Fig. 3: stack section for TPC-H Q1 and Q6°

the sql library (libsqlite) performs the most dense memory
accesses in the data / bss segment, this is different for the stack.
The threading abstraction (libpthread), as well as the c library
(libnewlibc) both cause a memory hotspot larger by two orders
of magnitude than the highest peak usage for libsqlite. As a
result, and perhaps somewhat counter-intuitively, any wear-out
mitigation mechanism should first look into modifying these
libraries before tackling the “obvious’ libsqlite library.

To finalize this case study, we combine the static and
dynamic analysis. To achieve this, we run the dynamic analysis
on the static allocated memory region (data / bss). This
then results in a figure that indicates which library accesses
correspond to which memory region. The results are shown in
Figure 4. As can be seen, for most memory regions the owning
library accesses its own memory segments. However, it is also
clear that the virtual file system (libvfscore) practially does not
access the second portion of data / bss memory. Instead, this is
only accessed by the c library, due to library functions which
operate on this memory.

In addition to the graphical illustration, our simulation setup
also allows to perform arbitrary analysis on the collected
and separated data. For instance, lifetime indicators can be
calculated for every single library to assess the memory usage
in terms of lifetime. This can also be used to identify libraries
with the worst impact on memory lifetime. To illustrate this,

S5This figure illustrates the cumulative number of write accesses (y axis)
to the stack (x axis) per library (coloured lines). The lines each indicate the
number of accesses per library, thus the sum of all lines would be the real
amount of writes.

OThis figure depicts the same memory accesses as Figure 2. In contrast,
we use the dynamic analysis method (Section IV-2) to show which library
accesses the memory during runtime. In comparison to Figure 2, this depicts
the difference in memory ownership and usage.

TPC-H Q1 data / bss

.
®-
g libsqlite
E @ libpthread
§ libvfscore
libgem5
libnewlibc
=)
m

56 kB
stack memory

TPC-H Q6 data / bss

®-

g libsqlite
<] i .
Z @' libpthread
k= libvfscore
B
libgem5
libnewlibc
<
o

56 kB
stack memory

Fig. 4: dynamic data / bss section for TPC-H Q1 and Q6°

we take the achieved endurance (AE) metric (Equation (1))
[6] into account:
_ mean_write_count

AE = ey

max_write_count

This metric gives an intuition as to which level of improvement
can be achieved by wear-leveling. For instance, if the achieved
endurance is low, wear-leveling has high potential to improve
the memory lifetime. When calculated for every single library,
this metric can be used as an indicator of which library may be
worth the effort for performing wear-leveling. We determine
the achieved endurance for every library for the stack (compare
Figure 3) and the data / bss (compare Figure 4). Both data
sets are acquired by our dynamic analysis mechanism. The
achieved endurance is calculated in all cases across the entire
segment and is not limited to the memory regions from the
library only. Table I shows the resulting achieved endurance
numbers. As shown, libnewlibc has the highest optimization
potential in the data segment, while libpthread shows the
highest optimization potential in the stack segment. It is also
worth noting that the optimization potential is not always
correlated for each library: the sql library (libsql), for instance,
has relatively high optimization potential in the data segment,
but not in the stack segment.

‘ app libsqlite libpthread libvfscore libgem5 libnewlibe
Q1
stack | 2.44% 7.80% 1.53% 2.74% 1.87% 1.89%
data 1.17% 0.69% 0.62% 0.79% 1.27% 0.47%
Q6
stack | 2.53% 7.47% 1.52% 2.73% 1.85% 1.90%
data 1.17% 0.69% 0.62% 0.79% 1.27% 0.40%

TABLE I: achieved endurance after dynamic analysis

Summarizing this case study briefly, it can be observed that
the per-library modular analysis, we propose in this paper,
delivers important insights into how to design efficient wear-
leveling and memory lifetime improvement techniques. The
results are counter-intuitive for some libraries, as well as they
point out the need to distinguish between memory regions
and libraries and assess and tackle them with separate means
regarding their memory wear out.

VI. CONCLUSION

In this paper, we propose a novel module-based memory
access simulator for NVM which utilizes the features of a
configurable library operating system to provide separation
between single OS components. We base our full-system
simulator on our previously proposed combination of gemS5
and NVMain2.0 [7]. In addition to this setup, we replace the
original custom run-time system with Unikraft, a configurable
library OS [9]. On this basis, we extended our simulation setup
with analysis modules that keep track of these libraries and
indicate main memory regions on a per-library basis.

With this in place, we first provide a static analysis mecha-
nism which investigates debug symbols in the compiler output
to find statically-allocated main memory for every library. This
information could be used on its own to, for instance, estimate
the library’s memory consumption, but we also combine it with
the memory access simulator. Thus, for each memory access,
the target memory region can be ascribed to one operating
system component. Second, we provide a dynamic analysis
mechanism, which separates the run-time behavior of each
library. Due to a specific extension of gem5, we acquire
the causing program counter for every memory access. In
combination with the static analysis, we can clearly identify
the program counter within the compiled code of one library.
Therefore we can unambiguously identify the causing library
for every memory access and collect a separate memory access
trace for every library.

In the case study of this paper, we provide an intuition for
the use cases and benefit of our proposed simulation setup.
We focus on the analysis of the cumulative number of writes
per memory cell, which is an important indicator for the
lifetime of NVMs with limited write endurance. We show
how memory write hotspots can be identified and tracked back
to an individual library. This knowledge then can be used to
resolve these hotspots by specifically targeting the library. We
further point out a difference in the ownership and usage of
static allocated memory. Finally, we analyze potential lifetime
improvement for each library separately and discover that for
each distinct memory segment (i.e. data or stack segment),
different libraries present the highest potential for lifetime
improvement.

VII. OUTLOOK

To the best of our knowledge, we are the first to show the
potential combination of library operating system and memory
access simulators and explore this for designing maintenance
for non-volatile-memory. Although we show in this work

that crucial insights can be acquired by this novel simulation
setup, we believe that this setup has high potential for further
memory analysis as well. The library separation, combined
with the fact that for each library multiple implementations
may exist and be interchanged, allows for a high grade of
configurability, which yields the need to assess the quality
of every configuration and to optimize configurations. For
future work, we plan to apply further analysis, such as cache
replacement analysis and memory deduplication analysis to
our simulator to also improve among these.

Since we believe novel memory behavior analysis to be
crucial to designing future memory mechanisms, we plan to
publish all our implementation. The analysis implementation
and the modified simulator are provided at https://github.
com/tu-dortmund-1Is12-rt/splitntrace_analysis, the gem5 port
of unikraft will be upstreamed in the official unikraft reposi-
tory.

ACKNOWLEDGEMENT

This paper has been supported by Deutsche Forschungsge-
meinshaft (DFG), as part of the project OneMemory (project
number 405422836) and the project SFB876 Al (project
number 124020371). It is partly funded by the Horizon 2020
Framework Programme of the European Union under agree-
ment No 825377 (UNICORE).

REFERENCES

[1] Intel Vtune Amplifier. Intel vtune amplifier, 2019.

[2] Yungang Bao, Mingyu Chen, Yuan Ruan, Li Liu, Jianping Fan, Qingbo Yuan,
Bo Song, and Jianwei Xu. Hmtt: a platform independent full-system memory trace
monitoring system. In Proceedings of the 2008 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 229-240,
2008.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1-7, August 2011.

[4] Stuart Byma and James R Larus. Detailed heap profiling. In Proceedings of the
2018 ACM SIGPLAN International Symposium on Memory Management, pages
1-13, 2018.

[5] Transaction Processing Performance Council. Tpc-h benchmark specification.
Published at http://www. tcp. org/hspec. html, 21:592-603, 2008.

[6] Christian Hakert, Kuan-Hsun Chen, Paul R. Genssler, Georg Briiggen, Lars Bauer,
Hussam Amrouch, Jian-Jia Chen, and Jorg Henkel. Softwear: Software-only in-
memory wear-leveling for non-volatile main memory. CoRR, abs/2004.03244,
2020.

[7] Christian Hakert, Kuan-Hsun Chen, Mikail Yayla, Georg von der Briiggen, Sebas-
tian Bloemeke, and Jian-Jia Chen. Software-based memory analysis environments
for in-memory wear-leveling. In 25th Asia and South Pacific Design Automation
Conference ASP-DAC 2020, Invited Paper, Beijing, China, 2020.

[8] Tao Jiang, Qianlong Zhang, Rui Hou, Lin Chai, Sally A Mckee, Zhen Jia, and
Ninghui Sun. Understanding the behavior of in-memory computing workloads. In
2014 IEEE International Symposium on Workload Characterization (IISWC), pages
22-30. IEEE, 2014.

[9] S. Kuenzer, S. Santhanam, Y. Volchkov, F. Schmidt, F. Huici, Joel Nider, Mike
Rapoport, and Costin Lupu. Unleashing the power of unikernels with unikraft. In
Proceedings of the 12th ACM International Conference on Systems and Storage,
SYSTOR 19, page 195, New York, NY, USA, 2019. Association for Computing
Machinery.

[10] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris Volos, and
Kimberly Keeton. An analysis of persistent memory use with whisper. ACM
SIGPLAN Notices, 52(4):135-148, 2017.

[11] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89-100, 2007.

[12] Chris Newman. SQLite (Developers Library). Sams, USA, 2004.

[13] M. Poremba, T. Zhang, and Y. Xie. Nvmain 2.0: A user-friendly memory simulator
to model (non-)volatile memory systems. IEEE Computer Architecture Letters,
14(2):140-143, July 2015.

[14] Boris Schiling. The boost C++ libraries. Boris Schiling, 2011.

https://github.com/tu-dortmund-ls12-rt/splitntrace_analysis
https://github.com/tu-dortmund-ls12-rt/splitntrace_analysis

	Introduction
	Related Work
	Simulator Architecture
	Modular Analysis
	Binary Analysis and Memory Trace Indication
	Dynamic Memory Analysis

	Case Study: SQLite Database
	SQLIite TPC-H Implementation
	Static Memory Analysis
	Dynamic Memory Analysis

	Conclusion
	Outlook

