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Abstract—Modern distributed low power systems tend to integrate ma-
chine learning algorithms, which are directly executed on the distributed
devices (on the edge). In resource constrained setups (e.g. battery driven
sensor nodes), the execution of the machine learning models has to be
optimized for execution time and energy consumption. Racetrack memory
(RTM), an emerging non-volatile memory (NVM), promises to achieve
these goals by offering unprecedented integration density, smaller access-
latency and reduced energy consumption. However, in order to access
data in RTM, it needs to be shifted to the access port first, resulting in
latency and energy penalties.

In this paper, we propose B.L.O. (Bidirectional Linear Ordering), a
novel domain-specific approach for placing decision trees in RTMs. We
reduce the total amount of shifts during inference by exploiting the tree
structure and estimated access probabilities. We further apply the state-
of-the-art methods to place data structures in RTM, without exploiting
any domain-specific knowledge, to the decision trees and compare them to
B.L.O. We formally prove that the B.L.O. solution has an approximation
ratio of 4, i.e., its number of shifts is guaranteed to be at most 4 times
the optimal number of shifts for a given decision tree. Throughout the
experimental evaluation, we show that for the realistic use case B.L.O.
empirically outperforms the state-of-the-art data placement method on
average by 54.7% in terms of shifts, 19.2% in terms of runtime and
19.2% in terms of energy consumption.

I. INTRODUCTION

The rise of non-volatile memories (NVMs) as SRAM and DRAM
competitive memory technologies allows systems to benefit from
their richer densities, lower per-bit cost and energy consumption and
comparable access latencies. Especially in embedded systems that
are battery-powered i.e., “on the edge”, maintenance cycles can be
significantly enlarged by carefully exploiting the advantages of NVMs
and reduce the overall system energy consumption. An important
application for low power computing on the edge is data processing
and gathering, e.g., for distributed sensor nodes. Such setups can
be improved by executing machine learning models already on the
edge. One popular candidate for resource constrained and efficient
classification models are decision trees, since they do not require
complex arithmetic operations and are highly configurable with a
few parameters. Assuming a decision tree should be executed on the
edge to classify data points on the fly, the memory layout of the
decision tree has to be carefully considered achieving both energy
efficiency and performance optimization.

Racetrack memory (RTM) is a new class of NVMs, which features
high integration density, low unit cost and low energy consumption
at the cost of access pattern specific shift latencies [3]. In RTM, data
cannot be randomly accessed; it needs to be shifted to an access
port first, before it can be read out. The distance, i.e., how far
the data needs to be shifted, defines the additional shift latency.
Researchers target the problem of optimally mapping data structures
to RTM, with respect to the shift latency by proposing placement
heuristics, since exhaustively searching for the optimal placement is

often not feasible [7], [10]. The heuristics usually profile the access
probabilities of the data objects either in advance or during runtime.
The major shortcoming of such placement heuristics is that they treat
data objects all equally and therefore have to consider all data objects
possibly being accessed pairwise consecutively.

In this paper, in contrast, we consider the domain-specific knowl-
edge of decision trees and optimize the memory layout on RTM,
such that the total amount of shifts can be minimized. To this
end, we present a Bidirectional Linear Ordering (B.L.O.), which
explicitly accounts for the parent relation of nodes within the trees.
By knowing that only nodes, which have a direct parent-child relation,
can be accessed pairwise consecutive in advance, the B.L.O. heuristic
resembles an existing algorithm for solving the Optimal Linear
Ordering (O.L.O.) problem for constrained rooted trees optimally
with a time complexity of O(m logm).
Our novel contributions:
• A theoretical proof that the solution of the O.L.O. problem for

rooted trees causes at most 4× the amount of total shifts than the
optimal placement, when applied on decision trees in RTM.

• A placement heuristic named B.L.O., eliminating the major cause
for long shift distances between two inferences, where we show
that the total amount of shifts is not increased.

• An empirical evaluation, considering realistic runtime and energy
consumption models to compare B.L.O. to the state-of-the-art
approaches presented in [7], [10].

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this work, we target low-power embedded systems for machine
learning inference. A typical scenario for such systems could be the
deployment of battery powered sensor nodes. Instead of transmitting
the raw sensor data via radio transmission, the system could locally
perform the model inference and only submit the derived result for
saving the transmission energy. The target system is assumed to be
equipped with a simple CPU core (e.g., few MHz clock rate, no
caches), SRAM as main memory and integrated RTM scratchpad
memory. Efficient data mapping to the RTM scratchpad may reduce
the average access latency, and the energy consumption for accesses
to RTM locations can be drastically reduced. This work assumes that
the decision tree model is mapped to this RTM scratchpad memory,
so the access patterns of the tree nodes determine the access latency
and energy consumption.

A. Decision Tree and Probabilistic Model

In this work, we consider Decision Trees as the inference model,
where the leaf nodes contain the prediction values of the model under
supervised learning. The input data is classified by its values for
a fixed amount of features. Each inner node in the decision tree
performs a comparison of exactly one feature value from the input
data with a fixed split value, which then decides if the inference
further goes to the left or to the right child.978-1-6654-3274-0/21/$31.00 ©2021 IEEE
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Fig. 1. RTM cell structure

Each tree consists of nodes N = {n0, n1, ..., nm−1}, divided into
inner nodes Ni and leaf nodes Nl with N = Ni∪Nl and Ni∩Nl =
Ø, n0 is the root node. Each node nx ∈ N \ {n0} has exactly one
parent node P (nx). In memory, we place each and every node of
the tree into a consecutive array of the size of m nodes, where the
racetrack shifting cost of accessing index i and j with 0 ≤ i, j < m
in a sequence is |i−j|. A valid mapping of nodes N to array indices
I : N → {0, 1, ...,m− 1} must be bijective.

The inference model always starts paths from the root node and
follows the children according to the comparisons at each node until
reaching a leaf node. By following the probabilistic model proposed
in [6], each comparison is modeled as a Bernoulli experiment, by
which each node is assigned with a probability to be accessed from
the parent node prob : N → [0, 1] ⊂ Q with prob(n0) = 1 and
∀np ∈ Ni :

∑
nx∈N :P (nx)=np

prob(nx) = 1. That is, the sum of
the probabilities of the children of the node np is 1.

B. RTM Cell Structure

The basic unit of storage in an RTM is a magnetic nanowire
called track. Each track consists of multiple small magnetic regions
(domains) which are separated by domain walls and each of them
have its own magnetization orientation as shown in Figure 1. A
domain in a track represents a single bit (i.e., a 0 or 1) determined by
its magnetization orientation. Each track is equipped with a single or
multiple access port(s) for read or write operations which requires the
desired domain to be shifted along the track towards the access port
by applying an electrical current. After aligning the desired domain
to the respective access port, the relevant data is either read out
by sensing its magnetization orientation or written by updating its
magnetization orientation.

C. RTM Architecture

The hierarchical organization of RTM, like other memory technolo-
gies, consists of banks, subarrays, Domain Block Clusters (DBCs),
tracks and domains as depicted in Figure 2. Each structure at the
highest level (e.g., bank) is decomposed into smaller structures at the
next level (e.g., subarray). The essential structure of an RTM is a
DBC which contains T tracks each comprising K domains. A single
DBC is capable of storing K data objects with T -bit, where each
object is stored in an interleaved pattern across the T tracks. Under
a single port and K domains per track assumption, the shift cost to
access a particular data object in a DBC may range from zero to
T × (K − 1).

A DBC can store up-to 100 data objects i.e., K can be as high
as 100 [3]. However, many recent designs consider K = 64 which
is not only more realistic but also enables efficient utilization of the
address bits. In this work, we also assume that 64 nodes of a decision
tree can be placed within a single DBC, which can contain a subtree
of the maximal depth of 5. As the decision trees we use in this paper
are balanced, larger trees can be easily split into such subtrees by
introducing dummy leaves, which point to the next subtree. Subtrees
in different DBCs can be accessed without additional shifting costs.

DBCBank

RT0 RTT-1

b0 bT-1

Sub-
array

V0

V1

VK-1Bank

Bank

Bank

Sub-
array

Sub-
array

Sub-
array
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DBC

Fig. 2. An overview of the RTM hierarchical organization

D. State-of-the-art Data Placement in RTMs

Recent works [7], [10] propose compiler-guided approximate and
optimal solutions for objects placement in RTMs. A memory access
trace S can be represented with an undirected graph of the form
G(V,E) where V is the set of vertices representing data objects and
E is the set of edges between vertices. Each edge has an associated
edge weight value corresponding to the number of consecutive
occurrences of the connecting vertices. The heuristic in [7] maintains
a single group g and assigns objects to it. In the first step, the data
object with the highest access frequency (number of accesses) in
S is assigned to it. Afterwards, the remaining data objects (i.e.,
vertices in V ) are appended to g one by one by prioritizing the
vertex with the highest adjacency score. The chronological order in
which vertices are added to the group determines the assignment
of the corresponding data object to the DBC, from left to right.
However, this may lead to many costly long shifts because the data
object with the highest frequency is placed on one end of the DBC.
To overcome this problem, ShiftsReduce [10] uses two directional
grouping to place the data objects with the highest access frequency
in the middle of the DBC, and places temporally close accesses at
nearby locations inside the RTM.

E. Problem Definition

In this work, we focus on the placement optimization to minimize
the amount of racetrack shifts for decision trees, which are trained
beforehand with corresponding datasets. The studied problem is
defined as follows:
• Input: A binary decision tree, consisting of m nodes, i.e., set N ,

where each node is associated with a probability to be accessed
from its parent. The probability is profiled on the dataset for train-
ing. The information of the rooted tree is defined in Section II-A.

• Output: A bijective mapping of tree nodes to a memory array
which minimizes the expected required racetrack shifts while
accessing the tree nodes during inference, assuming the given
probabilities of the nodes of the decision tree.
Due to the rooted tree structure, each node nx in N has a unique

access path from the root to nx. We use path(nx) to denote the set
which contains all nodes on the path from the root node down to
nx. With the help of this we declare the absolute access probability
of node nx as absprob(nx) = Πnz∈path(nx)prob(nz). In addition,
every node nx ∈ N has a subtree with a subset of leaf nodes
leaves(nx) ⊆ Nl where ∀ny ∈ leaves(nx) : nx ∈ path(ny).

Definition 1. For a given node nx ∈ N , the sum of probabilities of
its direct children must always be 1 (cf. Section II-A). The absolute
probability of nx then by definition can be expressed as

absprob(nx) =
∑

ny∈leaves(nx)

absprob(ny) (1)
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III. DECISION TREE SPECIFIC PLACEMENT

Throughout this section, we present our novel approach for a
decision tree specific placement heuristic. Given some valid mapping
I , the expected cost for the inference of an input value, i.e., following
a path from the root to a leaf, is given by Eq. (2):

Cdown =
∑

nx∈N\{n0}
absprob(nx) · |I(nx)− I(P (nx))| (2)

After finishing one inference iteration using the decision tree, the
DBC needs to be shifted back to the root node so that the next
inference iteration can again start from the root. The expected cost
for shifting from leaf nodes back to the root is given by Eq. (3):

Cup =
∑

nx∈Nl

absprob(nx) · |I(nx)− I(n0)| (3)

Combining them leads to the total expected shifting cost under the
profiled dataset (Eq. (4)):

Ctotal = Cdown + Cup (4)

An optimal mapping I∗ for a decision tree on racetrack memory is a
mapping which minimizes Ctotal. This problem is an instance of the
Optimal Linear Ordering (O.L.O.) problem [1], [4], [8]. The O.L.O.
problem in general is to map the nodes of a graph G to slots, where
all slots are in a row and adjacent slots are one unit apart, such that
the total sum of arc weights multiplied with the distance between the
nodes, connected by the arc, is minimal. The O.L.O. (or also called
Optimal Linear Arrangement) problem is an instance of the Quadratic
Assignment problem and is NP-complete [9]. As a special case, the
O.L.O. problem for rooted trees with the root node on the leftmost
position (i.e. only optimizing Cdown) can be optimally solved in time
complexity O(m logm) [1].

A. Towards Fast O.L.O. for Decision Trees

Throughout this section we use the notations defined in Table I:

Placement Explanation
I arbitrary mapping
I∗ optimal mapping which optimizes C∗opt
I∗↓ optimal mapping which optimizes C∗↓down←−
I arbitrary mapping with the root on the left←−
I∗ optimal mapping with the root on the left and with

expected down cost
←−
C∗down

TABLE I
PLACEMENT NOTATION

Suppose that C∗opt is the minimally expected cost Ctotal of the
optimal placement I∗ of the decision tree. In the following, we show
how to derive a sub-optimal mapping, which at most causes 4 times
the cost of C∗opt. A path, defined as path(n`), from the root node n0

to a leaf node n` ∈ Nl in a placement I is monotonically increasing if
I(nx) > I(P (nx)) for every node nx in path(n`)\{n0}. Contrarily,
such a path is monotonically decreasing if I(nx) < I(P (nx)) for
every node nx in path(n`) \ {n0}.
Definition 2. We define placement I unidirectional if all paths in the
given decision tree are monotonically increasing in this placement.

Definition 3. We define placement I bidirectional if every path in
the decision tree is either monotonically increasing or monotonically
decreasing.

Lemma 1. Let I∗↓ be a mapping which only minimizes C∗↓down and
ignores C∗↓up. Then,

C∗↓down ≤ C∗opt (5)

Proof. This comes from the definition as certain terms in the objec-
tive function are removed and all terms are positive.

We now restate an existing property that was already used by
Adolphson and Hu [1] regarding the optimization of I∗↓ when the
root has to be put on the leftmost position.

Lemma 2 (Page 410 in [1]). (restated) There exists an optimal
unidirectional placement

←−
I∗ for the O.L.O. problem when the input

is a rooted tree, i.e.,
←−
C∗down = C∗↓down, under the constraint that the

root is on the leftmost position.

Deriving a unidirectional or bidirectional placement induces the
special property that optimizing Cdown implicitly optimizes Cup,
which is shown by the following lemma.

Lemma 3. If a placement I is unidirectional or bidirectional,
Cdown = Cup.

Proof. To do so, we show that Cdown = Cup. Since we know that
I is unidirectional or bidirectional, we also know that a leaf node
nx ∈ Nl is always the rightmost node or the leftmost node within its
path path(nx) if the path is monotonically increasing or decreasing,
respectively. We further know that following the path from parents to
their children must always be a movement monotonically to the right
or monotonically to the left. Therefore we can follow that the distance
from the root to a leaf node is equal to the sum of all distances on
the path:

∀ny ∈ Nl : |I(ny)− I(n0)| =
∑

nz∈path(ny)\n0

|I(nz)− I(P (nz))|

(6)
This leads to:

Cup =
∑

ny∈Nl


absprob(ny) ·

∑

nz∈path(ny)\{n0}
|I(nz)− I(P (nz))|




(7)
The summation is reorganized with respect to each node nx ∈ N by
using the following observation: if nz is in path(ny), then ny is in
leaves(nz). That is, a node nx ∈ N contributes to Eq. (7) exactly
|I(nx)− I(P (nx))| ·∑ny∈leaves(nx) absprob(ny). Therefore,

Cup =
∑

nx∈N\{n0}


|I(nx)− I(P (nx))| ·

∑

ny∈leaves(nx)

absprob(ny)




(8)
Applying Definition 1 leads to Eq. (9):

Cup =
∑

nx∈N\{n0}
(|I(nx)−I(P (nx))|·absprob(nx) = Cdown (9)

In the following, we point out the relation between a mapping I

and a mapping
←−
I which puts the root on the leftmost position.

Lemma 4. Any placement I can be converted into a placement←−
I which places the root on the leftmost position by increasing the

expected cost of
←−
C down with at most a factor of 2:

←−
C down ≤ 2 · Cdown (10)

Proof. Suppose that the root of the decision tree is assigned at
position r in the placement I . Due space limitation, we present only
the proof of the case that m− r ≥ r, as the other case is symmetric.
The placement is replaced as follows:
• reassign every node in position r + i in I to r + 2 · i for i =

1, 2, . . . , r.
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• reassign every node in position r + i in I to 2 · r + i for i =
r + 1, r + 2, . . . ,m.

• reassign every node in position r − i in I to r + 2 · i − 1 for
i = 1, 2, . . . , r.

After that, every node is then shifted by r positions towards the left
and the root of the decision tree is on the leftmost position, i.e., 0.

For notation brevity, we denote P (nx) as nz for the rest of this
proof. Due to the above reassignment, we have

←−
I (nx) =





2 · (r − I(nx))− 1 I(nx) < r

2 · (I(nx)− r) r ≤ I(nx) ≤ 2r

I(nx) 2r < I(nx),

(11)

which also holds in the same manner for
←−
I (nz). We analyze four

cases for different conditions of I(nz) and I(nx) based on Eq. (11)
to prove

|←−I (nx)−←−I (nz)| ≤ 2|I(nx)− I(nz)|. (12)

Case 1: I(nz) ≤ 2r and I(nx) ≤ 2r: We further consider the
following scenarios:
• Case 1a: I(nx) and I(nz) are both ≥ r: Then,
|←−I (nx)−←−I (nz)| = 2|I(nx)− I(nz)|, i.e., Eq. (12) holds.

• Case 1b: I(nx) and I(nz) are both < r: Then,
|←−I (nx)−←−I (nz)| = 2|I(nx)− I(nz)|, i.e., Eq. (12) holds.

• Case 1c: one of I(nx) and I(nz) is < r and the other is ≥
r: Suppose for the first sub-case that I(nx) > I(nz). Then,
|←−I (nx) − ←−I (nz)| = 2 · (I(nx) − r) − 2(r − I(nz)) + 1 <
2 · (I(nx)− r)− 2(r − I(nz)) + 4(r − I(nz)) = 2 · (I(nx)−
I(nz)) = 2|I(nx)− I(nz)|, where < is due to the assumption
that I(nz) < r and I(nz) is an integer, i.e., 1 ≤ r − I(nz).
The other case that I(nz) > I(nx) is symmetric. Therefore, the
condition in Eq. (12) remains to hold.

Case 2: I(nz) > 2r and I(nx) > 2r: In this case, the reassignment
does not change their positions, i.e.,

←−
I (nz) = 2r + (I(nz)− 2r) =

I(nz) and
←−
I (nx) = 2r + (I(nx) − 2r) = I(nx). As a result,

|←−I (nx)−←−I (nz)| = |I(nx)− I(nz)|, and Eq. (12) holds.
Case 3: I(nz) > 2r and I(nx) ≤ 2r: When I(nx) ≥ r, we have
|←−I (nx)−←−I (nz)| = I(nz)−2|I(nx)−r| = I(nz)−2I(nx)+2r ≤
2 · |I(nz)− I(nx)|. When I(nx) < r, we have |←−I (nx)−←−I (nz)| =
I(nz)− 2r + 2I(nx) + 1 < I(nz)− 2r + 2I(nx) + 4r− 4I(nx) =
I(nz)+2r−2I(nx) ≤ 2 · |I(nz)−I(nx)|, where < above is due to
the assumption that I(nz) < r and hence r− I(nz) ≥ 1. Therefore,
Eq. (12) holds.
Case 4: I(nz) ≤ 2r and I(nx) > 2r: This is the symmetric case of
Case 3.

As a result, Eq. (12) holds for all cases and the lemma is proved.

Suppose that
←−
I∗ is an optimal unidirectional mapping of the rooted

tree (with the root on the leftmost position) and optimizes the cost←−
C∗down. Further suppose that I∗↓ is an optimal mapping which
optimizes C∗↓down. We conclude the following corollary:

Corollary 1. ←−
C∗down ≤ 2 · C∗↓down (13)

Proof. I∗↓ is an unconstrained placement that achieves the optimal
C∗↓down. By Lemma 2, we know that

←−
I∗ is an optimal placement for

the cost
←−
C∗down under the condition that the root is on the leftmost

position. Therefore, C∗↓down is a lower bound of any solution when the

root is on the leftmost position. By Lemma 4, I∗↓ can be converted
into a placement

←−
I , in which the root is put to the leftmost position,

with a cost up to
←−
C down ≤ 2 ·C∗↓down. Therefore,

←−
I ∗, as the optimal

placement under the root constraint, must not cause a higher cost←−
C∗down than

←−
C down.

Theorem 1. An optimal unidirectional placement has an approxi-
mation factor of 4 of the studied problem.

Proof. Based on Lemma 3, we know that the expected cost, denoted
as
←−
C∗total, of the optimal unidirectional placement for the decision

tree (including the down- and up-parts) is exactly 2 · ←−C∗down.
Therefore, together with Corollary 1 and Lemma 5, we reach the
conclusion.

←−
C∗total = 2 ·

←−
C∗down ≤ 4 · C∗↓down ≤ 4 · C∗opt.

We now explain how to derive an optimal unidirectional solution
that minimizes

←−
C∗down efficiently. Adolphson and Hu [1] proposed

an algorithm to optimally solve this case. Specifically, according to
[1], the O.L.O. problem for rooted trees with the root mapped to the
leftmost slot is to find an optimal allowable linear ordering of tree
nodes. An allowable linear ordering in their terminology means that
if node np = P (nx) is the parent of node nx, it has to be left of
nx in the ordering. The algorithm from Adolphson and Hu always
derives an optimal allowable linear ordering to minimize the O.L.O.
problem in O(m logm) time complexity.

B. Bidirectional Linear Ordering

Deriving a mapping by the algorithm from Adolphson and Hu at
most causes 4× the cost compared to the optimal solution for our
placement problem. The algorithm from Adolphson and Hu has the
main drawback that it places the root node to the leftmost slot in
any solution, which is not optimal when the cost for going back
from leaves to the root between inferences is considered. Our final
algorithm computes a Bidirectional Linear Ordering (B.L.O.). We
map the two subtrees underneath the root by the algorithm from
Adolphson and Hu, which derives a mapping IL for the left subtree
and a mapping IR for the right subtree. Both mappings cause an
expected cost which is at least 2 shifts less than the total expected
cost of the entire tree since one node, and therefore a shift at
least by one slot, is missing on every path to a leaf and back
to the root. We then form the final B.L.O. mapping by placing
I� = {reverse(IL), 0, IR}. In this mapping two shifts are then
added again to every path into and out of the right and left subtree,
thus C�total ≤ Ctotal.

Considering the exemplary decision tree in Figure 3, each access
would start at the leftmost position in the first placement, target a
leaf within the rest of the mapping and shift back to the leftmost
position. In the second mapping, as long as leaves from the left and
right subtree are accessed on a similar ratio, the expected shifting
distance is divided by a factor of 2. The reverse ordering can be done
in O(m), the placement of the root is performed with constant time
overhead. Therefore, the time complexity of B.L.O. is O(m logm).

IV. EVALUATION

In order to compare our Bidirectional Linear Ordering (B.L.O.)
approach to the state-of-the-arts (i.e., ShiftsReduce [10] and Chen
et al. [7]), we adopt an open-source framework published in [5]
and select 8 typical machine learning classification datasets from the
UCI Machine Learning Repository [14] and [13]: adult, bank, magic,
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n0

left subtree right subtree

n0
←−
I∗ of left subtree ∪ right subtree

Adolhpson and Hu’s placement

n0rev(
←−
I∗ of left subtree)

←−
I∗ of right subtree

B.L.O. placement

Fig. 3. Suboptimal Placement Correction

mnist, satlog, sensorless-drive, spambase and wine-quality. For each
dataset, we use 75% of the data for training and 25% for testing. We
train decision trees on the training data by using tree classifiers in
the sklearn package [16].

To derive different sized trees, we specify the maximum depth
of the trees, e.g., DT1 means that the tree has 2 levels and DT3
means that the tree has 4 levels. After the trees are generated, we
profile the node probabilities on the training data by counting how
often either the left child or the right child of each node is visited.
This delivers us empirical branch probabilities and absolute node
access probabilities, respectively. We further infer the data points
from the test data on the trees and generate a node access trace,
which provides the node access paths on a logic level. Subsequently,
we map the trees to a memory layout with the compared approaches
and replay the node access trace to derive the total amount of
required racetrack shifts under the assumption that the entire tree is
placed in a single DBC. Although this already allows a quantitative
comparison of the placement approaches, we further compute the
energy consumption and total runtime on a realistic model, derived
from the various memory mappings. For the runtime, we use the
per-access and per-shift latencies in Table II and compute the overall
runtime. Given the amount of RTM accesses naccesses and the total
amount of shifts in between nshifts, the total runtime is runtime =
`R ·naccesses + `S ·nshifts. The total energy consumption is derived
from read and shift dependent dynamic energy consumption and
from the runtime dependent static energy consumption (leakage):
energy = eR · naccesses + eS · nshifts + p · runtime, where the
parameters can be found in Table II.

Ports/track, tracks/DBC, domains/track 1, 80, 64
Leakage power [mW] p 36.2

Write / Read / Shift energy [pJ] eW /eR/eS 106.8 / 62.8 / 51.8
Write / Read / Shift latency [ns] `W /`R/`S 1.79 / 1.35 / 1.42

TABLE II
RTM PARAMETERS VALUES FOR A 128KiB SPM

As previously mentioned, we only investigate the racetrack shifts,
which are caused when inferring data points on the decision trees.
Since we assume that for our target system the decision trees are
mapped to isolated scratchpad memory, the memory accesses to the
decision trees are not disrupted by any operating system interaction.
The overall energy consumption and latency, however, still strongly
depend on the parallel running applications and the underlying system
software. This could be investigated by further full system simulation,
which is out of the scope of this paper.

A. Result Discussion

Figure 4 depicts the experimental results for the reduction of the
total amount of shifts by the different placement approaches. All
results indicate the relative amount of racetrack shifts compared
to a naive placement, which is derived by traversing the tree in
breath-first order while placing the nodes consecutive in memory as
they are traversed. Despite applying our proposed B.L.O. algorithm,
ShiftsReduce [10] and Chen et al. [7], we also formulate the mapping
problem as a mixed integer program (MIP), which optimizes Eq. (4).
We implement this MIP in the Gurobi optimizer [2] and set a time
limitation of 3 hours per dataset and tree configuration. For all
datasets, the MIP converges to the optimal solution only for DT1 and
DT3. For all other cases, the result is based on the Gurobi heuristic.
Results which are worse than 1.2× of the naive placement are not
included.

Investigating the illustrated results, it can be observed that for
the cases where the MIP finds an optimal mapping (for DT1 and
DT3), B.L.O. achieves the same or only marginally worse results
than the optimum. This supports the heuristic design principle of
B.L.O. (Section III-B). Furthermore it can be observed that B.L.O.
achieves the best reduction in shifts for most of the investigated
cases. Considering the mean improvement over all evaluated datasets
and trees, B.L.O. reduces the amount of required shifts by 65.9%
compared to the naive placement. ShiftsReduce reduces the required
amount of shifts by 55.6%. This implies that B.L.O. further improves
the amount of required shifts by 18.7% upon ShiftsReduce.

Please note that deciding the placement based on the profiled
probabilities from the training dataset does not necessarily result
in the expected cost for the test dataset, when both datasets are
too different. We determine the required amount of shifts when the
training dataset is inferred on the decision tree, after the mapping is
decided on the profiled probabilities of the same dataset. The results
report minimal difference: B.L.O. on average reduces the required
amount of shifts on the train dataset by 66.1%, and ShiftsReduce
reduces the required amount of shifts by 55.7%.

The reduction of the total amount of shifts is an indicator, which
does not immediately reflect a realistic improvement in runtime
or energy consumption. Therefore we compute the improvement
of the total runtime and energy consumption for the placement
approaches. Section II-C points out that in a realistic setup, larger
decision trees are split into smaller trees first and the placement
heuristic is then executed on multiple DT5 sized trees. Therefore we
present the average runtime and energy consumption improvements
for all DT5 experiments: B.L.O. improves the overall runtime by
71.9% compared the naive placement, the total energy consumption
by 71.3% respectively. ShiftsReduce, in comparison, improves the
overall runtime by 60.3% and the total energy consumption by
59.8%. Thus, B.L.O. improves runtime and energy consumption by
19.2% compared to ShiftsReduce. Comparing this to the reduction of
shifts for DT5 sized trees only, B.L.O. reduces the required shifts by
74.7%, ShiftsReduce by 48.3%, thus B.L.O. improves ShiftsReduce
by 54.7%. This draws the conclusion that despite static energy
consumption and read latency having a non-negligible influence, the
reduction of the amount of racetrack shifts results in a significant
improvement of the runtime and energy consumption.

V. RELATED WORK

To reduce the number of shifts for RTMs, various techniques have
been proposed in the literature, such as runtime data swapping [18],
preshifting [18], intelligent instruction [15], and data placement [7],
[10]. For data placement, Chen et al. in [7] present a heuristic
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Fig. 4. Comparison of Total Shifts During Inference

appending data objects according to the adjacency information se-
quentially. Khan et al. in [10] formulate the data placement problem
with an integer linear programming and further propose ShiftsReduce
heuristic to enhance the previous heuristic by introducing a tie-
breaking scheme and a two-directional objects grouping mechanism
assuming a single access port RTMs. Whereas the above techniques
are generalized solutions, this work considers that the data objects
of decision trees, such that possible access patterns of objects are
strictly limited by the dependencies between tree nodes.

Recently, it has been shown that domain-specific approaches not
only guarantee better performance and energy consumption, but also
enable better predictability of the runtime [11]. In fact, the studied
problem can be treated as an instance of the quadratic assignment
problem (QAP), which was introduced in 1957 [12], considering
the problem of allocating a set of facilities to a set of locations.
When the facilities are all in a line (like the locations within in a
DBC), such a special case is named the linear ordering/arrangement
problem [4]. Suppose that the number of vertices is m and the length
of an edge is defined as the linear distance between the vertices
involved. Specifically, for tree graphs, the common objective is to
minimize the sum of edge lengths as the total shift cost in this work.
For undirected trees, Shiloach proposes an O(m2.2) algorithm [17].
For directed trees, Adolphson and Hu in [1] present an algorithm to
derive an optimal placement in O(m logm). For the studied problem
of this work, Adolphson and Hu’s algorithm is no longer optimal,
since the additional distance induced by shifting a track back from
leaves to the root between two inferences needs to be considered.

VI. CONCLUSION

In this paper we present B.L.O., a domain specific placement
heuristic for decision trees on RTM. B.L.O. exploits the knowledge
of the internal structure of decision trees and the profiled probabilities
for nodes being accessed, which are gathered on a previously known
dataset. B.L.O. bases on an optimal algorithm to solve the O.L.O.
problem for rooted trees [1] and eliminates the main reason for im-
proper placements on RTM. B.L.O. hereby causes at most 4× of the
RTM shifts than the optimal placement and features a time complexity
of O(m logm), which makes it feasible for large decision trees. Our
empirical evaluation points out that for the most realistic use case
of decision trees with a maximal depth of 5, B.L.O. outperforms the
state-of-the-art placement heuristics by 54.7%, 19.2%, and 19.2% in
terms of RTM shifts, runtime, and energy consumption, respectively.
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