
End-To-End Timing Analysis and Optimization of
Multi-Executor ROS 2 Systems

Harun Teper, Tobias Betz, Mario Günzel, Dominic Ebner, Georg von der Brüggen,
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Abstract—Modern robot systems, like autonomous vehicles, are
complex, distributed systems that consist of many interacting
components. End-to-end timing latency guarantees are key prop-
erties of such systems. They upper bound the data processing time
and provide a predictable timing behavior. The Robot Operating
System 2 (ROS 2) is a widely used and highly configurable set
of software libraries for creating and deploying robot systems. It
features a custom scheduler to execute time-triggered and event-
triggered tasks and uses Data Distribution Services (DDS) for the
communication between different system components. The data
propagations between ROS 2 system components form cause-
effect chains, which can be analyzed to determine the maximum
reaction time (longest time between occurrence of an external
cause and the earliest time when this external cause is fully
processed) and maximum data age (longest time between the
moment of a sensor measurement and the latest moment where
an effect is based on this sensor measurement).

In this paper, we provide an analysis of the end-to-end latencies
in multi-executor ROS 2 systems to upper bound the end-to-end
latencies of cause-effect chains in ROS 2 systems. Furthermore,
we introduce an optimization using constrained programming
that determines the optimal system configuration to minimize
the end-to-end latencies for ROS 2 systems. We evaluate our
upper-bound analysis to determine the end-to-end latencies of
cause-effect chains in an autonomous driving-software stack for
oval racing used in the Indy Autonomous Challenge and apply
our optimization method to reduce the end-to-end latency upper
bound, measured maximum, and measured mean by up to 50.2%,
19.8%, and 7.2%, respectively.

Index Terms—End-to-End Timing, Maximum Reaction Time,
Maximum Data Age, Robot Operating System 2

I. INTRODUCTION

Modern robot systems consist of many interacting compo-
nents that process data from sensors and output it to actuators.
These, often safety-critical, systems require end-to-end timing
guarantees to ensure safe and predictable behavior.

The Robot Operating System 2 (ROS 2) [20] is a widely
used middleware that provides software libraries and tools for
building and deploying highly configurable robot systems. The
components of the system include time-triggered and event-
triggered tasks, which are scheduled by a custom scheduler
abstraction called executor. Furthermore, the system compo-
nents communicate via Data Distribution Services (DDS) [21],
which provide a publish-subscribe architecture as the data-
propagation backbone. Depending on the system and DDS
configuration, the latency for data propagation between com-
ponents can vary significantly.

In comparison to the original Robot Operating System
(ROS) [22], the ROS 2 executor and DDS communication
provide the possibility for real-time guarantees. So far, the
focus of real-time analysis in ROS 2 has been on individual
tasks, analyzing the worst-case response time (WCRT) using
DAG-based methods [7], [8] and improving the WCRT using
priority assignments [9], [27]. Additional executor designs and
prioritization policies were proposed and analyzed to improve
the response time of ROS 2 systems [1], [17], [26], [31].

Recently, the focus shifted to end-to-end timing analysis of
cause-effect chains, which considers the data-propagation path
from sensor to actuator. Originating from the event-chains of
the AUTOSAR Timing Extensions [2], a cause-effect chain
describes a sequence of tasks from a cause (an external signal
captured by a sensor) to an effect (caused by an actuator
output). Teper et al. [29] analyzed end-to-end timing metrics
— namely, the maximum reaction time (longest time between
an external cause and the earliest time when this external cause
is fully processed) and the maximum data age (longest time
between a sensor measurement and the latest moment where
an effect is based on this sensor measurement) — for cause-
effect chains in single-executor ROS 2 systems.

However, their analysis did not consider systems with mul-
tiple executors, the de facto standard for ROS 2 systems, and
the effects of the system configuration on end-to-end latencies.

Contributions: We provide an end-to-end timing analysis for
cause-effect chains in ROS 2 systems with multiple single-
threaded executors. Moreover, we introduce an optimization
approach to minimize end-to-end latencies of cause-effect
chains. This paper provides the following contributions:

• Section VI provides an upper-bound analysis for the
maximum reaction time and maximum data age of cause-
effect chains in multi-executor ROS 2 systems.

• In Section VII, we detail how the end-to-end latencies of
cause-effect chains in ROS 2 systems can be optimized
using constrained programming.

• We evaluate our analysis and optimization, using a soft-
ware stack for autonomous racing [4], in Section VIII.

We detail the ROS 2 system and communication model in
Section II and introduce ROS 2 scheduling in Section III. The
ROS 2 latencies are detailed in Section IV, while Section V
introduces end-to-end data propagation in ROS 2 systems.
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TABLE I
NOTATIONS IN THIS PAPER.

Notation Description
N Set of nodes
T Set of tasks
X Set of executors
ni Node i
τi Task i
ei Executor i
Ei Cause-effect chain i
Cτi WCET of task τi
tmri Timer i
Ti Period of timer tmri

subi Subscription i
sti Subscription topic of subscription subi
Ki Buffer size of subscription subi
cbi Callback i
pti Set of publisher topics of callback cbi
wli Set of write labels of callback cbi
rli Set of read labels of callback cbi
ρ Index for processing windows
Pρ Polling point of processing window with index ρ
Ji,ρ Job of task τi in processing window with index ρ
si,ρ Start time of job Ji,ρ
fi,ρ Finish time of job Ji,ρ
πi,j Binary priority comparison between task i over task j
δddsi,t DDS thread time for DDS publication to topic ti for jobs of task τi
~acz Immediate forward augmented job chain at time z
~acz′ Immediate backward augmented job chain at time z′

II. ROS 2 SYSTEM AND COMMUNICATION MODEL

ROS 2 is a middleware for creating robot systems that
consist of multiple interacting system components, like plan-
ning, localization, and mapping for autonomous navigation.
This section provides an overview of ROS 2 and introduces a
system model for ROS 2 systems based on ROS 2 Humble [20]
(the current LTS stable release of ROS 2) and the eProsima
Fast DDS implementation of the DDS standard [12], as it
is highly configurable and provides lower communication
latencies compared to other available DDS solutions [6].

The ROS 2 system components are specified as a set of
nodes N = {n1, . . . , n|N |}. Each node ni includes a set
of tasks, and each task is uniquely assigned to one node.
We denote the complete set of tasks over all nodes as
T = {τ1, . . . , τ|T |}. Figure 1 depicts a small example system
consisting of two nodes with three tasks each.

A task τi in ROS 2 is either time-triggered, called a timer
tmr i, or event-triggered, called a subscription subi. When a
task τi is scheduled (see Section III for ROS 2 scheduling), a
corresponding function, called callback cbi, is executed.

In ROS 2, tasks can communicate in different ways. We
differentiate between the communication of tasks assigned to
the same node, called intra-node communication, and the com-
munication of tasks assigned to different nodes, called inter-
node communication. For intra-node communication, tasks
may communicate either via node variables, referenced by
labels li (indicated by black arrows in Figure 1), or via
DDS (indicated by colored arrows in Figure 1). Inter-node
communication can only occur through DDS.

A Data Distribution Service (DDS) is a standard for publish-
subscribe communication. It uses so-called topics for the
communication via messages between tasks. Timer callbacks
and subscription callbacks can publish messages to topics.

Fig. 1. ROS 2 system components and communication overview.

These messages are received by all subscriptions that are
subscribed to that topic. DDS messages are the events that
trigger subscription tasks. In contrast, label-based communi-
cation does not directly trigger tasks in ROS 2.

In ROS 2, timers and subscriptions have different properties.
As shown in Figure 1, each task τi includes a callback, defined
as a tuple cbi = (Ccb

i , pt i,wl i, rl i). The worst-case execution
time (WCET) Ccb

i of a callback cbi is the maximum time
needed to execute it. For each callback, the set of publisher
topics is defined as pt i. The callback publishes one message
to each topic in the set pt i at the end of its execution.
Furthermore, callbacks include a set of write labels wl i and a
set of read labels rl i. Labels represent the node variables that
are written to and read from during the callback’s execution.
We denote the WCET of a task τi as Cτi , which includes the
WCET of its callback Ccb

i , the time to read data Cin
i and the

time to write data Cout
i , which is further detailed in Section IV.

A timer is defined as a tuple tmr i = (Ti, cbi). The period
Ti is the minimum time between two activations of the timer.

A subscription is defined as a tuple subi = (st i,Ki, cbi). It
receives messages published to the subscription topic st i. In
ROS 2, each subscription only subscribes to one topic. Each
subscription stores these messages in its own buffer with a
maximum capacity of Ki. The subscription buffer is a FIFO
queue, i.e., messages are stored in the order they are received.
When the callback cbi is executed, the oldest message from
its buffer is read and then removed. If an additional message
is received when the buffer is full, the oldest message in the
buffer is discarded — a so-called buffer overflow.

To allow tracking of the data propagation through the
system, the source of the data used for each callback has to be
determined. Therefore, for DDS communication, we assume
that there is exactly one publisher for each topic to ensure that
all processed messages originate from the same publisher. For
the communication via labels, we assume that there is at most
one callback that writes to a label to ensure that the label data
always originates from the same callback.
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III. ROS 2 SCHEDULING

ROS 2 uses a scheduler abstraction, called executor, on top
of the operating-system scheduler to manage task execution.
A system may include one or more executors, and each node
(and, therefore, each task) is assigned to exactly one executor.
We denote the set of executors as X = {e1, . . . , e|X |}.

The executors manage the order in which the assigned tasks
are executed. We consider only single-threaded executors, i.e.,
each executor executes at most one task at a time. Furthermore,
we assume that each executor is assigned to a dedicated core
and that there is (at least) one additional core that manages
the operating system and the DDS middleware.

A. Task Prioritization

In ROS 2, each executor assigns a fixed priority to each task
that is assigned to it. In ROS 2 Humble, timers by default have
a higher priority than subscriptions. Additionally, the priority
of two tasks of the same type (i.e., timers or subscriptions) is
determined by the order in which they are registered to the
executor. Hence, there are no two tasks with the same priority
on the same executor.

We define a binary priority variable πi,j that compares the
priority of two tasks τi and τj . In particular, it is 1 if (i) τi and
τj are assigned to the same executor and (ii) τi has a higher
priority than τj ; otherwise, it is 0.

B. ROS 2 Executor Scheduling

An executor’s scheduling mechanism is split into two itera-
tively repeated phases, polling points and processing windows.

At each polling point, the executor samples one job from
each activated task. A subscription is activated if its buffer is
not empty. Each timer has a binary activation status that is
either active or inactive. After system startup, the activation
status is set to active once the timer’s period elapses. After-
ward, the activation status is set to active again at every integer
multiple of its period, regardless of whether the previous
activation has been processed or not. The activation status is
set to inactive once it is sampled at a polling point. Note that
timers in ROS 2 do not follow the periodic release pattern
widely assumed in real-time systems research. Rather, timers
are periodically activated, and the release depends on the
activation status and the occurrence of polling points. A timer
with a period of zero is always active; thus, the executor
samples one job of such a timer at every polling point.

Immediately after a polling point, the corresponding pro-
cessing window starts, where all jobs sampled at the polling
point are executed non-preemptively according to their prior-
ity. We refer to the job of task τi in the ρ-th processing window
as Ji,ρ and to the ρ-th polling point as Pρ . Our indexing
emphasizes the processing windows (i.e., all jobs in the ρ-th
processing window are indexed as J∗,ρ ), but as a result, for
a specific task, jobs are not necessarily indexed consecutively
(e.g., there are no jobs J1,1 and J1,3 of task τ1 in Figure 3).

For each job Ji,ρ of a task τi in a processing window ρ,
we denote the start and finish time of the job as si,ρ and
fi,ρ , respectively. As the execution of tasks is non-preemptive,

fi,ρ ≤ sj,ρ + Cτi for all tasks τj . The processing window
ends once all jobs sampled at the polling point are finished
— at this point in time, the next polling point occurs. If no
tasks assigned to an executor are active at a polling point, the
executor remains idle until a task is activated, at which point
the executor samples again from all activated tasks.

Our executor model is an abstraction of a real system,
assuming a polling point requires no time. According to this
model, infinitely many polling points may occur at the same
time. Hence, we additionally assume that only finitely many
polling points occur in any bounded time interval (since two
polling points are separated by at least one processor cycle).

IV. LATENCIES

In ROS 2, the data propagation involves the time for data to
be read, processed, and written by tasks, as well as additional
time if the data is propagated over the network by the DDS.

For the data propagation through a task τi, we distinguish
three types of latencies.

1) The execution latency is the time for executing the
callback cbi of task τi.

2) The read latency is the time for reading data from labels
and subscription buffers for each job Ji,ρ of task τi.

3) The write latency is the time for writing data to labels
and subscription buffers for each job Ji,ρ of task τi.

For each task τi, the worst-case execution time (WCET) Cτi is
the sum of the WCET of the read latency Cin

i , the WCET of
the execution latency Ccb

i , and the WCET of the write latency
Cout
i for which the executor thread is occupied. That is,

Cτi = Cin
i + Ccb

i + Cout
i (1)

We assume that tasks read data at the beginning of a job’s
execution and write data at the end of a job’s execution.

The read latency is the time for reading data from labels
and subscription buffers. Each job reads the data from the
labels in rl i, and, if the job originates from a subscription,
reads and removes the oldest message in the subscription
buffer. Specifically, the read latency for subscription buffers
only includes the time to access the oldest message in the
buffer; not the time since the message was added to the buffer.

The write latency is the time for writing data to labels and
for publishing messages to subscription.

For labels, the callback writes to the node variables refer-
enced by the labels in wl i. These node variables are shared
between all callbacks of the node. We denote the maximum
time to write to each label ` ∈ wl i as δlabeli,` .

Publishing messages to subscription buffers involves the
DDS publish-subscribe architecture by writing to the subscrip-
tion buffers of the subscriptions subj that are subscribed to
the publisher topics pt i of the callback cbi. Specifically, one
message is published to each topic t ∈ pt i. We denote the
maximum time the executor thread is occupied with publishing
a message from the callback cbi to a topic t ∈ pt i as δpubi,t .
Furthermore, if the DDS layer is involved, we denote the
maximum time for the DDS thread to publish the message
from the callback cbi to the subscription subj as δddsi,j .
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Fig. 2. Effect of task-executor assignment and DDS configuration on
communication latencies (polling points indicated by red-dashed lines).

In total, the executor thread is occupied for the time Cout
i ,

which is the sum of the times for writing to labels and the
times for publishing messages to subscription buffers, i.e.,

Cout
i =

∑

`∈wli

δlabeli,` +
∑

t∈pti
δpubi,t . (2)

The ROS 2 configuration, specifically the task-to-executor
assignment and the DDS configuration, affects the time for
publishing a message to a subscription buffer (see Figure 2).

The task-to-executor assignment determines whether the
publisher and subscriber of a message are assigned to the same
executor. We refer to the communication between tasks that are
assigned to the same executor as aligned communication, and
to the communication between tasks that are assigned to differ-
ent executors as unaligned communication. In ROS 2, aligned
communication uses intra-process communication, whereas
unaligned communication uses inter-process communication
via DDS1 (provided, for instance, by the eProsima FastDDS
implementation [12]). Specifically, intra-process communica-
tion bypasses the DDS layer and writes the message directly to
the subscription buffer by calling the subscription’s reception
function. In contrast, inter-process communication publishes
the message to the subscription buffer via the DDS layer, and
may involve networking overhead (e.g., for serialization and
deserialization of the message). Hence, the task-to-executor
assignment may significantly impact the write latency. In
Figure 2, we illustrate the effect of the task-to-executor as-
signment using the polling points of the executor threads.

For DDS communication, the DDS configuration must be
considered as well. Specifically, for each executor, the DDS
can be configured to use either synchronous or asynchronous
communication. For synchronous communication, only the
executor thread is responsible for publishing the message
to the subscription buffers. As a result, the executor thread
is blocked until the message is fully written into all corre-
sponding subscription buffers. In contrast, for asynchronous
communication, the executor thread forwards the message to
a separate DDS thread, which then publishes the message
to the subscription buffers. Thus, the executor thread is only
occupied until the message is forwarded to the DDS thread.

1We assume that system and DDS are configured to use intra-process
communication for aligned and inter-process communication for unaligned
communication, as this setting shows the best empirical performs [19].

In Figure 2, we illustrate the effect of the DDS configuration
using the length of the outgoing communication latency Cout

i

and the DDS thread latency δddsi,j .
Our model assumes the DDS latency values for synchronous

and asynchronous communication to be known. Hence, our
analysis and optimization is also based on these rather coarse-
grained values. Previous work on DDS latencies, such as the
one for FastDDS by Sciangula et al. [25], can be used to
precisely determine the latencies for DDS publication and may
also be utilized for more fine-grained optimization.

For notational convenience, with respect to a task τi, we
define the total WCET of higher-priority tasks, denoted by
Cτi,hp , and lower-priority tasks, denoted by Cτi,lp , as follows:

Cτi,hp =
∑

τj∈T
πj,i · Cτj (3)

Cτi,lp =
∑

τj∈T
πi,j · Cτj (4)

We define the WCET for a node ni as the sum of the WCET
of the tasks that are assigned to the node:

Cnode
i =

∑

τj task of node ni

Cτj (5)

Similarly, the WCET of an executor ei is the sum of the
WCET of the nodes assigned to the executor:

Cexei =
∑

nj node of executor ei

Cnode
j (6)

V. END-TO-END DATA PROPAGATION

Our goal is to analyze end-to-end timing for data propaga-
tion paths in ROS 2 systems. To this end, we first formally
specify data propagation between tasks in ROS 2 using cause-
effect chains. This specification is then extended to describe
the data propagation between individual task instances using
job chains. Afterward, we detail how end-to-end latencies,
namely maximum reaction time and maximum data age, can
be specified based on cause-effect chains.

A. Cause-Effect Chains

A cause-effect chain is a sequence of tasks that must
be executed sequentially to provide a certain functionality.
We focus on a single cause-effect chain for the simplicity
of presentation. Practical systems have multiple cause-effect
chains, which can be indexed and analyzed independently.

We adopt the notation for cause-effect chains for periodic
and sporadic task systems by Günzel et al. [15], which is based
on the event-chains of the AUTOSAR Timing Extensions [2].
A cause-effect chain E = (τ1, . . . , τm) is a sequence of m
tasks, which may be part of different nodes and executors.
Thus, they may be communicating via labels or via DDS.
We assume that the first task of each chain is a timer task
transmitting sensor data, while the last task of each chain can
either be a timer or a subscription, which outputs an effect
using the actuators of the robot system.
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Fig. 3. Communication for the cause-effect chain E = (τ1, τ2, τ3).
Intra-node communication based on labels between τ1 and τ2. Inter-node
communication via DDS with buffer-size 2 between τ2 and τ3.

If the task τi+1 subscribes to a topic that the task τi
publishes to (i.e., st i+1 ∈ pt i), then τi and τi+1 communicate
via DDS. In this case, messages published by τi are written to
the subscription buffer of τi+1 (or subi+1) and processed by
jobs of τi+1. Without buffer overflow, each message from τi
triggers exactly one job of τi+1, which is executed in a future
processing window. If buffer overflow occurs, messages may
be discarded, which reduces the number of jobs of task τi+1.

If the task τi+1 reads from a label that task τi writes to
(i.e., rl i+1 ∩ wl i 6= ∅), then τi and τi+1 communicate via
labels. Each job of τi writes data to all its write labels at the
end of its execution time (the so-called write-event), and each
job of τi+1 reads data from all read labels at the beginning
of its execution time (the so-called read-event). With intra-
node communication, multiple jobs of task τi+1 may access
the same data provided by task τi. Note that τi+1 can even
access data modified by τi in the same processing window if
τi+1 has a lower priority than τi.

The different communication scenarios are illustrated in
Figure 3. Task τ3 receives three messages from τ2 before its
first job J3,4 starts executing. Due to its maximum buffer size
of two, the message published by the job J2,1 is discarded.
Afterward, the jobs of τ3 each process one message received
from τ2. The data of job J1,4 is not processed by a job of τ2
because the data written by J1,4 is overwritten by J1,5 before
it can be read by J2,5.

B. Job Chains

For subsequent tasks in a cause-effect chain, we introduce
the notion of linked jobs for data propagation between jobs.

Definition V.1. Consider two communicating tasks τi and
τi+1. Let Ji,ρi be a job of τi and let Ji+1,ρi+1

be a job of
τi+1. We say that Ji,ρi links to Ji+1,ρi+1

if the job Ji+1,ρi+1

processes data that is written/published by the job Ji,ρi or a
subsequent job Ji,ρ̃i with ρ̃i ≥ ρi of task τi. Equivalently, we
also say that Ji+1,ρi+1 is linked to Ji,ρi .

For communication via labels, two jobs are linked if and
only if the read-event of Ji+1,ρi+1

is no earlier than the write-
event of Ji,ρi . This is the same condition as used for job chains
by Günzel et al. [15] (for periodic and sporadic tasks) and by
Teper et al. [29] (for single-executor ROS 2 systems).

Fig. 4. Data propagation between tasks via labels or DDS.

For communication via DDS, the definition of being linked
takes into account the buffer architecture. In particular, even
if Ji+1,ρi+1

has its read-event after the write-event of Ji,ρi it
may still not be linked to Ji,ρi if the message is not first in
the buffer when Ji+1,ρi+1 starts executing.

We illustrate the data propagation between two tasks τ1 and
τ2 in Figure 4. For communication via labels, the jobs J1,1

and J2,3 are linked because the read-event of J2,3 is after the
write-event of J1,1 and J1,2. The job J1,1 is still linked to J2,1

even though the data is overwritten by J1,2 before it is read
by J2,3. For communication via DDS with buffer size 2, J1,2

and J2,4 are not linked because the message is not first in the
buffer when J2,4 starts its execution. Rather, J1,2 and J2,5 are
linked because the message of job J1,2 is processed by J2,5.

When data is available to a job Ji,ρi , we are particularly
interested in two questions:

Q1. Where does this data come from?
Q2. When does this data reach the next task?

To answer Q1, we have to understand when data was
propagated. This can be answered by our notion of being
linked. More specifically, the data used by Ji,ρi comes from
the latest job Ji−1,ρi−1 that links to Ji,ρi . As an example, we
can consider job J2,5 from Figure 3. The jobs J1,2, J1,4 and
J1,5 are all linked to J2,5. The data from the latest of those
jobs (J1,5) is utilized by J2,5.

To answer Q2, we have to examine when data will be
propagated. This happens as soon as a job that is linked to
Ji,ρi is executed. More specifically, the data reaches task τi+1

at the earliest job Ji+1,ρi+1
that is linked to Ji,ρi . For Figure 3

job J2,3 links to J3,5 and all subsequent jobs of task τ3. Hence,
data from J2,3 reaches τ3 at job J3,5.

This concept of data propagation is formalized by immediate
forward and immediate backward job chains.

Definition V.2 (Immediate forward job chain). Let k ∈ N. We
call the sequence

~ck = (J1,ρ1 , . . . , Jm,ρm), (7)

of jobs an immediate forward job chain for cause-effect
chain E, where J1,ρ1 is the job of τ1 in the k-th processing
window (i.e., ρ1 = k) and Ji,ρi is the earliest job of τi that
is linked to Ji−1,ρi−1 for all i = 2, . . . ,m.
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We note that ~ck with k ∈ N exists only if J1,k exists. For
example, in Figure 3, the immediate forward job chain ~c1 does
not exist because there is no job of τ1 in the first processing
window. The sequence ~c2 = (J1,2, J2,2, J3,4) is an immediate
forward job chain. However, (J1,2, J2,3, J3,5) is not, as J2,3

is not the earliest job of τ2 that is linked to J1,2.

Definition V.3 (Immediate backward job chain). Let k ∈ N.
We call the sequence

~ck = (J1,ρ1 , . . . , Jm,ρm), (8)

of jobs an immediate backward job chain for cause-effect
chain E, where Jm,ρm is the job of τm in the k-th processing
window (i.e., ρm = k) and Ji,ρi is the latest job that is linked
to Ji+1,ρi+1 for all i = m−1, . . . , 1.

Again, the existence of ~ck requires that there is a job Jm,k
in the k-th processing window. Moreover, it is required that
for each job Ji+1,ρi+1

a linked job Ji,ρi exists.
Consider the example in Figure 3, the jobs J1,4 and J1,5 link

to the job J2,5, while the job J2,5 links to the job J3,6. Both
~c4 = (J1,4, J2,5, J3,6) and ~c5 = (J1,5, J2,5, J3,6) are immedi-
ate forward job chains. In contrast, only ~c6 = (J1,5, J2,5, J3,6)
is an immediate backward job chain, as J1,4 is not the latest
job that is linked to J2,5. There are no immediate backward
job chains ~ck for k = 1, 2, 3 because there is no job of τ3 in
the first 3 processing windows.

C. End-To-End Latencies

In this subsection, we define the end-to-end latencies an-
alyzed in this paper, namely the maximum reaction time
and maximum data age for a specific cause-effect chain,
based on the previously introduced job chains. The maximum
reaction time (MRT) is the maximum latency for a cause to be
propagated to an actuator. For example, it is the largest interval
between a button press to lock a car’s doors and them actually
being locked. The maximum data age (MDA) corresponds
to the maximum duration between a sensor sampling and an
effect based on that sample. For example, it is the maximum
length between a camera sampling and the latest time at which
the steering controls are based on that sample. To achieve the
formal definition of MRT and MDA, we first investigate the
behavior of data propagation through the system.

Usually, we are only concerned with the system behavior
when the system is properly warmed up. More specifically,
some initial data paths that do not process any relevant
data should be left out. To that end, we first make the
observation that the first data arrives at the end of the first
immediate forward job chain. Let F ∈ N such that ~cF is the
first immediate forward job chain (that exists). In Figure 3,
~cF = (J1,2, J2,2, J3,4) and the first data arrives at job J3,4.

Let W ∈ N such that the last job of ~cF is Jm,W . The
data processed by job Jm,W originates from the immediate
backward job chain ~cW . In Figure 3, we have W = 4 and
~c4 = (J1,2, J2,2, J3,4). All jobs before ~cW are considered to

be part of the warm-up and are not considered for the data
propagation (in Figure 3, this is only job J2,1).

Definition V.4 (Warm-up). Let F ∈ N such that ~cF is the first
immediate forward job chain (that exists), and let W ∈ N such
that the last job of ~cF is Jm,W . We denote the jobs of ~cW
by ~cW = (J1,W1 , . . . , Jm,Wm). All jobs of any task τi before
Ji,Wi

, with i = 1 . . . ,m, are part of the warm-up and are not
further considered for the analysis.

For jobs after the warm-up, we extend the data propagation
definition by including external activities (events that create
data) and actuations (events that use data). In this regard, z
and z′ denote the start and finish of data propagation.

Immediate forward augmented job chains describe the data
propagation starting from an external activity at z.

Definition V.5 (Immediate Forward Augmented Job Chain).
Let z > s1,W1 be the start of an external activity, after the
start of job J1,W1

, which is the first job of τ1 after the warm-
up. The immediate forward augmented job chain ~acz at z is
a sequence (z, J1,ρ1 , . . . , Jm,ρm , z

′) constructed as follows:
• J1,ρ1 is the earliest job of τ1 with s1,ρ1 ≥ z.
• (J1,ρ1 , . . . , Jm,ρm) is an immediate forward job chain.
• The data is processed at the finishing time of Jm,ρm .

Therefore, we set z′ = fm,ρm .

Immediate backward augmented job chains describe where
the data used for an actuation at time z′ originates from.

Definition V.6 (Immediate Backward Augmented Job Chain).
Let z′ > fm,Wm

be the finish of an actuation, after the finish
of job Jm,Wm , which is the first job of τm after the warm-up.
The immediate backward augmented job chain ~acz′ at z′ is a
sequence (z, J1,ρ1 , . . . , Jm,ρm , z

′) constructed as follows:
• Jm,ρm is the latest job of τm with fm,ρm ≤ z′.
• (J1,ρ1 , . . . , Jm,ρm) is an immediate backward job chain.
• The data comes from job J1,ρ1 started at time z = s1,ρ1 .

The maximum reaction time is the maximal time that the
system takes to fully process an external activity, whereas
the maximum data age describes how old data used in an
actuation is in the worst case. These metrics can be described
by immediate forward/backward augmented job chains.

Definition V.7 (MRT and MDA). The maximum reaction time
(MRT) and the maximum data age (MDA) of a cause-effect
chain E are defined as

MRT (E) = sup
z>s1,W1

len ( ~acz) (9)

MDA(E) = sup
z′>fm,Wm

len ( ~acz′) , (10)

respectively, where len ((z, J1,ρ1 , . . . , Jm,ρm , z
′)) = z′ − z is

the length of an augmented job chain.

VI. UPPER BOUND ANALYSIS

In this section, we provide an upper bound on the maximum
reaction time and the maximum data age for a given cause-
effect chain E = (τ1, . . . , τm). The ROS 2 system under
analysis consists of multiple executors, nodes, and tasks.
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We provide an upper bound on the maximum reaction
time (MRT) in Theorem VI.9. To achieve this bound, we
consider an arbitrary immediate forward augmented job chain
~acz = (z, J1,ρ1 , . . . , Jm,ρm , z

′) with z > s1,W1
and provide an

upper bound on its length z′ − z. Specifically, we split z′ − z
into disjunct intervals, which we then bound individually.

For all i = 1, . . . ,m, we denote by ti the earliest moment
that data can be accessed by job Ji,ρi . That is, ti is the earliest
time that either (i) the message is present in the DDS buffer,
or (ii) the data is written to the label that is accessed by Ji,ρi .
This splits the augmented job chain into intervals related to
the individual tasks, and we sum up their individual length:

z′ − z = t1 − z +

(
m−1∑

i=1

ti+1 − ti
)

+ z′ − tm (11)

By definition, the data is available to τ1 at time z; thus
t1 − z = 0.

We further split the intervals related to each task τi at the
start time of the job Ji,ρi , denoted by si,ρi , which leads to:

ti+1 − ti = (ti+1 − si,ρi) + (si,ρi − ti) (12)

for all i < m, and

z′ − tm = (z′ − sm,ρm) + (sm,ρm − tm). (13)

We provide upper bounds for ti+1 − si,ρi and z′ − sm,ρm in
Lemma VI.1 and for si,ρi − ti in the subsequent lemmas.

Lemma VI.1. Let i = 1, . . . ,m−1. Then ti+1−si,ρi is upper
bounded by

ubexei = Cτi + δddsi,i+1 (14)

if τi communicates with τi+1 via unaligned asynchronous DDS
communication, and by

ubexei = Cτi (15)

otherwise. Moreover, z′ − sm,ρm is upper bounded by

ubexem = Cτm. (16)

Proof. Let i ∈ {1, . . . ,m−1}. The job Ji,ρi is executed non-
preemptively for at most its WCET Cτi , which includes the
time for reading, processing, and writing the data.

If τi communicates with τi+1 via unaligned asynchronous
DDS communication, it takes an additional latency δddsi,i+1 for
the delay by the DDS thread until the data is transmitted (cf.
Section IV). This results in ti+1 − si,ρi ≤ Cτi + δddsi,i+1.

For aligned communication and for unaligned synchronous
communication, the data transmission is fully handled by the
executor thread. As a result, the data is available to the next
job Ji+1,ρi+1 after the job Ji,ρi finishes, as explained in
Section IV. Therefore, ti+1 − si,ρi ≤ Cτi .

For the last job Jm,ρm , there is no successor in the cause-
effect chain. The actuation z′ occurs before or at the finish of
Jm,ρm , which happens at most Cτm time units after the start
time sm,ρm . As a result, z′ − sm,ρm ≤ Cτm.

We provide bounds ubprei ≥ si,ρi − ti in the following Lem-
mas, depending on the corresponding task τi, the parameters
of τi, and the communication type of τi−1. In particular:
• Lemma VI.2 if τi is a timer and τi has period Ti > 0.
• Lemma VI.3 if τi is a timer and τi has period Ti = 0.
• Lemma VI.4 if τi is a subscription receiving a message

from unaligned DDS communication.
• Lemma VI.5 if τi is a subscription receiving a message

from aligned DDS communication.
• Lemma VI.7 if τi is a subscription receiving data from

communication via labels.
We start with the timer tasks.

Lemma VI.2 (Timer bound non-zero period). If a timer τi has
a non-zero period Ti > 0, then si,ρi− ti is upper bounded by:

ubprei = Cexeξi + max{0, Ti − Cτi + Cτi,hp} (17)

where Cexeξi
is the WCET of the executor with the index ξi that

the task τi is assigned to and Cτi,hp is the total WCET of tasks
with a higher priority tasks than τi.

Proof. We denote the last two polling points before si,ρi as
Pρi and Pρi−1 and consider the following cases:

Case 1: Pρi ≤ ti: In that case, ti and si,ρi are in the same
processing window. The maximum length of the processing
window is Cexeξi

. Therefore, si,ρi − ti ≤ Cexeξi
≤ (17).

Case 2: Pρi−1 ≤ ti < Pρi : There are two subcases: For
(a), a job Ji,ρi−1 is executed between Pρi−1 and Pρi . Then,
ti must be after the start of Ji,ρi−1, otherwise that job would
be Ji,ρi and si,ρi < Pρi . Thus, Pρi− ti ≤ Cτi +Cτi,lp . For (b),
there is no job of τi between Pρi−1 and Pρi . Then, Pρi− ti ≤
Pρi − Pρi−1 ≤ Cτi,hp +Cτi,lp . Combining (a) and (b) leads to
Pρi−ti ≤ max{Cτi , Cτi,hp}+Cτi,lp . After Pρi , it takes at most
Cτi,hp until si,ρi . Therefore, si,ρi − ti ≤ max{Cτi , Cτi,hp} +
Cτi,lp + Cτi,hp = max{0, Cτi,hp − Cτi }+ Cexeξi

≤ (17).
Case 3: ti < Pρi−1

: The time between ti and Pρi−1
is

at most Ti. Otherwise, the timer would have been activated
before Pρi−1

, a job of τi would have been sampled at Pρi−1
,

and si,ρi < Pρi , which contradicts Pρi ≤ si,ρi . This leads
to Pρi − Pρi−1 ≤ Cexeξi

− Cτi , as τi was not sampled at
Pρi−1

. Finally, the time between Pρi and si,ρi is at most Cτi,hp .
Therefore, si,ρi − ti ≤ Ti + Cexeξi

− Cτi + Cτi,hp ≤ (17).

Lemma VI.3 (Timer bound zero period). If a timer τi has
a period of zero Ti = 0, then we derive an upper bound
ubprei ≥ si,ρi − ti for different scenarios as follows. If τi does
not have a predecessor task (i.e., i = 1) then

ubprei = Cexeξi , (18)

where Cexeξi
is the WCET of the executor with the index ξi

that the task τi is assigned to. If τi’s predecessor τi−1 has a
higher priority than τi (πi−1,i = 1), then

ubprei =
∑

τk∈T with πi−1,k=πk,i=1

Cτk . (19)

If τi’s predecessor τi−1 has a lower priority (πi−1,i = 0) then

ubprei = Cτi−1,lp + Cτi,hp . (20)
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Here, Cτi,lp is the total WCET of the lower priority tasks than
τi, and πi,j is the binary task priority comparison variable.

Proof. By definition, a timer task with Ti = 0 is always
activated, and therefore, a job is sampled at every polling point.
We denote the polling point before si,ρi as Pρi .

If τi is the first task of the chain, i.e., i = 1, there are two
cases to consider: Case 1: Pρi ≤ ti: In that case, ti and si,ρi
are in the same processing window and only jobs of tasks with
higher priority than τi can be executed between ti and si,ρi .
Therefore, si,ρi − ti ≤ Cτi,hp < (18). Case 2: ti < Pρi : In
that case, ti must be after si,ρi−1 since otherwise Pρi ≤ ti.
Hence, Pρi − ti ≤ Pρi − si,ρi−1 ≤ Cτi + Cτi,lp . Additionally,
si,ρi − Pρi ≤ Cτi,hp . In total, si,ρi − ti ≤ Cexeξi

= (18).
If τi has a predecessor task τi−1, then τi reads data from la-

bels via intra-node communication, as τi is not a subscription.
If τi−1 has higher priority than τi (i.e., πi−1,i = 1), then ti
and si,ρi are in the same processing window, as the job Ji,ρi
of τi is executed after the job Ji−1,ρi−1 of τi−1 in the same
processing window, i.e., ρi = ρi−1. Only jobs of tasks with
priority between τi−1 and τi may be executed between ti and
si,ρi . That is,

∑
τk∈T with πi−1,k=πk,i=1 C

τ
k .

If τi has a predecessor task τi−1 with a lower priority than
τi (i.e., πi−1,i = 0) then ti and si,ρi are in different processing
windows. Hence, Pρi − ti ≤ Cτi−1,lp and si,ρi − Pρi ≤ Cτi,hp .
In total, si,ρi − ti ≤ Cτi−1,lp + Cτi,hp = (20).

Next, we consider different scenarios for subscription tasks.

Lemma VI.4 (Subscription bound unaligned DDS commu-
nication). If τi is a subscription receiving messages via un-
aligned DDS communication, then si,ρi − ti is at most:

ubprei = Ki · Cexeξi + max{0, Cτi,hp − Cτi }, (21)

where Ki is the subscription buffer size of τi and ξi is the
index of the executor that the task τi is assigned to.

Proof. The message is received at time ti. Afterward, there
are at most Ki messages in the buffer. We denote the last
polling point before si,ρi as Pρi , and the polling point before
the first job Ji,ρj of τi after ti as Pρj . There are three intervals
to consider: Interval 1: si,ρi−Pρi . After Pρi , it takes at most
Cτi,hp time units until si,ρi . Interval 2: Pρi − Pρj . It takes at
most (Ki − 1) · Cexeξi

time units for the processing windows
in which all but one message in the buffer are processed.
Interval 3: Pρj − ti. There are two cases: Case 1: Pρj ≤ ti:
Thus, Pρj − ti ≤ 0. Case 2: ti < Pρj : Two subcases must be
considered: For (a), there is a job Ji,ρj−1 of τi executing in the
processing window at time ti. Then, si,ρj−1 < ti, as otherwise,
by definition of Pρj , Pρj must be before Ji,ρj−1, leading to
Pρj ≤ ti. Therefore, there are at most Cτi + Cτi,lp time units
between ti and Pρj . For (b), if no job of τi is executed in
the processing window at time ti, then Pρj−1 ≤ ti; otherwise
there would be a job of τi in the processing window after
Pρj−1 which contradicts the minimality of Pρj . Hence, the
length of the processing window at ti is at most Cexeξi

− Cτi .
We conclude that si,ρi − ti ≤ Cτi,hp + (Ki − 1) · Cexei +
max{0, Cτi + Cτi,lp , C

exe
i − Cτi } = (21).

Lemma VI.5 (Subscription bound aligned DDS communica-
tion). If τi is a subscription receiving messages from aligned
DDS communication, then si,ρi − ti is upper bounded by:

ubprei = Cτi−1,lp + Cτi,hp (22)

Proof. Teper et al. [29, Lemma 2] show that a subscription
buffer that only receives messages from one task that is
scheduled by the same executor never contains more than two
messages, as each job that publishes a message triggers a job
of the subscription, which is guaranteed to process the message
in the next processing window.

After ti, it takes at most Cτi−1,lp to reach the next polling
point and then at most Cτi,hp additional time units a job of
τi+1 starts. Therefore, si,ρi − ti ≤ Cτi−1,lp + Cτi,hp .

Since the case where subscriptions receive messages from
communication via labels requires more effort, we first state
the bound on the MRT for chains without such subscriptions.

Proposition VI.6 (MRT without subscription using commu-
nication via labels). If E is a cause-effect chain without
subscriptions which use communication via labels, then

MRT (E) ≤
n∑

i=1

ubprei + ubexei (23)

is an upper bound on the maximum reaction time.

Proof. By Definition V.7, the MRT is the supremum of
the length of all immediate forward augmented job chains
MRT (E) = supz>s1,W1

len ( ~acz) after the start of job J1,W1
.

Let ~acz be any immediate forward augmented job chain with
z > s1,W1

. As discussed at the beginning of this section, we
can divide z′ − z:

n∑

i=1

(si,ρi − ti) +
n−1∑

i=1

(ti+1 − si,ρi) + (z′ − sn,ρn) (24)

According to Lemma VI.1, this is upper bounded by∑n
i=1(si,ρi − ti) +

∑n
i=1 ub

exe
i As proven by Lemmas VI.2,

VI.3, VI.4, and VI.5, we can use the upper bounds ubprei to
achieve z′ − z ≤∑n

i=1 ub
pre
i + ubexei .

We now handle the case of subscriptions using communi-
cation via labels. In this case, the subscription is not directly
triggered by the previous task τi−1 but by another task τψ
that publishes to the subscription topic st i of task τi via DDS
communication. Hence, we need to account for the maximal
time until τi is activated by τψ . We denote by ∆ψ the maximal
amount of time between two activations of τi by τψ .

Lemma VI.7 (Subscription bound label communication). If
τi is a subscription communicating with τi−1 via labels, then
the following is an upper bound on si,ρi − ti:

ubprei = ∆ψ + Cexeξi + max{0, Cτi,hp − Cτi } (25)

if τψ communicates with τi via unaligned DDS communication,
and

ubprei = ∆ψ + Cτψ,lp + Cτi,hp (26)
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if τψ communicates with τi via aligned DDS communication.
Here, ξi is the index of the executor that τi belongs to.

Proof. First, we prove that Ji,ρi is not the first job of τi.
This proof by contradiction is achieved by comparing with the
immediate backward job chain ~cW = (J1,W1 , . . . , Jm,Wm) for
the warm-up. Assume that Ji,ρi is the first job of τi. Then,
Ji,Wi

must be Ji,ρi or a subsequent job of τi. Since ~cW is
an immediate backward job chain, Ji−1,Wi−1

is Ji−1,ρi−1
or

a subsequent job of τi−1. After several steps, we obtain that
J1,W1

is J1,ρ1 or a subsequent job of τ1. This means that z ≤
s1,ρ1 ≤ s1,W1 . This contradicts Definition V.5 of immediate
forward augmented job chains, where z > s1,W1 .

Thus, task τi must have been activated before ti by τψ , as
τi can only be activated by τψ . Hence, after ti it takes at most
∆ψ time units until τi is activated by τψ .

We denote the last polling point before si,ρi as Pρi . It takes
at most Cτi,hp from Pρi until si,ρi . For Pρi − ti, there are
two cases: Case 1: Pρi ≤ ti. Thus, Pρi − ti ≤ 0. Case 2:
ti < Pρi . Two subcases must be considered: For (a), there
is a job Ji,ρi−1 of τi executing in the processing window at
time ti. Then si,ρi−1 < ti, as otherwise, by definition of Pρi ,
Pρi must be before Ji,ρi−1, leading to Pρi ≤ ti. Therefore,
Pρi−ti ≤ Cτi +Cτi,lp . For (b), if no job of τi is executed in the
processing window at time ti, then Pρi−1 ≤ ti; otherwise there
would be a job of τi in the processing window after Pρi−1.
Hence, the length of the processing window at ti is at most
Cexeξi

−Cτi . We conclude that si,ρi−ti ≤ Cτi,hp +max{0, Cτi +
Cτi,lp , C

exe
i − Cτi } = Cexei + max{0, Cτi,hp − Cτi } < (25).

If τψ communicates with τi via aligned DDS communica-
tion, then there is a polling point at most Cτψ,lp time units after
activation and a job of τi starts at most Cτi,hp time units after
the polling point. Thus, si,ρi − ti ≤ ∆ψ +Cτψ,lp +Cτi,hp .

We are left with quantifying ∆ψ . To achieve this, we
construct a chain Ê = (τψ1

, . . . , τψm̂ = τψ) where τψ1
is

a timer and the tasks τψi and τψi+1
communicate via DDS

communication. Such a chain always exists by assumption, as
stated at the end of Section II. Note that the chain Ê may not
be a full chain of the system, but only a sub-chain, as there
can be multiple timers in a chain, and we refer to τψ1

as the
last timer before the subscription task τi under analysis.

Lemma VI.8 (Quantify ∆ψ). The maximal amount of time
between two activations of τi by τψ is upper bounded by:

∆ψ ≤ δddsψ,i +
∑

τψi∈Ê

ubpreψi
+ ubexeψi

−
∑

τψi∈Ê′
(Kψi − 1) · Cexeξψi

(27)

if τψ communicates with τi via unaligned asynchronous DDS
communication, and

∆ψ ≤
∑

τψi∈Ê

ubpreψi
+ ubexeψi

−
∑

τψi∈Ê′
(Kψi − 1) · Cexeξψi

(28)

if τψ communicates with τi via unaligned synchronous or
aligned DDS communication, where Ê′ is the set of all τψi in
Ê that receive messages via unaligned DDS communication,
and ξψi is the index of the executor of task τψi .

Proof. Let ζ be a time point at which τψ activates τi. We
know that at the latest after MRT (Ê) time units, a job of
τψ finishes. The activation of τi takes additional δddsψ,i time
units, if τψ communicates via unaligned asynchronous DDS
communication, as the message is published by the DDS
thread. If τψ communicates via unaligned synchronous or
aligned DDS communication, then the activation is guaranteed
to be finished at the finish time of τi, as the message is
published by the executor thread. Therefore, the MRT (Ê) is
sufficient for that case.

However, MRT (Ê) is too pessimistic for the case of
unaligned inter-node communication. In particular, we only
need to bound the time until any job is processed, instead of
a particular job. This requires only at most one processing
window, instead of Kψi processing windows. We subtract the
length of Kψi − 1 processing windows (each of length Cexeψi

)
from the upper bound stated in Proposition VI.6.

Theorem VI.9. The maximum reaction time of a cause-effect
chain E = (τ1, . . . , τm) is upper bounded by

MRT (E) ≤
m∑

i=1

ubprei + ubexei . (29)

Proof. The proof coincides with the proof of Proposition VI.6,
except that we include the upper bound for subscriptions using
intra-node communication from Lemma VI.7.

Recent work by Günzel et al. [16] shows that MRT and
MDA are the same for a very general setup. In the following,
we show that the equivalence is applicable to our ROS 2
system model; hence, our bound holds for the MDA as well.

Theorem VI.10. The maximum data age of a cause-effect
chain E = (τ1, . . . , τm) is upper bounded by

MDA(E) ≤
m∑

i=1

ubprei + ubexei . (30)

Proof. In [16] the equivalence between MRT and MDA was
proven. Their system model assumes that each job Ji,ρ has a
certain read-event re(Ji,ρ) and write-event we(Ji,ρ) defined,
such that the following properties are satisfied:
P1 The read-events and write-events are ordered in the

sense that re(Ji,ρ) < we(Ji,ρ) for any job Ji,ρ , and
re(Ji,ρ1) < re(Ji,ρ2) and we(Ji,ρ1) < we(Ji,ρ2) for any
two subsequent jobs Ji,ρ1 and Ji,ρ2 of the same task.

P2 {re(Ji,ρ) | Ji,ρ job of τi} and {we(Ji,ρ) | Ji,ρ job of τi}
have no accumulation point.

P3 Let ~ck = (J1,ρ1 , . . . , Jm,ρm) be an immediate forward
job chain. Then Ji+1,ρi+1

is the first job of τi+1 with
read-event greater than or equal to we(Ji,ρi) for all
i = 1, . . . ,m− 1.
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P4 Let ~ck = (J1,ρ1 , . . . , Jm,ρm) be an immediate backward
job chain. Then Ji−1,ρi−1 is the latest job of τi−1

with write-event less than or equal to re(Ji,ρi) for all
i = 1, . . . ,m− 1.

As discussed in Section V, property P3 is not satisfied by de-
fault. Thus, we redefine read-events and write-events for each
job in E such that they match the assumptions in [16]. We keep
the read-event at the start of each job, i.e., re(Ji,ρ) = si,ρ .

Now consider a job Ji,ρ with i ∈ {2, . . . , n}. Then let Ωi,ρ
be the set of all jobs Ji−1,ρ∗ of the previous task τi−1 such
that Ji,ρ is the earliest job that is linked to Ji−1,ρ∗ . (For the
example in Figure 3, Ω2,5 = {J1,4, J1,5}.) Let |Ωi,ρ | be the
number of jobs in Ωi,ρ . We define

Ψi,ρ = si,ρ − si,ρ′ (31)

if a previous job Ji,ρ′ , ρ′ < ρ exists and

Ψi,ρ = si,ρ − max
Ji−1,ρ∗∈Ωi,ρ

(si−1,ρ∗) (32)

otherwise. Now, all jobs of τi−1 with write-event during
[si,ρ −Ψi,ρ , si,ρ ] are linked to si,ρ and si,ρ is the first job
they are linked to.

We define εi,ρ := Ψi,ρ/(|Ωi,ρ |+1) and set the write-events
of the jobs in Ωi,ρ to

(si,ρ−|Ωi,ρ| ·ε), (si,ρ−(|Ωi,ρ |−1)·ε), . . . , (si,ρ−1·ε), (33)

ordered by their release time.
These read- and write-events fulfill the properties P1, P3,

and P4. Moreover, property P2 is fulfilled because there
are only finitely many polling points in any bounded time
interval by our assumption in Section III-B. Therefore, MRT
and MDA are equivalent for our ROS 2 system model, and∑m
i=1 ub

pre
i + ubexei is an upper bound on the MDA.

VII. OPTIMIZATION

The maximum end-to-end latencies of a specific cause-effect
chain must often respect a certain threshold to ensure system
safety; thus, reducing end-to-end latencies is crucial. In this
section, we explain how our analysis from Section VI can
be utilized to minimize the end-to-end latency of cause-effect
chains using constrained programming. We start by consider-
ing only a single cause-effect chain and discuss extensions to
multiple cause-effect chains afterward.

Our analysis in Section VI is the first analysis that can
be universally applied to different system configurations. In
particular, the following parameters can be chosen freely:
• The DDS communication mode of each executor ei can

either be asynchronous or synchronous.
• The task prioritization policy of executor ei may either

prioritize timers over subscriptions (the default setting in
ROS 2 Humble) or subscriptions over timers.

• The node-to-executor assignment for each node ni.
• The timer period Ti of each timer tmr i is a non-negative

real number within a predefined interval [Ti,min;Ti,max].
A period of zero, i.e., Ti,min = Ti,max = 0, means that
the timer would be executed in every processing window.

These parameters impact the analytical bound and can be
optimized. The objective of the optimization is to minimize
the upper bound on the end-to-end latency of the cause-effect
chain E = (τ1, . . . , τm), as defined in Theorem VI.9:

minimize ub(E) :=
m∑

i=1

ubprei + ubexei (34)

In Section VIII we evaluate this optimization approach.
To apply our optimization to multiple cause-effect chains

E1, . . . , Eq , the objective function can be chosen as follows:
1) Minimize the (weighted) sum of ub(Ei): Instead of

minimizing ub(E), we can minimize the weighted sum∑q
i=1 λiub(Ei). The weight λi accounts for the impor-

tance of the chain, i.e., minimizing ub(Ei) of a chain
with higher λi is more important.

2) Meet latency requirements: If the latency of each cause-
effect chain must be below a certain threshold Hi, then
we can formulate the objective function as follows:

minimize max
i=1,...,q

(Hi − ub(Ei)) (35)

In case the optimization yields a result < 0, this means
that all latency requirements can be met.

For the optimization, we further assume the following:
• Task-to-node assignment and the worst-case execution

time (WCET) Ccb
i of each callback cbi are fixed.

• If τi communicates with τj , we assume the communi-
cation type (i.e., communication via DDS or via labels)
is fixed. Moreover, possible delays for label-based com-
munication and DDS communication (aligned, unaligned
synchronous, and unaligned asynchronous) are given.

Further optimization extensions can be achieved similarly.

VIII. EVALUATION

In this section, we evaluate our upper-bound analysis and
optimization for end-to-end latencies of ROS 2 cause-effect
chains. We first describe the system under analysis, including
the cause-effect chain, the system model, and the measurement
setup. After that, we show our evaluation results.

A. Evaluation Setup

For our experiment, we ran an autonomous-driving software
designed for high-speed oval racing [4] on a server with an
i7-10700 CPU (8 x 2.9 GHz) and 32 GB RAM. We measured
the latencies of the driving software stack using the framework
of Betz et al. [5], which is based on ros2 tracing [3]. We
conducted the simulation using the framework proposed by
Betz et al. [6], which orchestrates the software execution and
simulation on a separate server infrastructure.

We consider the main cause-effect chain of the autonomous-
driving software, depicted in Figure 5, which consists of the
LiDAR clustering pipeline, the tracking and prediction of de-
tected objects, the local trajectory planner, and the controller.
The chain consists of eight individual ROS 2 nodes and eleven
tasks. For the optimization, we do not consider the LiDAR
node, as it uses its own ROS 2 driver.
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Fig. 5. End-to-end latency comparison between baseline and optimized
configurations. The left side shows the nodes in dashed boxes, including the
baseline latency for each step of the pipeline. The bar graph is the absolute
difference in milliseconds per configuration for each step of the pipeline.

For the data propagation, the fusion, ground filter, misc.
filter, and clustering nodes each have one subscription for DDS
communication. The tracking, planning, and control nodes
contain one subscription and a timer that sends data to the
next task in the chain via DDS. The subscription and timer
tasks of these three nodes communicate via labels.

For the baseline system configuration, Figure 5 shows the
measured maximum WCET and DDS latencies, next to each
part of the chain on the left. For the label communication
latency, we specify the maximum time between the write-
event of the subscription and the read-event of the timer.
In our evaluation, the latencies for reading from and writing
to a label, aligned DDS communication, and forwarding the
message to the DDS thread are negligible and therefore not
included in the figure. As shown by Betz et al. [6] and verified
by our own measurements, the DDS latencies for unaligned
synchronous communication by the executor thread and the
publishing latency for the DDS thread are nearly the same;
therefore, we only specify the former.

In our setup, the LiDAR node has a target frequency of
20 Hz. However, due to the simulation, the output frequency
can be inconsistent. Hence, to have a more realistic setup,

measurements of job chains with more than the target 50 ms
between sensor outputs are disregarded. Each run was repeated
five times and, after discarding, in total approximately 70 000
individual latency samples were obtained per experiment.

For the subsequent optimization, certain boundary condi-
tions had to be met. We always assign the control node to an
individual executor and a fixed period of 10 ms to its timer,
as its functionality would otherwise be compromised. Further-
more, ROS 2 does not allow assigning nodes implemented in
different languages to the same executor. Thus, we restricted
the node-executor assignment, as the tracking and planning
nodes are implemented in Python, and all other nodes in C++.

B. Evaluation Results

For the baseline configuration, denoted as Baseline, the
system described in Section VIII-A has one executor per node,
uses the synchronous DDS mode, and prioritizes timers over
subscriptions. The tracking node timer has a period of 50 ms,
and the planning node timer has a period of 75 ms.

Table II shows, from left to right, the measured val-
ues for the mean (Mean), standard deviation (Std), 99th-
percentile (P99), maximum end-to-end latencies (Max), and
the upper bound using our end-to-end analysis (UB) for the
baseline configuration and each optimized configuration. Fig-
ure 5 shows, for each part of the chain, the absolute difference
between the maximum measured baseline latency and the
maximum measured latency for each optimized configuration.

First, we describe the improvements that can be obtained
by optimizing each individual parameter from Section VII.
• DDS communication mode (DDS): We observed that

the optimization changes it from synchronous to asyn-
chronous. Although this increases the measured values,
the upper bound is reduced. The largest latency increase
occurs due to data labels not being read (see Figure 5).

• Timer period (Timer): We observed that this optimization
sets all timer periods in the system to Ti = 0. This
optimization reduces both the measured data age and the
analytical upper bound.

• Executor task prioritization policy (Policy): We observe
that the policy was changed to prioritize subscriptions
over timers. This change reduces both the measured and
analytical values for the system.

• Node-executor assignment (Assignment): The optimiza-
tion assigns the seven nodes to six executors (the fusion
and ground filter nodes are assigned to one executor).
This change frees one core but increases the measured
values, while the upper bound remains nearly the same.

Next, we fix either the DDS communication mode or the
node-executor assignment and utilize our constrained program-
ming method to optimize the remaining parameters.
• DDS asynchronous (Fix-Async): The optimization ap-

plies the same changes as Timer and Policy. For the
node-executor assignment, the ground filter and misc.
filter nodes are assigned to one executor. The optimization
reduces the upper bound significantly, but the measured
values increased compared to the baseline.
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TABLE II
END-TO-END LATENCY (DATA AGE) MEASUREMENT IN ms INCLUDING

THE MEAN, STANDARD DEVIATION (STD), 99TH-PERCENTILE (P99),
MAXIMUM (MAX), AND UPPER BOUND (UB) FOR DIFFERENT

CONFIGURATIONS.

Optimization Mean Std P99 Max UB

DDS 177.83 33.09 256.28 326.31 696.05
Timer 149.96 26.12 209.24 291.03 668.15
Policy 153.09 28.64 218.80 268.77 665.08

Assignment 171.21 34.77 259.48 353.95 832.43
Fix-Async 186.52 42.70 312.83 378.85 416.18
Fix-Sync 145.63 29.16 230.65 308.61 493.98

Fix-Assign 149.59 26.75 211.22 250.38 419.65

Baseline 156.99 32.54 244.21 312.04 835.84

Fig. 6. Histogram of the end-to-end latency of the Baseline configuration
(blue) and after the configuration of Fix-Sync is applied (orange).

• DDS synchronous (Fix-Sync): The optimization applies
the changes from Timer, Policy, and Assignment. When
comparing Fix-Sync to Fix-Async, we notice that the
DDS synchronous mode performs better in the measured
values, but produces worse upper bounds.

• Executors-assignment (Fix-Assign): The node-executor
assignment is fixed, and each node is assigned to one ex-
ecutor. We observe that the optimization applies the same
changes as DDS, Timer, and Policy. This configuration
produces the best result for the maximum measured end-
to-end latencies. However, the measured mean value is
higher than for Fix-Sync, and the upper bound is slightly
higher than for Fix-Async.

We conclude that our optimization can be used to reduce
the measured and analytical end-to-end latency for cause-effect
chains in ROS 2 systems. We achieved a reduction of at most
50.2 % for the upper bound, 19.8 % for the maximum mea-
sured end-to-end latencies, and 7.2 % for the mean measured
end-to-end latencies for our system. Furthermore, we note that
the analytical upper bound is not exceeded by any measured
data age, which supports the correctness of our analysis.

IX. RELATED WORK

The Robot Operating System (ROS) [22], released in 2007,
is a set of software libraries and tools for building robot
systems. ROS enables the development of robot systems for
various applications, e.g., logistics and autonomous driving,

but does not consider common embedded-system constraints,
like memory limitations or real-time constraints. Existing
extensions of ROS that provide real-time support, such as RT-
ROS [30] and ROSCH [23], are not widely adopted.

The Robot Operating System 2 (ROS 2), released in 2017,
addresses these limitations and introduces real-time commu-
nication through DDS [21] as well as a new scheduler to
provide possibilities for real-time guarantees. Previous work
has analyzed the response time of ROS 2 systems for the
ROS 2 executor using DAG-based models [7], [8] and pro-
cessing chains [27]. Furthermore, novel executor designs were
proposed, analyzed, and evaluated, such as PiCAS [9], the
real-time executor [31], the multithreaded-executor [17], [26],
and an executor for dynamic-priority scheduling [1]. For DDS
communication in ROS 2, separate studies provide an analysis
of the response time of for DDS message publishing [25].

For real-time systems, end-to-end timing analysis of cause-
effect chains has been extensively studied. In 2009, Feiertag
et al. [13] proposed the first end-to-end latency semantics
that defined maximum reaction time and maximum data age.
Subsequent work can be categorized into active and passive
approaches. Active approaches [14], [24] specify the release
of jobs in cause-effect chains to ensure the correctness of data
reading and writing, while passive approaches [10], [11], [15],
[18] analyze the timing behavior in an existing schedule.

In 2022, Teper et al. [29] applied end-to-end latency se-
mantics to single-executor ROS 2 systems, considering the
design of the ROS 2 architecture and its executor. Further
studies by Teper et al. [28] analyzed the behavior of ROS 2
timers and subscriptions, and Betz et al. [6] studied the effects
of the ROS 2 system configuration on end-to-end latencies.
This paper extends the existing end-to-end timing analysis to
multi-executor systems, and covers all possible communication
types natively supported by ROS 2. End-to-end analysis and
optimization for multi-executor ROS 2 system have, to the best
of our knowledge, not yet been discussed in the literature.

X. CONCLUSION

In this paper, we present an upper-bound analysis for
end-to-end latencies in multi-executor ROS 2 systems. Our
analysis considers all possible communication types natively
supported by ROS 2, including intra-process communication,
inter-process communication, and DDS communication. Fur-
thermore, we introduce an optimization using constrained
programming that determines the optimal system configuration
to minimize the upper bound on the end-to-end latencies
of cause-effect chains. We evaluated our approach using an
autonomous driving software stack for high-speed racing,
verifying the calculated upper bounds, and determining if the
configuration positively affects the end-to-end latencies of the
real system. With our optimization approach, we could reduce
the end-to-end latency by up to 50.2 % for the upper bound,
19.8 % for the maximum measured end-to-end latencies, and
7.2 % for the mean measured end-to-end latencies. In conclu-
sion, our work helps to design safe and predictable real-world
ROS 2 systems and improve their end-to-end latencies.
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