
LazyTick: Lazy and Efficient Management of Job Release
in Real-Time Operating Systems
Kay Heider†, Christian Hakert†, Kuan-Hsun Chen?, Jian-Jia Chen†‡

†TU Dortmund University, Germany ?University of Twente, the Netherlands ‡Lamarr Institute, Germany

T1 = 4

T2 = 6

T3 = 5

timer tick

0 2 4 6 8 10 12 14

required
not-required

Tick Interrupt

tick interrupt

check waiting set

release ready jobs

Task Delay

job finish

determine next release

insert into waiting set

Overhead = #ticks · tick complexity + #delays · delay complexity

Reducing Tick Interrupts
Idea: Employ multiple periodic timers instead of only one

T1 = 4

T2 = 6

T3 = 5

0 2 4 6 8 10 12 14

2 timers

timer ρ1
P1 = 2

timer ρ2
P2 = 5

Interrupts:
∑

ρj∈Timers

Hyperperiod
ρj

= 42 vs. 60

• Multiple timers can reduce the number of not-required tick interrupts
• Smart assignment of tasks to timers reduces overhead

Multi-Timer Task Set Partition
Method: Partition task set, assign each a timer, exploit the gcd

ρ1

ρ2

. . .

ρm

T1

T2

. . .

Tm

Task Set T Timers P
P1 = gcd(T1)

P2 = gcd(T2)

Pn = gcd(Tm)

• Partition the task set according to the task periods, maximizing the gcd
• Assign each partition a separate timer with tick period configured to the gcd

Evaluation
·106

Number of tasks

To
ta

lI
SR

Ov
er

he
ad

s[
cy

cle
s]

LazyTick FreeRTOS One-shot

100 200 300 400 5000
1
2
3
4
5
6
7

Harmonic Task Sets
Method: Use a static array as waiting set

t = 10

1 2 3 4 5

(τ1, 10) (τ2, 20) (τ3, 20) (τ4, 40) (τ5, 400)

t = 20

1 2 3 4 5

(τ1, 10) (τ2, 20) (τ3, 20) (τ4, 40) (τ5, 400)

t = 30

1 2 3 4 5

(τ1, 10) (τ2, 20) (τ3, 20) (τ4, 40) (τ5, 400)

• Exploit fixed release order of harmonic tasks
• Each tick releases at least one job

Non-Harmonic Task Sets
Method: Use a ring buffer as waiting set, advance by timer period
Tasks with T1 = 2, T 2 = 4, T 3 = 6 Timer with P = gcd(2, 4, 6) = 2

1

3

2

τ1

τ2

τ3

t = 1 · P

1

3

2

τ2, τ1

τ3

t = 2 · P

1

3

2

τ2

τ3, τ1

t = 3 · P

1

3

2

τ2, τ1

τ3

t = 4 · P

• A ring buffer slot holds an unsorted list of tasks, that release a job at the same tick
• After a job has finished, the task is inserted at the next slot according to its period

Evaluation

100 200 300 400 5000

0.2

0.4

0.6

0.8

1
·104

Number of tasks

In
se

rti
on

Ov
er

he
ad

[cy
cle

s]

LazyTick FreeRTOS One-shot

(Kay Heider) (Christian Hakert) (Kuan-Hsun Chen) (Jian-Jia Chen) (GitHub)

https://daes.cs.tu-dortmund.de/p/heider
https://daes.cs.tu-dortmund.de/p/hakert
https://people.utwente.nl/k.h.chen
https://daes.cs.tu-dortmund.de/p/jjchen
https://github.com/tu-dortmund-ls12-rt/LazyTick

