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Overhead = #ticks · tick complexity + #delays · delay complexity

Reducing Tick Interrupts
Idea: Employ multiple periodic timers instead of only one
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• Multiple timers can reduce the number of not-required tick interrupts
• Smart assignment of tasks to timers reduces overhead

Multi-Timer Task Set Partition
Method: Partition task set, assign each a timer, exploit the gcd
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• Partition the task set according to the task periods, maximizing the gcd
• Assign each partition a separate timer with tick period configured to the gcd
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Harmonic Task Sets
Method: Use a static array as waiting set
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• Exploit fixed release order of harmonic tasks
• Each tick releases at least one job

Non-Harmonic Task Sets
Method: Use a ring buffer as waiting set, advance by timer period
Tasks with T1 = 2, T 2 = 4, T 3 = 6 Timer with P = gcd(2, 4, 6) = 2
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• A ring buffer slot holds an unsorted list of tasks, that release a job at the same tick
• After a job has finished, the task is inserted at the next slot according to its period
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