technische universitat
dortmund

Implementation and Evaluation of
Multiprocessor
Resource Synchronization Protocol (MrsP)
on LITMUSFT

Junjie Shi!, Kuan-Hsun Chen'!, Shuai Zhao?, Wen-Hung Huang',
Jian-Jia Chen', and Andy Wellings?

IDepartment of Informatics, TU Dortmund University, Germany
’Department of Computer Science, University of York, United
Kingdom
TU Dortmund
https://Is12-www.cs.tu-dortmund.de/

Citation: OSPERT2017

BIBTEX:

@inproceedings {OSPERT17-junjie,
author = {Shi, Junjie and Chen, Kuan-Hsun and Zhao, Shuai and Huang, Wen-Hung and Chen, Jian-Jia ar
title = {Implementation and Evaluation of Multiprocessor Resource Synchronization Protocol (MrsP) c
booktitle = {13th Workshop on Operating Systems Platforms for Embedded Real-Time Applications},
year = {2017}

}

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

CS 12 &avee™

https://ls12-www.cs.tu-dortmund.de/
OSPERT2017

Implementation and Evaluation of Multiprocessor
Resource Synchronization Protocol (MrsP) on LITMUSR!

Junjie Shi!, Kuan-Hsun Chen!, Shuai Zhao2, Wen-Hung Huangl, Jian-Jia Chen!, and Andy Wellings2
IDepartment of Informatics, TU Dortmund University, Germany
2Department of Computer Science, University of York, United Kingdom
{junjie.shi, kuan-hsun.chen, wen-hung.huang, jian-jia.chen} @tu-dortmund.de’
{25673, andy.wellings } @york.ac.uk?

Abstract—Preventing race conditions or data corruptions for
concurrent shared resource accesses of real-time tasks is a
challenging problem. By adopting the resource synchronization
protocols, such a problem has been studied in the literature,
but there are not enough evaluations that consider the overhead
from the implementations of different protocols. In this paper,
we discuss our implementation of the Multiprocessor Resource
Sharing Protocol (MrsP) and the Distributed Non-Preemptive
Protocol (DNPP) on LITMUSR'. Both of them are released in
open source under GNU General Public License (GPL2). To study
the impact of the implementation overhead, we deploy different
synchronization scenarios with generated task sets and measure
the performance with respect to the worst-case response time. The
results illustrate that generally the implementation overhead is
acceptable, whereas some unexpected system overhead may hap-
pen under distributed synchronization protocols on LITMUSK',

I. INTRODUCTION

When concurrent real-time tasks have to access shared
resources, ensuring the timeliness is a challenging problem.
To prevent race conditions or data corruptions, concurrently
accessing the same resource is prohibited by exploiting mutual
exclusion. That is, when a task has already been granted
to access a shared resource, any other tasks cannot access
the shared resource at the same time. To realize mutual
exclusion in operating systems, semaphores are widely used.
However, using semaphores introduces other problems, e.g.,
deadlocks and priority inversions. Towards this, many resource
synchronization protocols have been proposed to prevent such
problems caused by such shared (logical) resources.

In uniprocessor systems, the Priority Ceiling Protocol (PCP)
has been widely accepted and supported in real-time operat-
ing systems. Nowadays, multiprocessor platforms have been
widely used. There have been several resource synchroniza-
tion protocols proposed for multiprocessors. Specifically, in
a recent paper by Huang et al. [9], four sound protocols,
i.e., Multiprocessor Priority Ceiling Protocol (MPCP) [I1],
Distributed Priority Ceiling Protocol (DPCP) [12], Distributed
Non-Preemptive Protocol (DNPP) [9], and Multiprocessor
Resource Sharing Protocol (MrsP) [6], have been discussed.

To schedule real-time tasks on a multiprocessor platform,
there are mainly three classes of scheduling algorithms: global,
partitioned and semi-partitioned algorithms. Brandenburg et
al. [5] have recently shown that global scheduling is prob-

ably not necessary for scheduling independent and implicit-
deadline sporadic (or periodic) tasks. Even though there al-
ready exist several resource sharing protocols, there is no
clear comparison among those protocols. One open problem
is the proper task partitioning algorithms suitable for differ-
ent multiprocessor resource synchronization protocols. The
resource-oriented partitioned fixed priority (P-FP) scheduling
proposed by Huang et al. [9] is pragmatically good for the
DNPP and DPCP. There are task partitioning algorithms for
the MPCP proposed in [10], but they are in general dominated
by the resource-oriented partitioned scheduling from [9]. As
for the MrsP, to the best of our knowledge, there is no specific
discussion for task partitioning yet.

The evaluations in the literature are still mostly based
on the theoretical analyses without considering the overhead
introduced by the real-world implementation. Due to the fact
that the induced run-time overhead is not negligible in some
protocols, a theoretically good protocol may perform worse
than other protocols that only need low overhead in the
real world implementation. Although Brandenburg et al. [4]
already considered the runtime overhead on the LITMUSR!
into schedulability tests statically, they did not consider the
MrsP and the impact of the task partitioning.

Among the above four protocols, the MrsP was proposed
in 2013 by Burns and Wellings [0]. It strikes a compromise
between short and long shared resource accesses. Specifically,
the MrsP has two important features: 1) it uses spin-lock to
handle short resources accesses preferably, and 2) it has a
helping mechanism to reduce the indirect blocking from the
long resources accesses. The helping mechanism enables a task
waiting to gain access to a resource to undertake the associated
computation on behalf of any other waiting tasks. However,
the helping mechanism makes the MrsP not easy to be im-
plemented and verified. To the best of our knowledge, before
this paper, there was only one implementation published by
Catellani et al. [7]. Their implementation has been included
as a stable version in Real-Time Executive for Multiprocessor
Systems with the latest version 4.11 [1]. Catellani et al. [7]
also presented their implementation on LITMUSKT. However,

their implementation on LITMUSRT is not publicly available.'

To have a comprehensive performance evaluation on the
same basis as [4], in this paper, we still consider the in-
curred overhead on LITMUSR'. Based on LITMUSRT, we
release our implementation as a patch of the MrsP supporting
global multi-resources non-nested accesses, and discuss the
difficulties and the potential pitfalls during the implementa-
tion process in detail. To evaluate the performance of each
protocol with respect to the worst-case response time, different
resource synchronization scenarios are studied under different
protocols.

Our contributions:

« The difficulties of the implementation are discussed. We
release an executable version of the MrsP in [13] support-
ing non-nested multi-resources sharing on LITMUSKT,
The DNPP is also released by extending the original
DPCP implementation on LITMUSKT,

« We evaluate the real-world overhead of each routine in
synchronization protocols on LITMUS®!, i.e., migration,
context switch, and helping mechanism.

o The performance of four protocols (i.e., the MPCP, the
DPCP, the DNPP and the MrsP) are evaluated with
respect to the measured worst-case response time. Some
interesting case studies are shown to illustrate different
suitable scenarios of resource sharing among all the
considered protocols.

II. MULTIPROCESSOR RESOURCE SHARING PROTOCOL

In this section, we introduce the concepts of the MrsP briefly
and discuss the difficulties of the implementation. MrsP was
developed by Burns and Wellings in [6] and has the following
properties:

« All available resources are assigned to a set of ceiling
priorities. Each resource has one ceiling priority per
processor depending upon the priorities of tasks which
use it. For processor py, the ceiling priority of a resource
is the maximum priority of all tasks allocated to processor
Dy using that resource.

« For any resource, the priority of the task which requests
that resource is immediately raised to the local ceiling of
that resource.

« The sequence of accessing to a resource is handled in a
FIFO order.

« Every task waiting to gain an access of a resource must
be capable of undertaking the associated computation on
behalf of any other waiting task. Any cooperating task
must undertake the outstanding requests in the original
FIFO order. In the rest of the paper, we follow [7] to call
this property as the helping mechanism.

Overall, the interplay within the protocol among each
component is shown in Figure 1. From the right-hand side
of Figure 1, once a task requests a resource, it spins by

'Quoting the message from Prof. Enrico Mezzetti, “... the implementation
was based on the 2013.1 (now deprecated) version of LITMUS-RT.” Although
we received the courtesy source code from them, we are not able to execute
the protocol.

Spinning at
local ceilin
9 T
L T1 | ; @
Semaphore owner /
Tn
FIFO Queu :
w7 T
L =
Spinning tasks are Tm @
ready for helping
Tn,m

Fig. 1: Overview of resource sharing scenarios under the MrsP

setting its priority level to the local ceiling priority in that
processor immediately. Such an operation can guarantee that
there is only one task in requesting the same resource from
that processor. In other words, this ensures that the maximum
number of jobs in the waiting queue of a resource is at most the
number of processors in the system. The waiting queue of the
corresponding resource is managed in FIFO order. Moreover,
all the tasks which are spinning on their processors are ready
to help the semaphore owner. Details of the implementation
are illustrated in the following subsections.

A. FIFO Spin Lock

We apply the ticket-based spin lock [14] in our imple-
mentation, which is a spin lock and can guarantee the FIFO
order for the requests of a shared resource. It consists of two
components, a ticket variable and a grant variable. Arriving
threads atomically fetch-and-increment the ticket and then
spin, waiting for the grant variable to match the value returned
by the fetch-and-increment primitive. At that point the thread
owns the lock and may safely enter the critical section. The
pseudo code example can be found in [14].

B. Spinning at Local Ceiling

Each resource on each processor has its local ceiling,
defined as the highest priority among all the tasks (on that
processor) that request that resource. The boosting of the
priority of the spinning task to the local ceiling can ensure
that there is at most one task on that processor requesting
the same resource, since the other tasks requesting the same
resource will be en-queued into the ready queue due to the
definition of the local ceiling priority. In our implementation,
the local ceiling priority is calculated by users and given to the
system statically. When one task finishes its critical section,
the priority will be lowered to the original one. In order to
ensure that the task can return back to the original status, the
processor and the priority information are saved in advance
before it can enter to its critical section.

C. Helping Mechanism

The helping mechanism allows a spinning task on a pro-
cessor to help other tasks on other processors. Since spinning

wastes the available computation power, when it is possible,
helping other preempted tasks can improve the performance
of the system. In the MrsP, the tasks that can be helped are the
ones that are preempted but already own semaphores and have
entered their critical sections. A task is a semaphore owner if
the semaphore is currently locked by the task. In the original
design by Burns and Wellings, several rules were introduced
in Section VI in [6] to implement the helping mechanism of
MrsP. Furthermore, Catellani et al. explained in Section 3.3 in
[7] why implementing the helping mechanism is a challenging
task. Prior to this work, the helping mechanism in MrsP was
introduced by using itemized rules. In our view, these rules can
be summarized by two scenarios, defined as Pull and Push as
follows:

Push: In this case, the preempted semaphore owner can
migrate itself actively to the processor of the spinning task,
which is waiting for the semaphore. To have this situation,
there is a task 7, spinning on its processor mg before the mo-
ment that semaphore owner 7, of semaphore R is preempted
by another task on processor m, where m; # m,. When task
T, 1s preempted by a higher-priority task on processor m,, it
is migrated to the helper’s processor, i.e., mg in this case. The
T,’s priority will be set to a value which is one bit higher than
the priority of 7, in order to preempt the spinning task 75 on
processor m.

To successfully implement this mechanism, we need to
identify whether such a task 7, exists or not. If there are
multiple tasks spinning for being granted to access semaphore
R, we have to decide one of them to be the helper. To find
out the helper for the semaphore owner 7,, the FIFO order is
used. That is, among all the spinning tasks that are waiting for
R, task 7, is helped by the task that is currently spinning on
its processor without being preempted by following the FIFO
order. Here are the details of our implementations:

e Once the scheduler() notices that the semaphore owner
is preempted on processor m,, the processor id of the
semaphore owner is set to a negative number.

o Then, the function finish_switch() will mark the situation
and try to find a helper for the semaphore owner.

o A field current.next is used to point to the next task which
is requesting the same resource. This parameter is set
when it is getting the ticket, so that the helpers can be
sorted in a FIFO queue. The function finish_switch() will
traverse the semaphore owner’s possible helper list, to
find out whether there is a task spinning at its processor
and ready for help.

The above explanation is the simplest case without further
preemption on a semaphore owner. In fact, a semaphore owner
may be preempted while it is helped by other tasks. If so,
the semaphore owner can be further helped by other spinning
tasks. In our implementation, we only check whether the
semaphore owner can migrate back to its original processor
(recall that each task under the MrsP is assigned to one
processor originally due to task partition) and continue to
execute or be helped by other spinning tasks. If the semaphore
owner cannot proceed to be executed, it will be en-queued

to the corresponding processor’s ready queue and the flag
sem_owner_preempted will be marked as one.

Pull: In this case, the semaphore owner 7, of semaphore
R has been preempted on processor m,. After a while, one
task 75 is released and spinning on another processor mg trying
to lock the semaphore. At that moment, the semaphore owner
T, was already en-queued to the ready queue on processor m,,.
Therefore, the semaphore owner has become passive, and the
helper has to actively check whether the semaphore owner is
still executing or is already preempted. Once task 7, finds that
the flag sem_owner_preempted is set to one, which indicates
that the semaphore owner has been already preempted, the
helper will get the run-queue lock from the processor where
the semaphore owner is located, and help the semaphore owner
T, to migrate to the processor m.

Similarly, we also need to consider the situation if the next
semaphore owner is preempted during its spinning time. Once
the scheduler() notices the spinning task is preempted, the
parameter preempted_while_waiting will be set to one. When
the last semaphore owner releases the resource and the next
task is noticed to have been preempted while waiting, the
parameter sem_owner_preempted will be set to one, so that
the potential helper can make a help.

D. Implementation Overhead and Potential Deadlock

To achieve the aforementioned two techniques, i.e., ticket-
based spin lock and helping mechanism, we added several
elements into the rz_params structure which is originally used
to define the property for each task, i.e., priority, period,
execution time, etc. In the rt_params structure, the keyword
volatile was adopted on the ticket mechanism as well as other
variables which may be updated frequently. The usage of
volatile keyword can avoid the optimization on subsequent
reads or writes in compilation phase; otherwise, potential
errors like incorrectly reusing a stale value or omitting writes
may take place. To implement the semaphores under the MrsP,
we created a new structure named mrsp_semaphore, in which
the operation atromic_t supported by the standard Linux kernel
is applied to define the variables which may be read or written
concurrently, i.e., serving_ticket, sem_owner_preempted. The
atomic operation can protect these variables from concurrent
accesses. However, using both techniques, i.e., the keyword
volatile and atomic operations, may cause significant run-time
overhead which also influences the performance of protocols.

Moreover, deadlock had occurred in our early implementa-
tion when we followed the standard usage of ceiling protocols,
in which the local resource ceiling was set as the highest prior-
ity of the task which requests the resource on that processor.
However, in the current scheduling strategy on LITMUS®',
when two tasks have the same given priorities, the task with
the lower PID number has the precedence in the system on
LITMUSRT, This feature results in potential deadlocks, which
is illustrated in Figure 2.

Task 75 is released at f{g and starts its normal execution.
It enters its critical section at t;, and the priority is raised
to the resource ceiling. Task 7; is released at to, and it can

r 3
T1,PID=2
Priority =2 | Resource ceiling
A =2
T2, PID =4 —- Deadlock
Priority = 4

to t1 t2 ts

:l Normal Execution - Critical Section

Fig. 2: Deadlock possible for the MrsP on LITMUSKT

preempt 7o even when they have the same priority under the
current scheduling strategy on LITMUS®'. At t3, 7 requests
the resource which is held by 75, but 75 is already preempted
by 71. Thus, deadlock occurs. To prevent this situation, we
have two choices: 1) set the ceiling priority a bit higher than
the real one; 2) change the rule of the judgment of scheduling
strategy for two tasks with same given priorities. If two tasks
have the same priority, the first coming task has the higher
priority. In our implementation, we use the second option.
By this modification, once a task starts the execution of its
critical section, it cannot be preempted by any tasks which may
request this resource in this processor. Therefore, no deadlock
will happen.

III. OVERHEAD COMPARISON AND DISCUSSION

To evaluate the overhead of our implementation, we follow
the latest work from Huang et al. [9] to compare four sound
protocols, i.e., the MPCP, the DPCP, the DNPP, and the
MrsP, with the real implementation on LITMUSKT, Since
all the implementations are based on the plug-in partitioned
fixed-priority (P-FP) on LITMUSKT, the overhead for some
common routines are the same, e.g., migration and context-
switch. The measured overheads on LITMUSRT are shown in
Table I (see Section IV for detailed setup). Except MPCP, other
three protocols suffer from the migration overhead. DNPP
reduces the context switch overhead comparing to DPCP. In
Table I, the help overhead is the additional effort needed by
the scheduler to support the helping mechanism when making
scheduling decisions under the MrsP (migration overhead has
not counted). Naturally, the MrsP also has the migration
overheads due to the helping mechanism.

Context Switch
1.5 us

Routine
Avg. Time

Migration
5.6 us

Help
<1 us

TABLE I: Routine overheads among different protocols

Besides the implementation of the MrsP, which is discussed
in the previous session, the MPCP and the DPCP we used
are originally supported on LITMUSRT. However the DNPP
is not supported yet. To realize the DNPP, we add a pair
of non-preemptive flags named np_enter and np_exit for the
critical section in the user space, since the scheduler on the
LITMUSRT kernel supports non-preemptive executions if these
non-preemptive flags have been set to 1’s. Similar to the

non-preemptive protocols in uniprocessor system, once a task
in a critical section has started to be executed, it cannot
be preempted until it finishes under the DNPP. Although
the overhead of context switch is greatly reduced by using
non-preemption, the blocking time for each task may cause
higher blocking time than using the DPCP. For instance,
when one task with a lower priority enters to a long critical
section by which other high priority tasks cannot access shared
resources. In the DPCP, the maximum blocking time of a task
is dominated by the longest critical section among tasks which
require the same resource with lower priorities. Nevertheless,
the maximum blocking time of tasks under the DNPP is
decided by the longest critical section among other tasks even
without using the same resource in the same synchronization
processor.

Due to the different ways of handling waiting tasks,
these four protocols can be distinguished into two classes:
suspension-based and spin-based. Under suspension-based
protocols, e.g., the MPCP?, the DPCP, and the DNPP, tasks
waiting for a global resource suspend and are en-queued in
an associated prioritized global wait queue. A task blocked by
a global resource suspends and makes the processor available
for the local tasks. Under the spin-based protocol, the task
blocked by a global resource spins on that processor unless
there is another higher priority task coming. As a spin-based
protocol, MrsP has advantages on short resources accessing
with less context switch overhead; suspension-based protocols
have advantages on long resources accessing with full usage
of processor capability. For the fairness, we prepare these two
scenarios of resource usages as our case studies in Section V,
i.e., short and long resource accesses, to evaluate the benefits
of using different protocols on LITMUSK,

IV. EXPERIMENTAL SETUP

The hardware platform used in our experiments is a cache-
coherent SMP consisting of four 64-bit Intel i7-5600U pro-
cessors running at 2.6 GHz, with 32k L1 instruction caches as
well as 32k L1 data caches, a 256k L2 cache, 4096k L3 caches
and 8 GB of main memory. We adopt the build-in tracing
toolkit to measure the overheads and collect the performance
data, which is an efficient low-overheads toolkit proved in [2].

A. Task Set Choosing

In this paper, we generated 7 kinds of periods and 40 tasks
in total. We defined the utilization for each task between 0.1%
and 10%. Due to the limitation of the build-in tracing toolkit,
we arrange the number of tasks with different periods for
an acceptable experiment duration by following the normal
distribution as shown in Table II. The priorities of tasks are
assigned under Rate-Monotonic scheduling, i.e., the shorter
the period is the higher the priority is. Once two tasks have
the same period, the task with the higher utilization has the
higher priority.

2Suspension-based and spin-based MPCP are both supported on
LITMUSRT. In this paper, we adopt the original suspension-based MPCP [11].

Period (ms) | 5| 10 | 20 | 50 | 100 | 200 | 1000
of tasks 215 8 |10 8 5 2

TABLE II: The number of tasks with different periods

From the evaluation of [9], we can find that when the
total utilization varies from 120% to 280% for 4-processor
system, the performance for each protocol shifts rapidly. Thus,
in our experiment, we consider 5 different total utilization
from 120% to 280% and each step is 40%. In order to meet
all the aforementioned constraints, i.e., the total number of
tasks, the utilization for each task, total utilization, we adopted
arithmetic progression to generate the utilization for each task
in which a task with a higher priority has higher utilization.
For each task, the expected execution time emulated by the
rtspin tool is equal to the utilization multiplying the period
for each task. For each task, we adopted normal distribution
to vary the expected execution time for each task to emulate
the various execution time of jobs in the reality. We set the
average case execution time equals to 90% of the WCET and
best case execution time as 50% of the WCET. If the generated
execution time is out of the range between 50% and 100%
WCET, it will be set as the boundary value according to which
boundary it is close to.

B. Shared Resources Allocation

As discussed in Section III, different protocols have their
advantages on different resource synchronization scenarios.
For the fairness, we define two types of resource accesses with
the constant ranges: short resource access Ous < Rgport <
100us; long resource access 200us < Rjong < 300us. We
set the possible lengths of generated resource execution time
as a range of constant numbers rather than the percentage
of the execution times. If we set the resource accessing time
using percentage scaling, for those tasks with long generated
execution time, the execution time for the critical section will
be very large, which makes the system difficult to be scheduled
by any of the studied synchronization protocols.

However, if the generated resource access length is larger
than the execution time of one job, we still have to use the
percentage scaling: under single resource accessing, Rsport =
20% xexecution time, Rjon, = 80%xexecution time; under
multi-resources accessing, Rsnore = 20%xexecution time,
Riong = 30%xexecution time. To the end, we choose the
following four resource access scenarios in the evaluation:

« R1_short: only one short resource is available and each
task requests it at most once.

« R1_long: only one long resource is available and each
task requests it at most once.

o Multi_short: six short resources are available and each
task requests three of them.

o Multi_long: six long resources are available and each
task requests three of them.

Response Time in ms
o - N w > o

-] //?.

R1_short R1_long

DPCP EZIDNPP
DPCP/DNPP in theory DPCP_99.99%
ZIDNPP_99.99% - WCET

Fig. 3: Analysis of the WCRT with total utilization 200%

C. PFartition Algorithm

Since the four protocols considered in this paper are all
based on partitioned or semi-partitioned scheduling, the par-
tition algorithm could play an important role. Since we are
not aware of any efficient partition algorithm for all syn-
chronization protocols, we follow [9] and adopt its proposed
heuristic partition algorithm for the DPCP and the DNPP.
For the MPCP and the MrsP, the partition algorithm we used
can be described as follows: (/) sort all the tasks by their
priorities; (2) calculate the utilization for each processor, e.g.,
the total utilization is 200% and we have four processor, which
implies that the utilization for each processor is 50% if we
can perfectly partition the tasks; (3) allocate the tasks to the
processors, starting from the highest-priority task to the first
processor until the utilization of that processor reaches to the
value that we calculated on step 2, then allocate the next task
to the next processor. Please note that, if there is no such
processors that can hold the next task, then we assign it onto
the processor which has the lowest utilization.

V. RESULTS AND DISCUSSIONS

In this section, we conducted extensive experiments using
task sets generated in Section I'V. We had results of 20 groups
for each protocol under different shared resources assumptions
and utilization settings, where all of them are feasible without
deadline misses. To evaluate the performance, we measured
the worst-case response time (WCRT) of the highest-priority
tasks during the experiments among different configurations.
In the real experiments, we expect that the WCRT should be
less than or equal to the summation of theoretical value and
run-time overheads. Under our configurations, the theoretical
value of WCRT of the highest-priority tasks under the DPCP
and the DNPP with the same experiment setting are the same.

Since the overall run-time overheads of the DPCP under P-
FP plugin on LITMUSRT have been proved to be fairly small
in [3, 8], the expected WCRT in the real experiments should
be a little bit larger than the value in theory. However, as
shown in Figure 3, we found that both the DPCP and the
DNPP had unexpected overheads so that the response time
was much larger than the theoretical value even running on
another AMD platform. Due to unknown system interference,

we could not repeat the unexpected overhead with the same
settings in every round, so that we were not able to eliminate
the unexpected system overhead. Furthermore, we can find out
that those jobs with unexpected response times are really rare,
i.e., the possibilities are less than 0.01%. By filtering them,
the WCRTs over all the other 99.9% jobs under the DPCP
and the DNPP are still close to the theoretical values. In the
following evaluations, we applied those filtered values under
the DPCP and the DNPP for a more sensible comparison.

Figure 4 shows the performance evaluation under the four
protocols in terms of the WCRTSs of the highest-priority tasks.
Intuitively, we can see that the performances of tasks have
not varied significantly under different utilization. Under the
DPCP and the DNPP, the tasks with the higher priorities
may only be blocked once for requesting one resource once;
under the MPCP, the most blocking time comes from the
executions for critical sections of lower tasks in the same
processor; under MrsP, it can be blocked at most four times for
requesting one resource once. With the same WCET settings
in single resource access scenarios, the tasks with the highest-
priorities under the DPCP and the DNPP indeed have the
lowest WCRT comparing to the other protocols. However,
under multi-resources assumptions, the results under the DPCP
and the DNPP cannot always outperform the others under the
MPCP and the MrsP, since the additional overhead of the
DPCP and the DNPP plays an important role under multi-
short resources accessing situation.

VI. CONCLUSION

This paper provides the publicly available implementation
of the MrsP and the DNPP on LITMUSRT, which is avail-
able on [13]. Throughout this paper, we can notice that the
induced run-time overhead of synchronization protocols is not
negligible but acceptable. However it is hard to come out the
conclusion which protocol has to be preferred for any specific
configuration in the limited spectrum of this study. We hope
that this work may encourage more discussions in the future.

ACKNOWLEDGMENTS
This paper is supported by German Research Foundation
(DFG), as part of the Collaborative Research Center SFB876
(http://stb876.tu-dortmund.de/). The authors thank anonymous
reviewers for their suggestions on improving this paper.

REFERENCES

[1] RTEMS: Real-Time Executive for Multiprocessor Systems. http://www.
rtems.com/, 2013.

[2] B. Brandenburg and J. Anderson. Feather-trace: A lightweight event
tracing toolkit. In Proceedings of the third international workshop on
operating systems platforms for embedded real-time applications, 2007.

[3] B. B. Brandenburg and J. H. Anderson. An implementation of the
pep, stp, d-pep, m-pcp, and fmlp real-time synchronization protocols
in litmus® rt. In Embedded and Real-Time Computing Systems and
Applications. RTCSA 2008. 14th IEEE International Conference on,
pages 185-194. IEEE.

[4] B. B. Brandenburg and J. H. Anderson. A comparison of the m-pcp,
d-pcp, and fmlp on litmusrt. In International Conference on Principles
of Distributed Systems, pages 105—124. Springer, 2008.

[5] B. B. Brandenburg and M. Giil. Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned

a) Utilization = 120%

0 = SRR
R1_short R1_long

Response Time in ms

Multi_short Multi_long

b) Utilization = 200%

Response Time in ms

R1_short R1_long Multi_short Multi_long

c) Utilization = 280%

Response Time in ms

0
R1_short R1_long Multi_short Multi_long
ZZDPCP E=EDNPP EZIMPCP &SYMrsP - WCET

Fig. 4: Worst case response time of the highest-priority task
under different total utilizations

reservations. In Real-Time Systems Symposium (RTSS), 2016 IEEE,
pages 99-110. IEEE.

[6] A.Burns and A. J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol-mrsp. In Real-Time Systems (ECRTS), 2013
25th Euromicro Conference on, pages 282-291. IEEE.

[7]1 S. Catellani, L. Bonato, S. Huber, and E. Mezzetti. Challenges in the
implementation of mrsp. In Ada-Europe International Conference on
Reliable Software Technologies, pages 179—195. Springer, 2015.

[8] F. Cerqueira and B. Brandenburg. A comparison of scheduling latency in
linux, preempt-rt, and litmus rt. In 9th Annual Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, 2013.

[9] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented partitioned

scheduling in multiprocessor systems: How to partition and how to

share? In Real-Time Systems Symposium (RTSS), 2016 IEEE.

K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task

scheduling, allocation and synchronization on multiprocessors. In Real-

Time Systems Symposium, RTSS 2009. 30th IEEE, pages 469—-478. IEEE.

R. Rajkumar. Real-time synchronization protocols for shared memory

multiprocessors. In Distributed Computing Systems, 1990. Proceedings.,

10th International Conference on, pages 116—-123. IEEE.

R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization

protocols for multiprocessors. In Real-Time Systems Symposium, 1988.,

Proceedings., pages 259-269. IEEE.

[13] J. Shi, S. Zhao, and K.-H. Chen. MrsP-LITMUS-RT. https://github.

com/kuanhsunchen/MrsP-LITMUS-RT/, 2017.

Y. Solihin. Fundamentals of parallel computer architecture.

Publishing and Consulting LLC, 2009.

[10]

(11]

(12]

[14] Solihin

http://www.rtems.com/
http://www.rtems.com/
https://github.com/kuanhsunchen/MrsP-LITMUS-RT/
https://github.com/kuanhsunchen/MrsP-LITMUS-RT/

	Introduction
	Multiprocessor resource sharing Protocol
	FIFO Spin Lock
	Spinning at Local Ceiling
	Helping Mechanism
	Implementation Overhead and Potential Deadlock

	Overhead Comparison and Discussion
	Experimental Setup
	Task Set Choosing
	Shared Resources Allocation
	Partition Algorithm

	Results and Discussions
	Conclusion

