
Partitioned Scheduling for Dependency
Graphs in Multiprocessor Real-Time

Systems
Junjie Shi, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen

TU Dortmund
https://ls12-www.cs.tu-dortmund.de/

Citation: 10.1109/RTCSA.2019.8864591

BIBTEX:
@inproceedings{DBLP:conf/rtcsa/ShiUBC19,

author = {Junjie Shi and
Niklas Ueter and
Georg von der Br{\"{u}}ggen and
Jian{-}Jia Chen},

title = {Partitioned Scheduling for Dependency Graphs in Multiprocessor Real-Time
Systems},

booktitle = {25th {IEEE} International Conference on Embedded and Real-Time Computing
Systems and Applications, {RTCSA} 2019, Hangzhou, China, August 18-21,
2019},

pages = {1--12},
publisher = {{IEEE}},
year = {2019},
url = {https://doi.org/10.1109/RTCSA.2019.8864591},
doi = {10.1109/RTCSA.2019.8864591},
timestamp = {Thu, 17 Oct 2019 09:58:06 +0200}

}

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ls12-www.cs.tu-dortmund.de/
10.1109/RTCSA.2019.8864591


Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

Partitioned Scheduling for Dependency Graphs in
Multiprocessor Real-Time Systems

Junjie Shi, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen
TU Dortmund University, Germany

Abstract—Effectively handling precedence constraints and re-
source synchronization is a challenging problem in the era of
multiprocessor systems even with massively parallel computation
power. One common approach is to apply list scheduling to a
given task graph with precedence constraints. However, in some
application scenarios, such as the OpenMP task model and mul-
tiprocessor partitioned scheduling for resource synchronization
using binary semaphores, several operations can be forced to be
tied to the same processor, which invalidates the list scheduling.
This paper studies a special case of this challenging scheduling
problem, where a task comprised of (at most) three subtasks
is executed sequentially on the same processor and the second
subtasks of the tasks may have sequential dependencies, e.g.,
due to synchronization. We demonstrate the limits of existing al-
gorithms and provide effective heuristics considering preemptive
execution. The evaluation results show a significant improvement,
compared to the existing multiprocessor partitioned scheduling
strategies.

I. INTRODUCTION

In real-time systems, tasks are typically assumed to release
an infinite number of task instances, called jobs, under a
given inter-arrival constraint. When concurrent real-time tasks
have to access shared resources, e.g., external devices, shared
memory, or files, ensuring the timeliness is a challenging
problem, since the resource access is often the bottleneck.
Such a resource access is typically called a critical section of
a task. To prevent race conditions and data corruption, mutual
exclusion is enforced, i.e., once a task has been granted access
to a shared resource, no other task is allowed to access the
same resource until it is released by the resource holding task.
One possible solution to achieve mutual exclusion is to use
system programming (e.g., based on the pthread library) and
semaphores offered by operating systems. However, especially
for nested resource accesses, utilizing semaphores introduces
additional problems, e.g., deadlocks and unbounded priority
inversions, that can render any timing analysis infeasible. To
avoid these problems and to allow the verification of hard real-
time constraints for multiprocessor systems, multiple resource
synchronization protocols have been proposed, analyzed, and
evaluated, for instance, the Distributed Priority Ceiling Pro-
tocol (DPCP) [28], the Multiprocessor Priority Ceiling Proto-
col (MPCP) [27], the Multiprocessor Stack Resource Policy
(MSRP) [10], and the Flexible Multiprocessor Locking Proto-
col (FMLP) [5]. These protocols typically focus on managing
the resources’ access under a given situation and provide real-
time guarantees by bounding the resulting worst-case response
time of tasks. However, the performance of these protocols is
highly dependent on settings such as task partitions, priority

assignments, local or global execution of shared resources,
and the tasks’ waiting semantics (self-suspension or spinning).
Regardless, only a small number of studies evaluate how these
settings can be optimized for a given protocol, e.g., [1], [8],
[36]. Which resource-sharing protocols are applicable depends
on the underlying multiprocessor scheduling paradigm:

• A partitioned schedule allocates a task to a processor and
for each job of the task all subjobs of that job, i.e., critical
and non-critical sections, are executed on that processor.

• A global schedule maintains a single ready queue and
allows tasks to migrate among processors at any time.

• A semi-partitioned schedule divides a task into several
sub-tasks, and then assigns these subtasks individually,
e.g., it may assign the non-critical section(s) on one pro-
cessor and the critical section(s) on a different processor.

However, since resource access rather than the processor
capacity is often the bottleneck for timing guarantees, a focus
onto the shared resources seems reasonable [15]. Recently,
approaches that construct a dependency graph have been
proposed. They calculate precedence constraints for tasks that
share the same resource offline and schedule these graphs
online, i.e., at run-time. While Chen et al. in [7] consider
frame-based real-time task sets, Shi et al. [30] extended this
method to periodic real-time task sets. Both methods consider
various algorithms to calculate the order in which tasks/jobs
access a given resource, resulting in a directed-acyclic graph
(DAG) representation of the subtasks. Therefore, dependency
graph approaches (DGAs) are not work-conserving regarding
the resource access, since the order in which a shared resource
is accessed is determined by the preconstructed DAG and not
by the moment when a critical section becomes eligible for
execution. Contrary to other approaches, this allows DGAs to
schedule periodic task sets where the longest critical section
of a resource is larger than the shortest period of a task that
accesses the same resource.

Both Chen et al. [7] and Shi et al. [30] use global scheduling
as the underlying scheduling paradigm. One main reason to
exploit global scheduling is the assumption that it leads to
a higher overall system utilization then the other paradigms
which justifies the additional scheduling overhead. However,
a comprehensive experimental study by Brandenburg et al. [6]
demonstrates that the performance of global scheduling algo-
rithms can be matched by using semi-partitioned scheduling
algorithms. Furthermore, Biondi et al. [4] show that the current
response-time analysis for global scheduling algorithms is
inherently pessimistic due to imprecise interference account-



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

ing and thus not able to achieve a higher schedulability
compared to partitioned scheduling algorithms given real-
time constraints. Therefore, we believe that good partitioned
scheduling algorithms for DGAs are beneficial in the design
of verifiable and practically good systems, especially in the
automotive or aerospace domain.

Therefore, we consider the task partitioning problem for
the dependency graph approach with the additional constraint
that each task is tied to one processor. The models studied
in this paper fit the dependency graph approach for binary
semaphores [7], [30] and the task synchronization model under
OpenMP [25]. Note however that our algorithms are not
restricted to only these two cases, but can be extended to any
other application that shares similar characteristics.
Contributions: We detail how the directed acyclic graphs
resulting from the dependency graph approach for multiproces-
sor resource sharing of strictly periodic constrained-deadline
task sets can be scheduled using partitioned earliest deadline
first. Our detailed contributions are as follows:
• We describe how the schedulability of preconstructed

dependency graphs for periodic real-time tasks can be
determined for a given task partition in Section IV.

• We propose two partitioning algorithms, one based on
federated scheduling and one based on a worst-fit heuris-
tic, for dependency graphs of periodic task sets on ho-
mogeneous multiprocessor systems in Section V.

• We evaluate the performances of the proposed algorithms
based on randomly generated task sets under different
configurations in Section VII. The results show that one
of the proposed algorithms outperform existing parti-
tioned approaches and perform reasonably compared to
global List-EDF for both periodic and frame-based task
sets.

II. RELATED WORK

Most task partitioning problems for multiprocessor plat-
forms are NP-hard (in the strong sense), even if the depen-
dency of tasks (due to shared resources) is not considered.
Hence, algorithms to construct optimal solutions are compu-
tationally infeasible and it is mandatory to design heuristics or
approximations to find a good partition efficiently. To that end,
several heuristic partitioning algorithms have been proposed.
Here, we restrict ourselves on partitioning-heuristics designed
for the context of multiprocessor resource synchronization.

Lakshmanan et al. [18] presented a synchronization-aware
partitioned heuristic for MPCP, which classifies the tasks
that request the same resource into one group and tries to
assign each group of tasks to one processor. Following the
same principle, Nemati et al. [24] developed a blocking-
aware partitioning method that uses an advanced cost heuristic
algorithm to split a task group when the entire group is not
able to be assigned on one processor. After that, Hsiu et
al. [14] proposed a dedicated-core framework to separate the
execution of critical sections and non-critical sections, and a
priority-based mechanism is applied for resource sharing. In
this method, each request for a shared resource can be blocked
by at most one lower-priority task’s request. Furthermore,

Wieder and Brandenburg [36] proposed a greedy slacker
partitioning heuristic in the presence of spin-based resource
synchronizations. Huang et. al [15] proposed the resource-
oriented partitioned (ROP) scheduling which was later refined
by von der Brüggen et al. [33] with release enforcement
for a special case. The ROP-based algorithms rely on task
migrations and uniprocessor locking protocols, where the tasks
requesting a specific resource must migrate to the related
synchronization processor. The evaluations in [15] and [33]
showed that ROP-based algorithms are the state of the art for
sporadic real-time task systems when each task uses at most
one binary semaphore.

Recently, Sun et al. [31] have proposed the heuristic al-
gorithm BFS* as an extension of Breadth First Scheduling
(BFS) [20] for task sets with precedence constraints when
analyzing OpenMP [25] systems by first executing currently
tied tasks. They assume that the critical section of a task
always takes place at the end of the task, and that the tasks
that request the same resource are chained. The performance
of their approach highly depends on the execution order of
ready tasks which request different resources.

Moreover, a heuristic that improves the robustness and
parallel resource usage is presented in [7], where all first
non-critical sections are scheduled before the execution of
any critical section by applying list scheduling. To minimize
the idle time of each processor, it allows preemption for the
non-critical sections but disallows preemption for the critical
sections to trivially guarantee sequentialized resource accesses.

III. SYSTEM MODEL

The problem studied in this paper is identical to our earlier
paper [30]. We consider a set T of n recurrent tasks to
be scheduled on M identical (homogeneous) processors. All
tasks have exactly one (non-nested) critical section where they
access exactly one of the z shared resources in the system,
and are each described by τi = ((Ci,1, Ai,1, Ci,2), Ti, Di),
where:
• Ci,1 is the worst-case execution time (WCET) of the first

non-critical section of the job.
• Ai,1 is the WCET of the critical section of the job,

accessing a dedicated shared resource.
• Ci,2 is the WCET of the second non-critical section.
• Ti is the period of τi.
• Di is the relative deadline. We consider a constrained

deadline task system, i.e., ∀τi ∈ T, Di ≤ Ti.
All tasks release an infinite number of task instances, called

jobs, strictly periodically, i.e., if a job of τi is released at time
t the subsequent job is released exactly at time t + Ti, and
the first instance of all tasks is released at time 0. In order to
fulfill the timing requirements, a job of τi released at time t
must finish its execution before its absolute deadline t +Di.
For each shared resource s, one dependency graph is given,
denoted as Gs = (Vs, Es). Each subjob of a task accessing s is
a vertex in Vs, the subjob C`i,1 is a predecessor of the subjob
A`i,1, and A`i,1 is a predecessor of the subjob C`i,2, where `
indicates the `-th job of task τi. If `i-th job of τi and `j-th job



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

of τj share the same resource, then either the subjob A`ii,1 is
the predecessor of A`jj,1 or the subjob A`jj,1 is the predecessor
of A`ii,1. All critical sections guarded by the same resource
form a chain in Gs, i.e., the critical sections of the resource
have to be executed sequentially in a predefined order. Figure 1
provides an example for a dependency graph for periodic tasks
with one binary semaphore. Since there are z shared resources
in the system, the complete the dependency graph G has in
total z independent subgraphs, denoted as G1, G2, . . . , Gz .

For each task τi, the total utilization is defined as Uτi =
Ci,1+Ci,2+Ai,1

Ti
. For the individual sub-tasks, the corresponding

utilization is defined as UCi,1
=

Ci,1

Ti
, UAi,1

=
Ai,1

Ti
, and

UCi,2 =
Ci,2

Ti
. We further assume that:

• For each task τi in T, Ci,1 ≥ 0, Ai,1 ≥ 0, and Ci,2 ≥ 0.
• The execution of subjobs within one job must fulfill

the task’s precedence constraints, i.e., a job must be
sequentially executed in the order of Ci,1, Ai,1, Ci,2.

• Critical sections of a shared resource must be sequentially
executed and mutually exclusive, i.e., if two tasks share
the same resource, their critical sections have to be
executed without any overlap.

Accordingly, the utilization for each graph UGs is defined
as the summation of the utilizations of all the tasks in this
graph, i.e., UGs

=
∑
Uτi for all τi ∈ Gs.

We consider constrained-deadline task systems, a task is
feasibly schedulable if its worst-case response time is no more
than its deadline. The hyper-period H of the task set T is
defined as the least common multiple (LCM) of the periods
of all tasks in T. Additionally, we also define the hyper-period
for each subgraph as Hs = LCM(Ti,∀τi ∈ Gs). In our
approach, we unroll the jobs in one hyper-period and design a
schedule for all of them. To make sure that the time and space
complexity is affordable, we assume that the task set has one
of the following properties:

• Harmonic Periods: Ti is an integer multiple of Tj if
Ti ≥ Tj for any two tasks τi and τj in T.

• Semi-Harmonic Periods: For all tasks τi ∈ T there is a
small integer value ni, such that Ti · ni = H .

One prime example for task sets with semi-harmonic periods
are automotive applications where the periods of the tasks are
in {1, 2, 5, 10, 20, 50, 100, 200, 1000} ms [13], [17], [29], [32],
[35]. Note that our methods can still be applied to any periodic
real-time task systems at the cost of higher complexity if the
hyper-period is large compared to the task periods. Details can
be found in Section VI-B.

We will also evaluate a special case of periodic task sets,
namely the frame-based real-time task system where all tasks
share the same period and release all their jobs simultaneously.

Please note that we focus on how to schedule given de-
pendency graphs under partitioned scheduling. How such a
graph can be constructed is explained in [30]. Furthermore,
strict periodicity is enforced since the approach in [30] only
works for periodic tasks and how to handle sporadic task sets
with the dependency graph approach considered in [7], [30]
remains an open problem.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C1
1,1

A1
1,1

C1
1,2

C2
1,1

A2
1,1

C2
1,2

C3
1,1

A3
1,1

C3
1,2

C4
1,1

A4
1,1

C4
1,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C1
2,1

A1
2,1

C1
2,2

C2
2,1

A2
2,1

C2
2,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C1
3,1

A1
3,1

C1
3,2

Fig. 1. The dependency graph for the three periodic tasks detailed in Table I
that access resource 1 over one hyper-period.

IV. PARTITIONED EARLIEST DEADLINE FIRST

In this section, we describe and exemplify how to sched-
ule the unrolled dependency graphs of the periodic tasks
over their hyper-period H = LCM(H1, H2, . . . ,Hz) by using
Partitioned Earliest Deadline First (P-EDF). Hence, we first
shortly summarize the construction of the dependency graph
in Shi et al. [30] and explain the deadline setting for P-EDF in
Section IV-A. We note that Section IV-A is presented merely to
improve the clarify and completeness of the paper. Afterwards,
we provide a detailed example in Table I and Figure 2 which
is explained in Section IV-B.

A. P-EDF for Dependency Graphs

Each job J`i has three subjobs denoted as J`i,1, J
`
i,2, J

`
i,3 that

represent the related subtasks Ci,1, Ai,1, and Ci,2 respectively.
Furthermore, we use r`i,j to denote the release time of the
subjob J`i,j and d`i,j to denote this job’s absolute deadline. For
the l-th job, the release time of the first subjob r`i,1 is given
by (` − 1) · Ti, and the absolute deadline of the last subjob
d`i,3 is given by (`−1) ·Ti+Di, since an constrained-deadline
system is considered.

In an initial step, the release times of the second and third
subjob as well as absolute deadlines of the first and second
subjob are set based on the precedence constraints imposed
by the task. To be precise, the release time of the second
subjob r`i,2 is set to (` − 1) · Ti + Ci,1, the release time of
the third subjob r`i,3 is set to (` − 1) · Ti + Ci,1 + Ai,1, the
absolute deadline of the second subjob d`i,2 is set to (`− 1) ·



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

Ti +Di − Ci,2, and the absolute time of the first subjob d`i,1
is set to (` − 1) · Ti + Di − Ci,2 − Ai,1. This means that
during the construction of the dependency graphs, we assume
that all non-critical sections can be executed as soon as they
are released without considering if sufficient processors are
available to schedule all available subjobs.

The earliest possible release time of the second subjob
(which accesses the critical section), i.e., r`i,2, is bounded by
the earliest possible finishing time of its predecessor, i.e., the
release time of the first subjob plus its WCET Ci,1. The earliest
possible release time of the third subjob i.e., the second non-
critical section, equals to the earliest possible release time
of the second subjob plus its WCET Ai,1. These earliest
possible release times are used in the dependency graph
calculation, hence assuming that there are always sufficient
processors to execute all non-critical sections in the system.
The reason is that not considering the combined workload
of the non-critical sections when constructing the dependency
graph allows us to construct the graphs for different resources
individually and to use well-known algorithms for unipro-
cessor non-preemptive scheduling. The actual release times
of the second and third subjobs depend on the schedule at
runtime, i.e., on the finishing times of the predecessor(s) on the
corresponding processors. However, as long as the precedence
constraints imposed by the constructed DAGs are respected,
the actual release times of the subjobs do not have to be known
beforehand by the scheduler. Hence, it is not necessary to
precalculate the exact release times.

Contrarily, the deadlines for the first and second subjobs,
i.e., the first non-critical section and the critical section, are
necessary for both the dependency graph construction and the
scheduling decision of the partitioned EDF scheduler. Again,
the deadlines used in the dependency graph construction only
depend of the deadline of the job and the WCET of the
second non-critical section. Afterwards, the deadlines used by
the scheduler are determined according to the corresponding
dependency graph. To be precise, if the absolute deadline of
an immediate predecessor of J`i,j , denoted as IPre(J`i,j) with
WCET Cpre, is larger than d`i,j −Cpre, the absolute deadline
of the immediate predecessor is reassigned to d`i,j−Cpre. This
is a standard procedure for scheduling jobs subject to release
dates and precedence constraints. Details can be found in [3].
For the rest of this paper, we assume that the absolute deadline
assignment is adjusted accordingly.

We assume that each dependency graph Gs for a binary
semaphore s is constructed for the corresponding jobs released
(strictly) within one hyper-period H . If Hs < H , then H

Hs

copies of Gs are applied in a consecutive order to represent
the precedence constraints of the critical sections, where Hs is
the hyper-period of the tasks in the corresponding dependency
graph Gs.

After the construction of G1,G2, . . . ,Gz , the scheduling
problem becomes a classical multiprocessor scheduling prob-
lem. Once the tasks partition is given, tasks are executed on
the assigned processor using EDF with the modified deadlines,
i.e., whenever the processor is idle and there are subjobs

eligible to be executed, the one with the earliest deadline is
executed on that processor. The P-EDF in our setting is a
preemptive algorithm, i.e., whenever a new (eligible) subjob
has an earlier absolute deadline than an executing subjob on
the corresponding processor m, the new subjob can preempt
the one that is executing on that processor. Such flexibility
to allow preemption does not create any problem for the
mutual-exclusive constraint of the critical sections guarded by
one binary semaphore s, because their execution order has
been predefined in the dependency graph Gs, i.e., only when
the critical section of the predecessor finishes its execution,
the successor can release its critical section if the first non-
critical section of the successor also has finished its execution.
Therefore, a critical section guarded by a semaphore s can
only be preempted by either non-critical sections or by critical
sections guarded by other semaphores.

In addition, we define that if two or more subjobs have the
same deadline on the assigned processor, the subjob with the
larger remaining execution time is scheduled.

B. An Example for P-EDF
To further explain the work flow, we provide an example to

demonstrate how our algorithm works. We consider a task set
consisting of five tasks with two shared resources as defined
in Table I. The tasks τ1, τ2, and τ3 are requesting resource 1,
and the dependency graph is constructed based on Figure 1,
which results in the following order for the executions of the
associated critical sections: J1

1,2 → J1
2,2 → J2

1,2 → J1
3,2 →

J3
1,2 → J2

2,2 → J4
1,2. Furthermore, τ4 and τ5 are requesting

resource 2, and the execution order for the critical sections is
defined as J1

4,2 → J1
5,2 → J2

4,2. These five tasks are scheduled
on M = 2 processors, the partition is defined by applying the
worst-fit based algorithm in Section V-B, i.e., τ3 and τ4 are
assigned to processor 1, and τ1, τ2, and τ5 are assigned to
processor 2. Afterwards, the P-EDF is applied to schedule the
tasks accordingly.

Based on the earlier explanation, the earliest possible release
times and deadlines for the individual subjobs can be deter-
mined for all releases of all subjobs of all tasks as displayed
in Table I. Regarding the release times, we only detail the
earliest possible release time of the critical sections and of
the second non-critical sections resulting from the dependency
graph, assuming no early completion of jobs. The release times
and deadlines of the critical sections are changed based on the
order and the resulting restrictions in the dependency graph
(colored red), which propagates to later releases of the second
non-critical section or an earlier deadline of the first non-
critical section (colored blue) in Table I. Note that the actual
release times may be later, depending on the actual schedule.

All first subjobs, i.e., first non-critical sections, are released
exactly periodically. For all other subjobs, the release times
may be adjusted based on the earliest times their predecessors
may finish. This is done in a forward manner, i.e., starting
from time 0 up until time H , i.e., 20 in Table I. Hence, J1

2,2 is
released at time 0.8 (marked red in Table I) due to the earliest
possible finishing time of J1

1,2 at 0.8. Therefore, the release
of J1

2,3 is postponed as well (marked blue here and for all



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

Task WCETs Other Parameters Release Times Deadlines
Ci,1 Ai,1 Ci,2 Ti = Di φi s(τi) ` J`i,1 J`i,2 J`i,3 J`i,1 J`i,2 J`i,3

τ1 0.2 0.6 0.2 5 0 1

1 0 0.2 0.8 4.2 4.8 5
2 5 5.2 5.8 5.6 6.2 10
3 10 13.8 14.4 14.2 14.8 15
4 15 15.2 15.8 19.2 19.8 20

τ2 0.2 0.6 3.7 10 0 1 1 0 0.8 1.4 5 5.6 10
2 10 14.4 15 15.7 16.3 20

τ3 4 8 5 20 0 1 1 0 5.8 13.8 6.2 14.2 20

τ4 0.3 0.4 0.3 10 0 2 1 0 0.3 0.7 9.3 9.7 10
2 10 10.3 10.7 19.3 19.7 20

τ5 2 2 2 20 0 2 1 0 2 4 16 18 20

TABLE I
THE INFORMATION OF TASK SET FOR REQUESTING 2 RESOURCES ALONG WITH THE (EARLIEST POSSIBLE) RELEASE TIMES AND THE DEADLINES

other third subjobs that are postponed). The second subjob of
the second release of τ1 can finish no earlier than at time 5.8,
hence the release of J1

3,2 is postponed accordingly. Due to the
long critical section of task τ3, the releases of J3

1,2 and J2
2,2

are postponed to time 13.8 and 14.4 as well.
The deadlines in Table I are constructed in a backward

manner, i.e., from the end of the hyper-period to the beginning.
Here, all third subjobs have a deadline identical to the end
of the related period. The deadlines of the second subjobs
are based on the dependency graph. For J4

1,2, J
2
2,2, J

3
1,2, and

J1
1,2 the deadlines directly result from that job’s third subjob.

However, the short deadline of J3
1,2, leads to an earlier deadline

of J1
3,2 (14.2 instead of 15), which also leads to the deadline

of J2
1,2 (6.2 instead of 9.8), which again leads to the deadline

of 5.6 (instead of 6.3) for J1
2,2. Additionally, the changed

deadlines for the second subjobs are marked red while the
resulting adjustment for the first subjobs is marked blue in
Table I. Regarding the tasks τ4 and τ5 (that access resource 2)
shown in Table I as well, since no deadlines or release times
are adjusted, details are omitted.

The schedule based on partitioned EDF is displayed in
Figure 2 and considers the deadlines provided in Table I.
Execution on processor 1 is marked blue while execution on
processor 2 is marked red. In addition, the access to the critical
sections related to resource 1 and resource 2 are shown with
different hatching patterns as detailed in Figure 2. Recall, that
we assume that the subjob with the larger remaining workload
is preferred in the scheduling decision if two tasks with the
same deadline compete for a processor.

Due to the high utilization of τ3, only two tasks, i.e., τ3 and
τ4 are assigned on processor 1. And the rest three tasks, i.e.,
τ1, τ2, and τ5 are assigned on processor 2. There are several
properties in our P-EDF schedule, which can be observed in
the example:
• Partitioned: All the jobs of one task are assigned to the

same processor, i.e., one row only has one color.
• Earliest Deadline First: At time 0 the subjobs J1

3,1 and
J1
1,1 are scheduled due to their deadlines of 6.2 and 4.2,

which are earlier than for the other subjobs released on

the related processors.
• Preemptive schedule: when J2

1,1 is released at time 5, it
preempts the execution of J1

2,3, due to the earlier deadline
(d21,1 is 5.6 and d12,3 is 10).

• Critical sections can be preempted by non-critical sec-
tions or critical sections of other resources: at time 10
the critical section of resource 2 of task τ5 is preempted
by the non-critical section of the third job of τ1.

• Larger remaining execution time first: After J2
1,2 finished

its execution, J1
2,3 resumes on processor 1. Although

J1
2,3 has the same deadline as J2

1,3, it has a larger
remaining execution time, thus J1

2,3 has higher priority
to be executed here.

• Precedence constraints: At time 5, processor 1 is idle
and J1

3,1 has finished its execution, in a work-conserving
schedule, J1

3,2 would start the execution of its critical sec-
tion. However, due to the precedence constraints in Fig1,
J1
3,2 cannot be executed until J2

1,2 has finished its critical
section for resource 1 at time 5.8.

The provided example shows that our proposed approach is
able to schedule a task set with the total utilization of 190% on
two processors. This utilization can even be increased slightly
while ensuring the schedulability, by increasing the WCET for
the second non-critical section of τ1 and τ4, i.e., C1,2 = 0.3
and C4,2 = 0.5, resulting in a total utilization of 194%.

When comparing Figure 2 and Table I, the difference be-
tween the actual released times and the minimum release times
considered in the dependency graph construction becomes
clear. For instance, in the actual schedule in Figure 2, J1

4,2

and J1
5,2 the second subjobs of the first job of τ4 and τ5 are

released much later than at time 0.3 and 2, which are the
earliest possible release times in Table I.

V. PARTITIONING ALGORITHMS FOR DEPENDENCY
GRAPHS

When considering partitioned scheduling for dependency
graphs, all subtasks of τi are tied to the same processor. Hence,
once the first subtask, i.e., the first non-critical section Ci,1,
has been assigned to one processor, the remaining two subtasks



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

processor 1 processor 2

non-critical section critical sections R1/R2

τ5

τ4

τ3

τ2

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2. An example of P-EDF with two shared resources.

Ai,1 and Ci,2 will be executed on that processor as well. In
addition, once the first job of a task has been assigned on one
processor, all the following jobs of this task are also assigned
to that processor. Typically, in a partitioned scheduling tasks
are partitioned one by one in some predefined order. Since the
the dependency graph for the periodic task set is constructed
individually for each resource, the jobs of these tasks share
some precedence constrains. Therefore, it seems reasonable
to consider the possibility to partition all task that access the
same resource, and therefore subgraphs, together rather than
considering tasks individually. Once the partition of a task set
has been defined, tasks on each processor will be scheduled
by applying Partitioned Earliest Deadline First (P-EDF), which
has been explained in Section IV.

In this section, two partitioning algorithms for dependency
graphs resulting from periodic task sets are proposed. One is
based on federated scheduling [19], i.e., tasks are partitioned
graph by graph, and another is based on global worst-fit
heuristic, i.e., all the tasks are partitioned one by one.

A. Federated Based Partitioning Algorithm

Federated scheduling was proposed by Li et al. [19] in
order to schedule parallel real-time task systems with internal
precedence constraints that can be modeled as a directed-
acyclic graph (DAG). The foremost intention of this schedul-
ing algorithm is to provide provably good approximations with
respect to an optimal scheduling algorithm whilst considering
implementation constraints, e.g., cache hit-rates and memory
accesses during runtime. The idea of Federated scheduling is
to assign DAGs, in our case the DAGs resulting from the
dependency graph construction, that need to utilize more than
one processor, so called heavy graphs, to those processors
exclusively. Analogously, the graphs that can be feasibly
scheduled on a single processor are denoted as light graphs and
are scheduled jointly on the remaining processors, i.e., non-
exclusively allocated processors. After this initial partition, the
actual scheduling is done by a work-conserving scheduler on

the assigned processors. Our Federated scheduling heuristic
for DGAs is shown in Alg. 1.

Algorithm 1 Federated Based Partitioning Algorithm
Input: Task set T, dependency graph G(T), number of

processors M , number of resources z, the total utilization
for each graph Uz;

1: Initialize: Schedule Ss ← ∅ for each graph, Heavy graphs
GH ← ∅, Light graphs GL ← ∅, Partition Pz for each
graph, Available processor Ma ←M ;

2: Divide the graphs from G(T) to either GH or GL
3: Sort the tasks in each Gs decreasingly w.r.t utilizations;
4: for all Gh ∈ GH do
5: mh ← dUGh

e;
6: Initialize the temporary schedule S′h ← ∅ for Gh;
7: while mh ≤Ma and S′h is unschedulable; do
8: Generate the Ph for Gh on mh using worst-fit;
9: Create S′h based on Ph and mh using P-EDF;

10: if S′h is unschedulable then
11: Assign one more processor to Gh: mh ← mh+1;
12: else
13: Ma ←Ma −mh;
14: if mh > Ma then
15: Return unschedulable;
16: for all Gl ∈ GL do
17: schedule light graphs using greedy algorithm;
18: Return task partition;

In the first stage, all graphs are categorized into either the
set of heavy graphs, or the set of light graphs. All graphs
with utilizations larger than 100% are heavy by default. For
the remaining graphs, with utilizations less or equal to 100%,
an EDF schedule is simulated in order to decide whether
the graph is light or heavy, i.e., whether it can be feasibly
scheduled on one processor or not. This test is necessary, since
even for implicit-deadline tasks a total utilization of 100% may
not be reachable on one processor, even for a very low resource
utilization. For example, let two tasks τa = ((0, ε, 3), 6, 6) and
τb = ((0, 6, 0), Tb, Tb) share the same resource, with ε > 0
but very small and Tb arbitrary large. This task set has a
total utilization of (50 + 2 · ε)% and a resource utilization of
(2 ·ε)%. However, due to the fact that a critical section cannot
be preempted by a critical section for the same resource, at
some point in time the critical section of τb must be scheduled
between two critical sections of τa. This results in a total
workload of 2 · (ε + 3) + 6, which is larger then 12 and,
therefore, the critical section of τb is not schedulable in two
consecutive periods of τa. Nevertheless, the task set can easily
be scheduled by assigning both tasks to individual processors.

In each group, i.e., heavy and light, the graphs are sorted in
non-increasing order with respect to the graph utilization, i.e.,
largest graph utilization first. For each heavy graph Gh, the
minimal number of required processors, in order to feasibly
schedule the graph, has to be determined (line 4-14 in Alg. 1).
The initial number of processors mh is given by the ceiling
of the utilization of Gh. The tasks in Gh are partitioned on



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

mh processors based on the individual task utilization, using
the worst-fit strategy. Once the partition is generated, P-EDF
is simulated to verify whether the mh processors are sufficient
to feasibly schedule Gh. In case of an infeasible schedule, the
number of processors is incremented and the above procedure
is repeated until either the generated schedule is feasible
or the number of allocated processors exceeds the number
of available processors. After feasibly assigning a Gh, the
number of available processors is updated, i.e., the available
processors for the following graphs is set to the number of
currently available processors minus the number of processor
necessary to schedule Gh.

Algorithm 2 Greedy Algorithm to Partition Light Graphs
Input: Set of light graphs GL and number of remaining

processors Ma;
1: Sort light graphs GL in non-increasing order with respect

to the graph’s utilization;
2: Initialize: Partitions P1 ← ∅, P2 ← ∅, . . . , PMa ← ∅;
3: for i← 1 to Ma do
4: for each graph G` in GL do
5: if Pi ← Pi ∪G` is not EDF schedulable then
6: continue;
7: else
8: Pi ← Pi ∪G`;
9: GL ← GL \G`;

10: if All graphs are partitioned, i.e., GL is empty; then
11: return Task partition;
12: else
13: return Infeasible

On the remaining processors, the greedy algorithm in
Algo. 2 is applied to assign the light tasks in decreasingly
order with respect to the graph utilization. Aiming to waste
as little processor capacity as possible, we apply a best-fit
strategy, where we first assign the graph in GL with the largest
utilization to a new processor. Afterwards, we traverse the
remaining graphs in Gl and assign them to the same processor
if possible (Line 4 - 9 in Algo. 2). Whether a graph can
be assigned is determined by running EDF on the related
processor. Thereafter, we remove all graphs that are assigned
to the processor from GL and continue with the next processor.
This processes is repeated either until all light graphs are
assigned to a processor or until no processor remains where
the remaining tasks in GL could be assigned.

If the graphs in both the heavy group and the light group can
be scheduled feasibly, the corresponding partition is returned.

Note that the schedule repeats in each hyper-period if
subtasks always run for their WCET. Therefore, in addition to
running P-EDF online based on the partition, it is also possible
to apply a time driven scheduler. In this case, the partitioning
algorithm can also return the related schedule since we test
the schedulability by running P-EDF.

B. Worst-Fit Heuristic

In addition, a worst-fit heuristic is proposed in Alg. 3, where
the tasks are partitioned one by one. The tasks are first sorted

according to a sorting strategy. After that, they are partitioned
to the available processors using a worst-fit strategy, i.e., each
task is assigned to the processor with the currently lowest
utilization. Again, P-EDF is applied to verify whether the
resulting partition on M processors is feasible.

We proposed two sorting strategies: 1) sort all the tasks
decreasingly w.r.t the tasks’ utilizations, no matter which
resources they request. 2) sort the graphs decreasingly w.r.t the
graph utilizations at first, then the tasks inside each graph are
sorted decreasingly w.r.t the tasks’ utilizations. In our proposed
heuristic, both sorting strategies are applied. If the partition P
generated by the first sorting strategy is not applicable, i.e., the
task set is not schedulable on M processors based on current
partition P using P-EDF, the second sorting strategy and the
resulting partition P ′ are considered, and P-EDF is applied
to verify the new partition P ′ once again. The algorithm
only returns infeasible both aforementioned sorting strategies
cannot generate a schedulable partition. Otherwise, the task
set is schedulable and the partition is returned. Again, if a
time driven schedule should be created the schedule can be
returned as well.

Different to the federated scheduling, in this heuristic, tasks
share the same resource may be partitioned on all the available
processors, i.e., all the M processors may have some tasks
share the same resource.

Algorithm 3 Worst-Fit Based Heuristic
Input: Task set T, dependency graph G(T), number of

processors M ;
1: Initialize: Partition P
2: Sort all the tasks in T decreasingly w.r.t the utilizations;
3: for all τi ∈ T do
4: Generate the P on M using worst-fit;
5: Create schedule S based on P and M using P-EDF;
6: if S is unschedulable then
7: Sort the graphs in G(T) decreasingly w.r.t to the Uz;
8: Sort the tasks in Gz decreasingly w.r.t the utilizations;
9: for all τi ∈ T do

10: Generate the P ′ on M using worst-fit;
11: Create new S′ based on P ′ and M using P-EDF;
12: if S′ is schedulable then
13: Return task partition
14: else
15: Return infeasible;
16: else
17: Return task partition

VI. SCHEDULABILITY AND COMPLEXITY

We discuss the exact simulation based schedulability test
of our new proposed algorithms, especially with respect to
multiprocessor timing anomalies. Afterwards, both the time
and space complexity for these methods are discussed and
the scalability to periodic task sets with arbitrary periods is
discussed.



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

A. Schedulability Test and Multiprocessor Timing Anomalies

We perform an exact schedulability test by simulating the
P-EDF schedule over one hyper-period, assuming the WCET
for each computation segment in this schedule. While the
schedulability for this schedule can be easily verified, we have
to ensure that analyzing this specific schedule is sufficient to
guarantee schedulability in the general case.

The main concern here are the multiprocessor timing
anomalies known in the real-time systems community, which
were discovered by Graham [11] in 1969. To be precise, he
showed that the response time of a task can be increased if
either 1) precedence constraints are removed, 2) the number
of processors is increased, or 3) the execution time of a job
is reduced. As a result, a previously scheduled task set may
become unschedulable under each of these three conditions.
While we assume the number of processors to be given and
the precedence constraints to be given (and fixed) before the
schedule is determined, we do not prove that P-EDF does not
have multiprocessor timing anomalies when a subjob finishes
earlier than its worst case. Hence, if the execution time of
the three subjobs of a certain task can change for different
releases, the schedule determined under the assumption that
all subjobs execute according to their WCET may not be the
actual worst case under an online EDF scheduling algorithm,
i.e., due to subjobs that are released earlier as a result of early
completion another job may finish later.

However, the schedulability can be ensured if the same
schedule is applied every hyper-period, i.e., the schedule is
static. One option is to apply table-driving scheduling to ensure
a repetitive schedule. Such a table can be determined by
running P-EDF. Nonetheless, such a scheduling table may be
large, especially when preemptive scheduling is considered.
Alternatively, a static schedule can be achieved by enforcing
the actual execution time of each subjob to be the same as its
worst-case execution time, i.e., when no early completion is
allowed. Since the EDF scheduling algorithm is deterministic,
the scheduler will always take the same scheduling decisions
every hyper-period and the schedule is always repeated if
early completion is forbidden. We applied this solution in
Section VII to evaluate the performances of the proposed
algorithms. As a result, although we applied an online EDF
version of our new method, the schedule is repeated for each
hyper-period.

B. Complexity and Scalability

When applying P-EDF to the dependency graph approach
for periodic tasks, we perform the following four steps:

1) Unroll the jobs J`i for all the tasks τi in one complete
hyper-period H .

2) Apply one of the non-preemptive uniprocessor scheduling
techniques to generate the dependency graphs.

3) Select one of the proposed partitioning algorithms to
assign the tasks on M processors.

4) Perform P-EDF to schedule these dependency graphs
according the partition to determine the schedulability.

The space complexity of our method is O(nj), where nj
is the number of jobs in one hyper-period, since we have to
unroll all jobs. For each resource s, let ns be the number of
jobs related to s in Hs, and let nmax be maxs∈{1,...,z}(ns).

We consider the time complexity step by step. The time
complexity for unrolling the jobs to the hyper-period is O(nj)
as well. In the second step, we applied a construction algorithm
for each resource s based on non-preemptive uniprocessor
scheduling techniques that were utilized in [7] and [30]. We
detail the Extended Jacksons Rule as well as Potts algorithm
here and consider the related time complexity. However, other
approaches for non-preemptive uniprocessor scheduling may
be applied as well. In this case, the time and space complexity
depends on the time and space complexity of the applied
algorithm. For each shared resource s, there are ns jobs that
are considered for one sub-graph by applying:

1) Extended Jacksons Rule (JKS) [16]: whenever the ma-
chine is free and one or more jobs are available for
processing, schedule an available job with largest delivery
time, which is Ci,2 for frame-based task sets and
H− (`−1)Ti−Di+Ci,2 for periodic task sets. JKS has
a runtime O(n2s) [16] for each resource, hence the total
runtime is in O(z · n2max).

2) POTTS [26]: it further modifies the results from JKS
by delaying the release of the interference jobs. A job
Ja is called a interference job, if Ja is released earlier
than Jb but has shorter delivery time. Then the release of
job Ja will be delayed at the same time as Jb, and JKS
is applied again, until there is no interference job or ns
iterations have been performed. The algorithm has a time
complexity of O(n2slog ns) for an individual resource
according to [26], resulting in O(z · (nmaxlog nmax))
for all resources.

Both provided partitioning algorithms cost O(n log n) time
to sort the tasks’ according to the utilization, where n is
the number of tasks, and O(nM) for the partition. Running
partitioned EDF takes O(nj log nj) time.

Thus, our proposed methods have polynomial time com-
plexity w.r.t. the number of jobs in one hyper-period, where
the runtime is dominated by the amount of time needed to
perform the construction of the dependency graph.

We note that, independent from the considered algorithm to
construct the dependency graph, the time and space complexity
of the approach is polynomial in the number of jobs in
the hyper-period, which is exponential with respect to the
number of tasks if periods are arbitrary. While the schedule
itself can be created online, the dependency graph over one
hyperperiod must be predefined in our approach. Hence, the
graph must not only be calculated offline but must also be
saved in a suitable data structure, e.g., as a list. The size
of this data structure can be reduced since the schedule for
a specific resource s repeats after Hs. It is also possible
to use more complex data structures with compressing, e.g.,
by saving repeated subgraphs only ones. Regardless, periods
in commercial embedded real-time systems are usually not
arbitrary, but jobs have a relatively small sets of possible



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

periods, e.g., the periods used in automotive systems are
usually {1, 2, 5, 10, 20, 50, 100, 200, 1000} [13], [17], [29],
[32], [35]. If the hyper-period is small compared to the largest
period in the system, as in the automotive case, a time and
space complexity that is polynomial in the number of jobs in
the hyper-period is affordable.

VII. EVALUATIONS

In this section, we examine the performance of the proposed
approaches by evaluations based on synthesized task sets for
different configurations. Due to space limitations, we only
present a subset of the conducted evaluations.

A. Evaluation Setup

We randomly generated task sets based on the number
of processors M , shared resources z, and relative utilization
of the critical sections β as parameters. In course of our
evaluation, we considered M ∈ {4, 8, 16}, z ∈ {4, 8, 16}, and
β ∈ {[5%− 10%], [10%− 40%], [40%− 50%]}.

For a given configuration of M , z, and β, we generated
task sets with 10 · M tasks for each total utilization value∑
τi∈T Uτi ∈ [0,M ] with a step 2%, applying the Rand-

FixedSum method [9]. We enforced that Uτi ≤ 0.5 for each
task τi. To determine the subtask utilization for UCi,1

, UCi,2
,

and UAi,1
, first the utilization of the critical section UAi,1

was decided by randomly drawing a percentage of the task’s
total utilization Uτi based on the parameter β. Afterwards, the
remaining utilization UCi was split by drawing UCi,1 randomly
uniform from [0, UCi

] and setting UCi,2
to UCi

− UCi,1
.

The resource the critical section of a task access was drawn
randomly uniform based on the number of resources. In
addition, we generated two two kinds of task sets:

(1) Periodic task sets with semi-harmonic periods: The
task periods Ti are selected randomly from a set of semi-
harmonic periods, i.e., Ti ∈ {1, 2, 5, 10}, that is a subset of the
periods used in automotive systems [13], [17], [29], [32], [35].
We used a small range of periods to generate reasonable task
sets with high utilization of the critical sections. Otherwise,
these task sets are by default not schedulable, i.e., at least
one task has a critical section with a WCET ≥ 2. Hence, for
the WCET values of the subtasks we get Ci,1 = UCi,1 × Ti,
Ai,1 = UAi,1 × Ti, and Ci,2 = UCi,2 × Ti.

(2) Frame-based task sets: A special case of periodic task
sets, where all the tasks have the common period as 1. Hence,
i.e., Ci,1 = UCi,1 , Ai,1 = UAi,1 , and Ci,2 = UCi,2 .

For each of these in total 54 configurations and each of
the utilization step values, 1000 task sets were randomized
according to the workflow detailed above.

B. Evaluated Approaches

When evaluation the heuristics presented in Section V, we
applied the same approaches to construct the dependency
graphs as used in [7], [30], since the algorithms to con-
struct the dependency graphs are not the focus of this paper.
For frame-based tasks, we applied the construction based
on non-preemptive uniprocessor scheduling techniques that

were utilized in [7], i.e., Extended Jacksons Rule JKS [16],
POTTS [26], and HS [12].

For periodic task sets we applied POTTS [26] and Extended
Jacksons Rule JKS [16] as proposed in [30]. Please note, that
other techniques for non-preemptive uniprocessor scheduling
can be applied as well, e.g., an iterative improvement algo-
rithm by Hall and Shmoys [12], the Precautious-RM by Nasri
et al. [21], [23], and the critical time window-based EDF
scheduling policy (CW-EDF) by Nasri and Fohler [22].

The methods evaluated to schedule the tasks sets were:

• Two of our proposed methods: the algorithm based on
federated scheduling in Alg. 1, denoted FED-P-EDF, and
the algorithm based on global worst-fit partitioning in
Alg. 3, denoted WF-P-EDF. We only display the results
for dependency graphs construction using POTTS [26],
since these approches outperformed the others.

• LIST-EDF: the List schedule based approach to schedule
the dependency graphs [30]. Here, the deadlines for sub-
jobs are redefined according to the precedence constraints
at first, List-EDF is applied to schedule the subjobs
accordingly. Furthermore, we modified the method when
subjobs have the same deadline in order to improve the
schedulability. Previously, the subjob with the longer rest
execution time will be scheduled. However, in our new
modification, once there is an interrupt, i.e., preemption
due to the subjob with earlier deadline, the scheduled
subjobs may be preempted by two cases: 1) new coming
subjob has earlier deadline, or 2) another subjob in
the ready queue has the same deadline but longer rest
execution time. Such modification can highly improve the
performance when this method is applied to frame-based
task sets, since it balance the workload among processors
in a finer grained manner.

• Resource Oriented Partitioned (ROP) scheduling with
release enforcement by von der Brüggen et al. [33] which
is designed to schedule periodic tasks with one critical
section on a multiprocessor platform. The concept of
ROP is to have a resource centric view instead of a
processor centric view. The algorithm 1) binds the critical
sections of the same resource to the same processor, thus
enabling well known uniprocessor protocols like PCP to
handle the synchronization, and 2) schedules the non-
critical sections on the remaining processors using a state-
of-the-art scheduler for segmented self-suspension tasks,
namely SEIFDA [34]. Among the methods in [33], we
evaluated ROP-FP (under fixed-priority) and ROP-EDF
(under dynamic-priority), i.e., the best performing fixed-
priority and the best performing dynamic priority method
according to the evaluation in [33]. It has been shown
in [33] that ROP-EDF dominates all existing methods
suitable for sporadic real-time task systems.

• LP-GFP-FMLP [5]: a linear-programming-based (LP)
analysis for global FP scheduling using the FMLP [5].

• LP-GFP-PIP: LP-based global FP scheduling using the
Priority Inheritance Protocol (PIP) [8].

• GS-MSRP [36]: the Greedy Slacker (GS) partitioning



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=4 z=4 β=10%-40%

FED-P-EDF

WF-P-EDF

LIST-EDF

GS-MSRP

ROP-EDF

ROP-FP

LP-GFP-FMLP

LP-GFP-PIP

40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=8 z=8 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(c) M=16 z=16 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(d) M=8 z=4 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(e) M=8 z=8 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(f) M=8 z=16 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(g) M=8 z=8 β=5%-10%

40 50 60 70 80 90 100
0

20

40

60

80

100
(h) M=8 z=8 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(i) M=8 z=8 β=40%-50%

Fig. 3. Schedulability of different approaches for periodic task sets.

heuristic with the spin-based locking protocol MSRP [10]
under Audsley’s Optimal Priority Assignment [2].

C. Schedulability for Periodic Task Sets

Evaluating the periodic task sets, due to the space limitation
and similar performance, only the subsets of the evaluation
results are presented in Figure 3. In general, one of our
proposed methods clearly outperforms other (semi-)partitioned
approaches.1

In the evaluation, we also specifically analyzed the effect of
the three parameters individually by changing:

1) M = z ∈ {4, 8, 16} (Figure 3 (a) to Figure 3 (c)):
Increasing z and M at the same time does not have signif-
icant impact on the WF-P-EDF but the other approaches
perform worse.

2) z for a fixedM , i.e., z ∈ {4, 8, 16} and M = 8 (Figure 3
(d) to Figure 3 (f)): When the number of resources is
increased, compared to the number of processors, the
performance gap between the WF-P-EDF and the FED-
P-EDF approaches increases. This indicates that when the

1LIST-EDF is not a partitioned scheduling, used here as the baseline for
state-of-the-art.

number of resources becomes large, the advantage of bal-
ancing workloads among processors of the WF-P-EDF,
and the disadvantage of isolate the tasks according the
requested resources of the FED-P-EDF is significant.

3) Workload of Shared Resources, i.e.,
β ∈ {[5%− 10%], [10%− 40%], [40%− 50%]}
(Figure 3(g) to Figure 3 (i)): If the workload of the
critical sections is increased, the performance of all
methods is reduced, and the difference of different meth-
ods is decreased as well. The reason is that, when
β = [40%− 50%], the execution time of the critical sec-
tion for tasks with period 10 can be large, i.e., longer
than 2. Therefore, tasks with period 1 directly miss the
deadline by default for all other approaches, no matter
what kind of the partitioning algorithm is applied, the
performance drops down quickly when the utilization is
increased and the critical section workload is large as
shown in Figure 3 (i).

D. Schedulability for Frame-Based Task Sets

Regarding schedulability for frame-based task sets, we
compare our approaches with all the aforementioned methods.
Due to the space limitation and similar performances (w.r.t.



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=4 z=4 β=10%-40%

FED-P-EDF

WF-P-EDF

LIST-EDF

GS-MSRP

ROP-EDF

ROP-FP

LP-GFP-FMLP

LP-GFP-PIP

40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=8 z=8 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(c) M=16 z=16 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(d) M=8 z=4 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(e) M=8 z=8 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(f) M=8 z=16 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(g) M=8 z=8 β=5%-10%

40 50 60 70 80 90 100
0

20

40

60

80

100
(h) M=8 z=8 β=10%-40%

40 50 60 70 80 90 100
0

20

40

60

80

100
(i) M=8 z=8 β=40%-50%

Fig. 4. Schedulability of different approaches for frame-based task sets.

acceptance ratios), only a subset of the evaluation results is
presented in Figure 4. The proposed worst-fit heuristic WF-P-
EDF outperforms ROP-EDF and other partitioned scheduling
methods significantly. Furthermore, Figure 4 shows that WF-
P-EDF has a good performance compared to LIST-EDF. In
most cases, both LIST-EDF and WF-P-EDF can reach 100
% acceptance ratio even for 98 % utilization per processor.
The reasons are as follows:

• Since P-EDF is a preemptive schedule, the (potentially
long) idle slots caused by the precedence constraints for
the critical sections can be filled by other task’s normal
executions without influencing the executions of critical
sections, even if the critical sections are relatively long.

• The modified deadlines for each sub task help to avoid
deadline misses.

• The worst-fit decreasing strategy allows to balance the
workload on the processors nearly optimally.

However, when the utilization for critical section become
extremely large in Figure 4(i), our new proposed WF-P-
EDF performs worse than LIST-EDF, since some of the
precedence constraints may push some of the critical sections
back so far, that a the processor actually runs idle due to

the partitioned property. The probability for such a situation
is increased when the utilizations of critical sections become
large, and therefore the resulting dependency graphs related to
the individual resources are long. In such a situation, global
scheduling is able to fill these idle slots by migrating tasks.

VIII. CONCLUSION

This paper considers partitioned scheduling for dependency
graphs in multiprocessor real-time resource synchronization
i.e., tasks are tied to a processor. We detail how the schedula-
bility can be determined for a given partition and proposes
two partitioning algorithms, which are based on federated
scheduling and a worst-fit heuristic. For the latter, different
pre-sorting strategies for these tasks are considered. The
evaluations based on periodic and frame-based task sets under
different configurations show that our proposed methods can
outperform existing partitioned scheduling algorithms and
perform reasonably compared to a global scheduling approach.
Our proposed methods can also be applied for given depen-
dency graphs under a less restrictive task model, e.g., multiple
critical sections within one task. However, how to construct
the dependency graph in such a situation remains an open
problem.



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
9.

88
64

59
1

Acknowledgement: This paper is supported by DFG, as part
of the Collaborative Research Center SFB876, project A3 and
B2 (http://sfb876.tu-dortmund.de/). The authors thank Zewei
Chen and Maolin Yang for their tool SET-MRTS (Schedula-
bility Experimental Tools for Multiprocessors Real Time Sys-
tems, https://github.com/RTLAB-UESTC/SET-MRTS-public)
to evaluate the GS-MSRP, LP-GFP-FMLP, and LP-GFP-PIP
in Figure 3 and Figure 4.

REFERENCES

[1] S. Afshar, M. Behnam, R. J. Bril, and T. Nolte. An optimal spin-
lock priority assignment algorithm for real-time multi-core systems. In
RTCSA, pages 1–11, 2017.

[2] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical Report YCS-164,
Department of Computer Science, University of York, 1991.

[3] K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan.
Preemptive scheduling of a single machine to minimize maximum
cost subject to release dates and precedence constraints. Operations
Research, 31(2):381–386, 1983.

[4] A. Biondi and Y. Sun. On the ineffectiveness of 1/m-based interference
bounds in the analysis of global EDF and FIFO scheduling. Real-Time
Systems, 54(3):515–536, 2018.

[5] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In RTCSA, pages 47–56,
2007.

[6] B. B. Brandenburg and M. Gül. Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations. In Real-Time Systems Symposium (RTSS), 2016 IEEE,
pages 99–110. IEEE, 2016.

[7] J.-J. Chen, G. von der Brüggen, J. Shi, and N. Ueter. Dependency graph
approach for multiprocessor real-time synchronization. In 2018 IEEE
Real-Time Systems Symposium (RTSS), pages 434–446. IEEE, 2018.

[8] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority
preemptive multiprocessor scheduling. In Real-Time Systems Symposium
(RTSS), pages 377–386, 2009.

[9] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS
2010), pages 6–11, 2010.

[10] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
Real-Time Systems Symposium (RTSS), pages 73–83, 2001.

[11] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics, 17(2):416–429, 1969.

[12] L. A. Hall and D. B. Shmoys. Jackson’s rule for single-machine
scheduling: Making a good heuristic better. Math. Oper. Res., 17(1):22–
35, 1992.

[13] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. Commu-
nication centric design in complex automotive embedded systems. In
29th Euromicro Conference on Real-Time Systems, ECRTS 2017, June
27-30, 2017, Dubrovnik, Croatia, pages 10:1–10:20, 2017.

[14] P.-C. Hsiu, D.-N. Lee, and T.-W. Kuo. Task synchronization and
allocation for many-core real-time systems. In International Conference
on Embedded Software, (EMSOFT), pages 79–88, 2011.

[15] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented partitioned
scheduling in multiprocessor systems: How to partition and how to
share? In Real-Time Systems Symposium (RTSS), pages 111–122, 2016.

[16] J. R. Jackson. Scheduling a production line to minimize maximum
tardiness. Technical report, University of California, Los Angeles, 1955.

[17] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmark for free. In 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
2015.

[18] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors. In Real-
Time Systems Symposium (RTSS), pages 469–478, 2009.

[19] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah.
Analysis of federated and global scheduling for parallel real-time tasks.
In 26th Euromicro Conference on Real-Time Systems, ECRTS, pages
85–96, 2014.

[20] G. J. Narlikar. Scheduling threads for low space requirement and good
locality. Theory of Computing Systems, 35(2):151–187, 2002.

[21] M. Nasri, S. K. Baruah, G. Fohler, and M. Kargahi. On the optimality
of RM and EDF for non-preemptive real-time harmonic tasks. In RTNS,
page 331, 2014.

[22] M. Nasri and G. Fohler. Non-work-conserving non-preemptive schedul-
ing: Motivations, challenges, and potential solutions. In 28th Euromicro
Conference on Real-Time Systems, ECRTS, pages 165–175, 2016.

[23] M. Nasri and M. Kargahi. Precautious-RM: a predictable non-
preemptive scheduling algorithm for harmonic tasks. Real-Time Systems,
50(4):548–584, 2014.

[24] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time systems
on multiprocessors with shared resources. In Principles of Distributed
Systems - International Conference, OPODIS, pages 253–269, 2010.

[25] OpenMP Architecture Review Board. OpenMP application program
interface version 4.5, Nov. 2015.

[26] C. N. Potts. Analysis of a heuristic for one machine sequencing with
release dates and delivery times. Operations Research, 28(6):1436–1441,
1980.

[27] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In Proceedings.,10th International Conference on
Distributed Computing Systems, pages 116 – 123, 1990.

[28] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proceedings of the 9th IEEE Real-
Time Systems Symposium (RTSS ’88), pages 259–269, 1988.

[29] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha, and
J. Mottok. Optimizing the task allocation step for multi-core processors
within autosar. In 2013 International Conference on Applied Electronics,
pages 1–6, Sept 2013.

[30] J. Shi, N. Ueter, G. von der Brüggen, and J.-J. Chen. Multiprocessor
synchronization of periodic real-time tasks using dependency graphs.
In Proceedings of the 25th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, RTAS, pages 279–292. IEEE, 2019.
Proceedings not yet availible, download link: https://ls12-www.cs.tu-
dortmund.de/daes/media/multi-sync-periodic-dga.pdf.

[31] J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi. Real-time scheduling and
analysis of OpenMP task systems with tied tasks. In IEEE Real-Time
Systems Symposium, RTSS, pages 92–103, 2017.

[32] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein. System-level
timing feasibility test for cyber-physical automotive systems. In 2016
11th IEEE Symposium on Industrial Embedded Systems (SIES), pages
1–10, May 2016.

[33] G. von der Brüggen, J.-J. Chen, W.-H. Huang, and M. Yang. Release
enforcement in resource-oriented partitioned scheduling for multipro-
cessor systems. In Proceedings of the 25th International Conference on
Real-Time Networks and Systems, RTNS, pages 287–296, 2017.

[34] G. von der Brüggen, W.-H. Huang, J.-J. Chen, and C. Liu. Uniprocessor
scheduling strategies for self-suspending task systems. In International
Conference on Real-Time Networks and Systems, RTNS ’16, pages 119–
128, 2016.

[35] G. von der Brüggen, N. Ueter, J. Chen, and M. Freier. Parametric
utilization bounds for implicit-deadline periodic tasks in automotive
systems. In Proceedings of the 25th International Conference on Real-
Time Networks and Systems, RTNS 2017, Grenoble, France, October 04
- 06, 2017, pages 108–117, 2017.

[36] A. Wieder and B. B. Brandenburg. Efficient partitioning of sporadic
real-time tasks with shared resources and spin locks. In International
Symposium on Industrial Embedded Systems, (SIES), pages 49–58, 2013.


	Introduction
	Related Work
	System Model
	Partitioned Earliest Deadline First
	P-EDF for Dependency Graphs
	An Example for P-EDF

	Partitioning Algorithms for Dependency Graphs
	Federated Based Partitioning Algorithm
	Worst-Fit Heuristic

	Schedulability and Complexity
	Schedulability Test and Multiprocessor Timing Anomalies
	Complexity and Scalability

	Evaluations
	Evaluation Setup
	Evaluated Approaches
	Schedulability for Periodic Task Sets
	Schedulability for Frame-Based Task Sets

	Conclusion
	References

