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ABSTRACT

Model-based Optimization (MBO) is a method to optimize expen-
sive black-box functions that uses a surrogate to guide the search.
We propose two practical approaches that allow MBO to optimize
black-box functions where the relation between input and output
changes over time, which are known as dynamic optimization prob-
lems (DOPs). The window approach trains the surrogate only on
the most recent observations, and the time-as-covariate approach
includes the time as an additional input variable in the surrogate,
giving it the ability to learn the effect of the time on the outcomes.
We focus on problems where the change happens systematically
and label this systematic change concept drift. To benchmark our
methods we define a set of benchmark functions built from estab-
lished synthetic static functions that are extended with controlled
drifts. We evaluate how the proposed approaches handle scenarios
of no drift, sudden drift and incremental drift. The results show that
both new methods improve the performance if a drift is present. For
higher-dimensional multimodal problems the window approach
works best and on lower-dimensional problems, where it is easier
for the surrogate to capture the influence of the time, the time-as-
covariate approach works better.
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1 INTRODUCTION

We address the problem of global optimization of expensive black-
box functions under the assumption of temporally evolving optima.
We consider incrementally changing as well as suddenly changing
functions in the sense of the definition of different concept drifts in
machine learning [5]. Such functions are found in many domains,
e.g. in the optimization of running production processes, where the
quality of the production depends on controllable parameters which
are usually subject of the optimization. Additionally, uncontrollable
external parameters like temperature, humidity, etc. influence the
production quality. Such external parameters can be measured
directly or only latently e.g. through the time.

For static expensive black-box problems, Model-based optimiza-
tion (MBO) has proven its worth [7]. MBO is an iterative algorithm
that relies on a surrogate model to predict the outcome of the expen-
sive black-box problem for unknown input values. The surrogate is
a regression model that is fitted on previously observed outcomes
and it is updated with a new result in each iteration. We aim to
augment the MBO algorithm with two novel approaches to cope
with dynamic optimization problems (DOPs). The goal is to obtain
a generic approach where any DOP can be optimized with any
surrogate model within the MBO framework. The first approach
uses a sliding time window where only the most recent observa-
tions are used to train the surrogate model. The second approach
includes the time as a covariate, allowing the surrogate to model
the influence of the time directly.

We evaluate our approaches on synthetic test functions with
controlled dynamic changes to eliminate any side effects while
studying the properties of the new approaches. The performance is
measured by the cumulative performance of all evaluations of the
black-box during the optimization.

Related Work. The overview paper on optimization in dynamic
environments [3] gives an extensive overview of optimization ap-
proaches and benchmarks for DOPs. The majority are evolution-
ary [10] and particle swarm [9] optimization approaches that re-
quire a large number of function evaluations. Changes of the ob-
jective function are assumed to happen only after one or multiple
generations are evaluated, and are usually stochastic. Most of the
many evaluation criteria listed in [3] are tailored to the character-
istics of evolutionary optimization algorithms, e.g. current best-of-
generation evolution, mean best-of-generation. As such they only
take the best solution of a set of evaluations, e.g. a single generation,
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into account. This means that many intermediate evaluations of
the objective over time can perform badly without affecting the
performance under such criteria.

Our scenario for DOPs is different. First, the evaluation of the
objective takes a significant amount of time. Therefore, only a very
limited number of evaluations is possible. Furthermore, we assume
that the objective function has already changed after an evaluation
and therefore running multiple evaluations on the same state of the
objective function is not possible. Second, the objective function
changes systematically over time.

In [11] a Bayesian Optimization approach for DOPs is presented
that exclusively uses the LCB acquisition function in combination
with a Gaussian process surrogate with a special kernel for the time
dimension. Unfortunately there is no available implementation.

2 MODEL-BASED OPTIMIZATION (MBO)

The aim of MBO [7] is to find the global minimum x* of a given
objective function f(x): X — R:

M

x* = argmin f(x).
xeX

The function is assumed to be an expensive black-box function
with a d-dimensional input domain X C R4, usually expressed by
simple box constraints. We assume that the surrogate can approx-
imate the true expensive black-box function. This surrogate is a
regression method that is comparably inexpensive to evaluate. If
we refer to MBO as Bayesian optimization, typically a Gaussian
process regression (Kriging) is chosen as a surrogate [8]. To initial-
ize the optimization, an initial design D of k points, laid out in a
Latin hypercube design, is evaluated on the objective function and
yields the outcomes y. For the optimization the following steps are
repeated until a predefined budget of iterations is exhausted:

(1) A Gaussian process is fitted on the Design D and the out-
comes y, yielding the surrogate.

(2) An acquisition function that is based on the surrogate is
optimized to determine the most promising point x
arg max,  y acq(x).

(3) y=f(x ) is evaluated and x and y are added to D and y.

The final optimization result ** is the input that led to the minimal
observed objective value.

The aim of an acquisition functions is to balance the evaluation of
points where the surrogate predicts a low outcome (exploitation of
the predicted minimum) and points where the surrogate is uncertain
(exploration of new areas). Common choices for the acquisition
functions are the expected improvement

El(x) = E(max(ymin ~ (x).0)) )
and the lower confidence bound [7]:
LCB(x,A) = fi(x) — A$(x) , (3)

with ymin as the minimum observed in y so far, f as the random
variable following the posterior distribution of the function out-
comes given by the surrogate, fi(x) as the mean and §(x) as the
uncertainty prediction of the surrogate, and A as a tuning parameter.
For a closed form of the EI see [7].
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3 MBO WITH CONCEPT DRIFT

In contrast to the previous Section 2, we now assume that f(x) as
well as its optimum x* changes over time ¢. Thus, the optimization
problem (1) becomes

x; = argmin f;(x) . 4)

xeX

The relation between the input x and the outcome y changes (drifts)
from one state (concept) to another over time. In this work we
consider changes of two different kinds: A single instantaneous
change of the objective functions is labeled as sudden drift. An
incremental drift describes a change that happens constantly
with a continuous trend. The concept is lent from the machine
learning community [5]. We consider two extensions to the MBO
framework to solve such DOPs.

3.1 Window Approach

In each iteration only evaluations observed in the window of the
last tA time units are considered for the design 9. Consequently,
we have to treat the objective function as stochastic since the same
x leads to different outcomes y at different points in time. There-
fore, the EI cannot be used, since the reference value yp;, is not
necessarily the correct minimal value for the current concept of
the objective function. We propose to use the augmented expected
improvement (AEI) [6] that was proposed for stochastic optimiza-
tion problems. For the AEI we first need to obtain the effective best
solution [6]:

x™ = argmin i(x) c¢-3(x), (5)

xeD
with ¢ as a tuning parameter that is usually set to 1. The AEI then
calculates as follows:

AEI(x) =E (max(ﬁ(x**) —f(x), 0)) . (1 -

On
A2 §2(x)) ,

with 2 denoting the variance of the random error (nugget effect)
of the stochastic objective function. The nugget effect is assumed
to be normally distributed and estimated within the Kriging model
that is used as a surrogate. The usage of x** as a reference value
encourages the re-evaluation of points close to potential optima.
This is a desired effect to avoid overly optimistic estimates because
of outliers. However, to prevent evaluations that do not further
decrease the uncertainty, the additional correction term ensures
that the AEI becomes smaller, when the uncertainty estimation
§2(x) converges to the variance of the random error 2. For a closed
form of the AEI see [6]. The LCB can be used without adaptation
for stochastic objectives.

The window-approach is supposed to lead to a frequent re-
explorations of previously explored areas. While this is necessary
to adapt to a concept drift, it can be inefficient in cases without drift.
Similar to window-based approaches in time series analysis, the
choice of tp symbolizes a trade-off. If the window is large, much
information is available to fit the surrogate. In presence of sudden
changes, the surrogate reacts slower to changes. If the window is
small on the other hand, the surrogate can adapt faster, but it might
be comparably less accurate as it relies on less information.

(©)
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3.2 Time-as-Covariate Approach

The time is included in the surrogate model as an additional dimen-
sion t. Interactions between x and t can be identified and the drift
can be modeled by the surrogate. This approach relies on a certain
extrapolation capability of the surrogate, as we are interested in
predictions at time tyow but only have observations from the past.
To propose a point for the current MBO-iteration, we optimize the
acquisition function on the hyperplane with fixed time t = thow.
For the same reason as in Section 3.1 the EI is not a valid choice.
Setting the covariate ¢ to a fixed value allows us to adapt the AEI
to obtain the temporal expected improvement. First we obtain the
effective best solution for time t = thow:

x;" =argminfl(x) c-$(x). 7)
x€D
Then the temporal expected improvement for a fixed ¢ is:
TEL(x) = E (max (ﬁ,(xi*) ~ fi(x), o)) , ®)

with ﬁ as the random variable following the posterior distribution
of the function outcomes for time t given by the surrogate, ji; (x) as
the mean and $; (x) as the uncertainty prediction of the surrogate
for a fixed t. Note that in contrast to the window approach, here
the objective function f; can bee seen as deterministic, because the
time dependency is included. Therefore, we can set o, = 0 and the
correction term from the AEI (6) becomes zero. Finally, the TEI can
be calculated analytically as

~ *k ~ ﬁt (x**) - ﬁt (x)
TEL (x) = (it (x™) = fir(x)) @ ( ) )
(/—’t(x ) ﬂt(x)) o)
8¢ (x)
with ¢ and ® as the standard normal density and distribution func-
tions.
The adaptation of the LCB is merely technical to ensure that we

only respect the surrogate’s prediction for time ¢:

LCB; (x,4) = fir () — A8 () . (10)

4 EXPERIMENTAL SETUP

The goal of the benchmark is to compare the optimization perfor-
mance of the presented optimization approaches on DOPs with
different types of drifts. Therefore, we need to define the DOPs that
serve as benchmark functions and a performance measure.

4.1 Synthetic Dynamic Optimization Problems

We construct the benchmark according to the following principles:
We use functions that are well-known in the optimization com-
munity. For each function three versions should exist: A baseline
version with no drift, one with a sudden drift, and one with an
incremental drift. The drift should be of a controlled fashion and
not change the values of the optima but only their position in the
domain space.

Therefore, we construct the DOPs from three parts: A static ob-
Jjective function f(x), a drift function 5(t) that yields the state of the
drift depending on the time and a transformation function g(x, w)
that defines how the objective function is changed depending on the
state of the drift. The constructed DOP will be a composed function
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of the form fs 4 ;(x) = f(g(x,6(¢))). The transformation function
g(x,w) : [0, 119 - [0,1]¢ transforms the input x according to the
drift state w. The drift function §(¢) : [0,1] — [0, 1] maps the time
t to the drift state w, e.g. §(¢) = 0.5 implies that the time does not
change the state of the function at all.

Objective Function: First, we take one of the black-box functions
f(x) from the Table 1. All of them are implemented in the R pack-

Table 1: Objective functions that serve as base functions de-
vided in two sets. d is the dimensionality of the input space
X, x* is the location of the global optimum.

Function d x*
Set 1
1 (0.5)
Ackley 2 (0.5,0.5)
5 (0.5,0.5,0.5,0.5,0.5)"
1 (0.5)
Griewank 2 (0.5,0.5)
5 (0.5,0.5,0.5,0.5,0.5)
1 (0.5)
Rastrigin 2 (0.5,0.5)’
5 (0.5,0.5,0.5,0.5,0.5)
Set 2
Branin 2 (0.12,0.82)’, (0.54,0.15)", (0.96,0.17)’
Camelback 2 (0.49,0.68)’, (0.51,0.32)’

Goldstein-Price 2 (0.5,0.25)"

age smoof [2] and have already been used to generate DOPs [3, 11],
but usually with stochastic changes. Functions that are defined on
a 1, 2 and 5-dimensional input space are grouped in Set 1 and the
others in Set 2. All functions in Set 1 have a parabolic surface com-
bined with cosine waves of different amplitude and frequency as it
can bee seen in Figures 2 and 3 for the no drift case. Consequently,
they are multimodal. Functions of Set 2 are also multimodal but
with fewer local minima and a more smooth surface. Functions that
were originally constructed as maximization problems were flipped
to become minimization problems. Furthermore, each function is
standardized in two ways. The input space is scaled to [0, 114 and
function values are scaled, so that f(x*) = 0 and the median per-
formance is 1. The median performance is obtained by evaluating
a grid of min(100¢, 106) values of x € X on the objective function
and calculating the median of the outcomes.

Drift Function: The drift function § () is utilized to introduce
different types of drifts, depending on the elapsed time ¢: We con-
sider the following drift functions 6(t) : [0,1] — [0, 1]:

No Drift On (t) =0.5
Sudden Driftat t = 0.5 &5 (t) = 19517 ()
Incremental Drift 6i (t) =-0.5- (sin (% - t) - 1) ,

with d5(0) = §;(0) = 0 and 85(1) = §;(1) = 1. The outcome of §(¢)
will define the state w of the drift. All drift functions are illustrated
in Figure 1.
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No Drift Sudden Drift Incremental Drift

Figure 1: The three different drift functions J,, §s and §;.

Transformation Function: Finally, we define g(x, w) which trans-
forms the input in each dimension depending on the state w of
the drift. The function is constructed in such a way that for w = 0:
g(x,0) = x7, so that the optima are dragged to the left. For w = 0.5
no transformation should be applied so that g(x, 0.5) = x. For w = 1:
g(x,1) = x>, which has the effect that all optima are dragged to the
right. We choose the exponent as 3 to obtain a strong shift if w is
0 or 1. For a one dimensional objective function with an optimum
at x* = 0.5, the optimum for w = 0 is at g(0.5,1) = 0.125 and for
w = 1 the optimum is at g(0.5,0) ~ 0.794.

To obtain transformations for every weight w € [0, 1] we derived
the following function

g(xpw) =xF  withk=-2-(w-15"" -1, (11)

which transforms x for each dimension / € 1,...,d. If the global

optimum x* is known, its position at time ¢ can be derived from
the inverse of g. In fact the inverse of g solves to:

(12)

Combination: To put all pieces together, we first plug the drift
function J(¢) into our transformation function to obtain g (x, 6(t)).
Applying this scheme, we can combine any static objective function
f with any drift function §(¢) and the transformation function g to
obtain a DOP:

g_l(x’ W) = g(x> 1- W)

Jog(%) = f(g(x8(1))). (13)
Figures 2 and 3 visualize how the functions and the optimum
changes over time for the one and two-dimensional DOPs con-
structed out of the static objective functions.

4.2 Performance Measurement

To evaluate the performance of the optimizers we need an evalua-
tion measure that considers the online characteristic of our dynamic
optimization problems. In comparison to regular MBO we are not
interested in the distance of the final result from the true optimum
at the end of the optimization process, but in the distance from the
optimum at any given time point ¢.

In our scenario for DOPs a function evaluation takes a significant
amount of time. Therefore, we have to assume that the objective
function has already changed after an evaluation. Accordingly,
an evaluation criterion where only the best evaluation within a
certain batch counts towards the error, as common in the DOP
literature [3], would be an unreasonable choice. We decide to count
every evaluation during optimization towards the performance.

In our benchmark scenario we know the true optimum y; for
any given point in time. Therefore, we calculate the fitness error

errrg = fi(x;) — yf (14)
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Figure 2: All 1d functions from Set 1 combined with the dif-
ferent drifts.

for the minimization of f; with x, as the proposal of the optimizer
for time t. For the evaluation of the whole optimization run we
average the errors over all time points which gives us the mean
fitness error (MFE). This performance measure reflects a scenario
where every evaluation counts towards the final performance. In
the context of MBO this implies that exploration can negatively
affect the overall error but can also be necessary to find regions
that perform better than the currently best setting.

5 BENCHMARK

The benchmark consists of (33  3) - 3 = 36 problems: 3 objective
functions in Set 1, each defined on three dimensions d € {1, 2,5},
3 objective functions of dimensionality 2 in Set 2, and all of them
without drift, with a sudden drift and with an incremental drift,
constructed as described in Section 4.1.

We divide the time frame of [0, 1] into 100 discrete time steps.
After each evaluation of the objective function the time progresses
one step. The initial design consists of a Latin hypercube sample of
4 - d points evaluated at ¢t = 0.

Each optimization is run with 50 stochastic repetitions. All opti-
mizers start with the same set of 50 different initial designs for all
50 stochastic repetitions for each problem.

5.1 Optimization Algorithms

For the benchmark we consider a trivial baseline, the ordinary MBO
and the proposed adaptations as presented in Section 3:

constant: From the initial design the best configuration is taken
and evaluated at each time step.

bo: Sequential MBO executed regularly without notion of concept
drifts that might occur.
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Increm. t =1
Sudden ¢t > 0.5

Increm. t = 0.5
No Drift

Increm. t = 0
Sudden ¢ < 0.5
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Ackley (Set 1)
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1.00
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Griewank (Set 1)
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0.75
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0.25

Rastrigin (Set 1)

0.00
1.00
0.75
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X2
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4
m O] ©
Ve 1w W2
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0.75

0.50

X2
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Camelback (Set 2) Branin (Set 2)
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X2
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0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X4 X1 X4

Figure 3: All 2d functions with incremental drift and their
states att = 0, = 0.5 and ¢t = 1. For ¢t = 0.5 the state equals
the constant state of the function with no drift. For t = 0 and
t = 1 the states equal the two different states for the sudden
drift. Same color scale as in Figure 2.

bo_tw: Drift-aware MBO with time-window (see 3.1) and two dif-
ferent window sizes of 20 and 40 time steps.
bo_tac: Drift-aware MBO with the time as covariate (see 3.2).

Each of the MBO algorithms is run with two different acquisition
functions.

_cb2 The confidence bound with A = 2 as defined in Eq. 3 for bo
and in Eq. 10 for bo_tw and bo_tac.

_aei The augmented expected improvement as defined in Eq. 6 for
bo and bo_tw.
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_tei The temporal expected improvement as defined in Eq. 8 for
bo_tac.

The proposal that is obtained by optimizing the acquisition func-
tions is the value that counts towards the performance measure.
All optimizers use Kriging with a Matern%-kernel for covariance
estimation as a surrogate. For bo_tw the nugget effect is estimated
during the surrogate fit, to account for the non-deterministic be-
havior of the objective function over time. For bo_tw and bo_tac
the time steps are supplied as an additional input variable, whereas
bo is kept unaware of the time. We use MBO as implemented in the
R package m1rMBO [1] which uses the R package DiceKriging [12]
for the surrogate.

5.2 Results

For each discrete time step we measured the fitness error (FE) of
each optimizer on each problem. The optimization paths in Figure 4
show, for a subset of the problems, the FE values for each time step
averaged over all stochastic repetitions.

For the problems with no drift we observe a particular pat-
tern for the window-based optimizers. It is most noticeable for
Camelback 2d that after each 20 (for bo_tw20) and after each 40
(for bo_tw40) iterations an error peak occurs. At these iterations the
information from the initial design drops out of the time-window
and the uncertainty predicted by the surrogate increases in certain
regions. The re-exploration leads to an error peak as bad perform-
ing areas are reevaluated. This pattern repeats as information about
bad performing configurations gets repeatedly lost. This behavior
is also present for functions with drift.

Comparing the optimization curves of the aei/tei acquisition
function with the 1cb curves in the no drift scenario shows that
often the El-based acquisition functions do not get as low as the 1cb
curves and in some cases go up (Griewank 5d). We call this the sat-
uration effect, where the acquisition functions prevents exploitative
proposals and guides the optimizer towards exploration. Interest-
ingly, adding the time as a covariate can prevent this effect. This can
be seen for the Griewank 1d function, where bo_tac_tei can out-
perform bo_aei, even though no drift is present. bo_tw49 slightly
performs better than bo_tw20 which can potentially contributed
to the bigger design of the surrogate.

For problems with a sudden drift the change is clearly visible
at iteration 50. The smaller window size of bo_tw20 allows to
faster adapt to the change. For bo_tac the discontinuity challenges
the Kriging regression, which expects input from a differentiable
function. Only for the lower dimensional versions of the Griewank
function and for Camelback 2d we can see that the error decreases
for bo_tac.

For problems with incremental drift bo_tac_cb2 manages to
constantly perform with low error rates, i.e. it is able to keep track
of the changes. bo_tac_aei performs similarly but has issues on
the very multimodal Griewank 5d function. The window-based
approaches need a bit longer to adapt to the changes and naturally
the smaller window adapts faster.

To interpret the results of all problems we combine functions of
the same set, dimensionality and drift type into groups. For each
group we generate a preference graph and calculate the average
ranks to compare the performance of the optimizers jointly in one



GECCO 20, July 8-12, 2020, Canctin, Mexico

group. For both evaluations the performance of each optimizer is
calculated by the mean fitness error (Section 4.2) on each problem
and for each single stochastic repetition.

The first evaluation method generates a preference graph. This
directed graph shows which optimizer was able to statistically beat
which optimizer in a pairwise comparison. The pairwise compari-
son is conducted with a one-sided paired-sample sign test on the
MEE values of each repetition and of each problem across two com-
peting optimizers. Each test is conducted at the 5% significance level
without further adjustment for multiple testing, as this analysis
is only meant as an exploratory visualization of the stochastic re-
sults. The results of all pairwise comparisons yield a directed graph.
A transitive reduction on the results removes any direct edge if
there also exist an indirect path in order to improve readability. The
preference graphs for all grouped problems is shown in Figure 5.

The preference graph in Figure 5 shows that there is no clear
winner across all scenarios. In case of no drift the drift-unaware
bo_cb2 performs well for Set 1. Also, the bigger window of the
time-window approaches is beneficial if we compare the bo_tw ap-
proaches with the same acquisition function. The time-as-covariate
approach only works well on the 1d problems of Set 1 and on the
problems of Set 2. Even though no drift is present the drift-unaware
bo_aei optimizer performs badly for the 1d and 2d problems of
Set 1, which can be probably accounted to the mentioned saturation
effect. The exploratory evaluations are also the reason why all bo
optimizers perform worse than the constant baseline on Set 2.

In case of a sudden drift the window-based optimizers with the
smaller windows perform better on Set 1. Also here, the time-as-
covariate approach works comparably well on the 1d problems of
Set 1 and the problems of Set 2.

For functions with incremental drift the optimizers with smaller
window sizes again have an advantage on Set 1. The time-as-
covariate approach bo_tac_cb2 works comparably well across all
problems of Set 1 and Set 2.

Jakob Richter, Junjie Shi, Jian-Jia Chen, J6rg Rahnenfiihrer, and Michel Lang

The second evaluation method generates a rank table based
on the mean ranks of each optimizer. Therefore, we first rank the
optimizers among each other for each problem and each stochas-
tic replication by their MFE. Afterwards we calculate the mean of
all ranks for each optimizer across all problems and replications
within one group of problems. We conduct a statistical analysis on
the underlying unranked data to find out which optimizers do not
perform significantly worse then the best performing optimizer
within a group. To verify whether there are statistically significant
differences between the optimizers, we perform a non-parametric
test procedure as recommended in [4]. First, the Friedman test
is employed to test whether there are any statistical differences
between all optimizers. If the null hypothesis of no differences
between the optimizers cannot be rejected, we will underline all
results to indicate that no algorithms are significantly different
from each other. Second, if the null is rejected, we test each opti-
mizer against the best performing one on the null hypothesis that
the best performing optimizer is not better than the competitor.
Therefore, the one-sided paired-sample sign test is applied on the
MEFE values of each repetition and each problem of the given group
and the two competing optimizers. The test is adjusted for multiple
comparisons using the Bonferroni-Holm-Correction. All tests are
conducted at the 5% significance level. Results of optimizers that
are not significantly worse then the best performing optimizer will
be underlined to indicate that they are potential candidates for the
best method.

The average ranks are given in Table 2. Again it shows that
there is no clear winner across all scenarios. In situations with drift,
bo_tw20_aei is a promising candidate for functions of Set 1 but
performs badly on Set 2. For Set 2 bo_tac_tei is advantageous for
both drift situations. It has to be noted that functions of Set 2 have
regions of relatively high outcomes. Evaluations in such regions
lead to high error rates, which negatively affect the overall MFE, as
can be seen in Figure 4. Optimizers which tend to more exploratory
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Figure 4: Optimization curves for a subset of the problems. Two columns form a pair, with optimizers that use the aei or tei
acquisition function on the left and cb2-based optimizers on the right. Each row represents a different drift scenario.
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Figure 5: The preference graphs for each group of problems illustrate which optimizers were able to beat each other tested on

50 repititions across 3 (Set 1) and 2 (Set 2) problems.

evaluations are potentially punished more on Set 2. On the other
hand those exploratory evaluations are necessary to adapt to con-
cept drifts. For problems with incremental drift, bo_tac_cb2 seems
to be able to balance exploration end exploitation and the difference
of the average ranks to the first are relatively small.

The performance of the different acquisition functions for each
optimizer show, that its choice rarely is crucial for the average per-
formance. This can also be seen in the preference plots in Figure 5.
Here the same optimizer with different acquisition functions are on
a similar level with few exceptions. For the time-as-covariate ap-
proach the LCB appears to be the better choice and for the window
approaches we see a slight advantage for the AFI criterion.
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6 SUMMARY

The benchmark compared two new Model-based optimization ap-
proaches for dynamic optimization problems (DOPs) against two
baselines. The window approach reduces the design of the surro-
gate to observations within a recent time frame, so that it models
the current state of the function. The time-as-covariate approach
includes the time as an additional covariate in the surrogate, which
allows the surrogate to directly model the influence of the time
on the function outcomes. Both approaches were benchmarked
with the lower confidence bound acquisition function and either
the augmented expected improvement or the temporal expected
improvement.

We constructed a benchmark that covers established benchmark
functions under three different drift scenarios (no drift, sudden drift
and incremental drift) and can easily be extended. We defined a
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Table 2: Average rankings of the optimizers on each subset of problems for each drift scenario. For each problem group the rank
of the average ranks is given in brackets. Results that are not significantly different from the best optimizer are underlined.

AEI

J Q

3 2
o g J I I

&) A o — =)
1 599(6) 3.23(3) 7.55(9) 7.31(8) Q 2.94(2) 6.05(7) 334(4) 5.81(5)
Setl 2 628(7) 7.01(9 479(4) 5.15(5) 2.83 (2) 541(6) 4.13(3) 2.74(1) 6.6 (8)
ne 5 3.15(2) 7.99(9) 4.48(5) 3.57 (4) z_ (1) 688(7) 545(6) 3.24(3) 7.68(8)
Set2 2 243(2) 3.29(3) 7.61(8) 5.93(6) 3.32(4) 471(5) 8.81(9) 6.83(7) 2.06 (1)
1 805(9) 288(2) 477(5) 594(6) 673(7) 3.35(4) 2.24(1) 330(3) 7.74(8)
ey SEE1 2 691(8) 589(6) 192(1) 443(4) 633() 551(5) 203(2) 413(3) 7.85(9
sudden 5 527(6) 7.94(9) 1.99(1) 3.64(3) 5.15(5 7.01(8) 261(2) 439(4) 7.01(7)
Set2 2 4.28(4) 3.86(1) 548(7) 488(5) 421(2) 4.22(3) 679(9) 547(6) 5.81(8)
1 6.66(7) 4.07(5) 3.37(2) 4.05(4) 7.19(8) 4.04(3) 3.12(1) 4.17(6) 8.34(9)
. Setl 2 7.20(7) 4.18(4) 2.94(1) 4.25(6) 7.46(8) 3.56(3) 3.7(2) 4.19(5) 8.06(9)
incremental 5 665(8) 597(6) 2.65(1) 421(4) 6.46(7) 3.76(3) 3.09(2) 437(5) 7.83(9)
Set2z 2 4.02(4) 2.61(1) 6.20(7) 465(5) 4.00(3) 3.20(2) 7.96(9) 621(8) 6.15(6)

performance measure that counts every evaluation towards the
average error, which is uncommon for DOPs, where usually just
the best of a batch is taken into consideration.

The results show that in scenarios with drift the proposed MBO
extensions are able to beat the drift-unaware baselines. However,
none of the proposed optimizers is a clear winner across all sce-
narios and each method has its strengths and weaknesses. For
more complex functions and functions of higher dimensionality
the window-based MBO approach appears to be the most promis-
ing candidate. The time-as-covariate approach performs best on
the 1d and on simpler 2d problems with fewer local minima. A
clear difference between the acquisition functions could not be
observed. There might be a slight advantage of the AEI criterion
for the window approach and an advantage of the LCB for the
time-as-covariate approach.

Altogether, the results show that with the proposed approaches
MBO can be applied on DOPs in order to obtain online proposals
that minimize the overall error. That no method is a clear winner
indicates that there is still room for improvement. It remains un-
clear whether the optimizer performs poorly because the surrogate
models the objective function badly or because the acquisition func-
tion proposes the wrong points. The results indicate that for some
cases the combination of a certain surrogate and an acquisition
function that drives exploration leads to bad performance. Here it
is necessary to find a better balance of exploration of new areas
within the search space and exploitation of estimated optima.

We note that the defined error measure influences how a drift-
aware MBO algorithms should be designed. In the current setting
each evaluation of the objective counts towards the mean fitness
error. This punishes exploration since every evaluation that is ex-
ploratory but does not lead to a detection of a drift has a negative
impact on the error. We could observe this behavior by comparing
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scenarios with and without drift for a certain optimizer. The fitness
error went up in case of no drift because of exploration but stayed
low in case of an incremental drift because the exploration led to
better configurations. Therefore, one would have to fine tune the
threshold that steers exploration vs. exploitation (e.g. the A param-
eter of the LCB acquisition function) for each DOP individually. In
contrast, exploration is less harmful when we evaluate static opti-
mizers by looking at the one best found configuration. If we define
our problem so that not each evaluation counts towards the error
we could adapt the optimizers in such a way that non-counting
evaluations are used for exploration.

Regarding the window approach, the smaller window size was
always beneficial for the presented problems, except if no drift
occurred. This motivates to use adaptive window sizes. For online
machine learning it is common to detect concept drifts with a
method that is independent of the machine learning method itself,
e.g. by detecting increasing residuals. Such external concept drift
detectors could help to determine the optimal window size for the
incremental drift or trigger a deletion of the outdated design if a
sudden drift is detected.

The proposed window approach is restricted to changes over
time but for the time-as-covariate approach the time is symbolic
for any external parameter that can be measured but not controlled.
However, this feature is not further studied in this paper.

We have to highlight that the benchmarks were restricted to
problems where the optimal value stays unchanged and only the
position of the optimum changes. This makes it easier to detect
unwanted behaviors of the optimizer, since an increasing error
directly implies that the evaluated values move away from the
optimum. However, the benchmark can be easily extended to a
scenario where also the optimal value changes. This shift likely
poses a completely new challenge for the optimizers.
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