
Supporting Multiprocessor Resource
Synchronization Protocols in RTEMS

Junjie Shi1, Jan Duy Thien Pham1, Malte Münch1, Jan Viktor Hafemeister1,
Jian-Jia Chen1, and Kuan-Hsun Chen1,2

1TU Dortmund, Deaprtment of Computer Science, Dortmund, Germany
2University of Twente, Computer Architecture and Embedded Systems, Twente,

Netherlands

Citation: OSPERT.2022

BIBTEX:
@article{DBLP:journals/corr/abs-2104-06366,

author = {Junjie Shi and
Jan Duy Thien Pham and
Malte M{\"{u}}nch and
Jan Viktor Hafemeister and
Jian{-}Jia Chen and
Kuan{-}Hsun Chen},

title = {Supporting Multiprocessor Resource Synchronization Protocols in {RTEMS}},
journal = {CoRR},
volume = {abs/2104.06366},
year = {2021},
url = {https://arxiv.org/abs/2104.06366},
eprinttype = {arXiv},
eprint = {2104.06366},
timestamp = {Sun, 02 Oct 2022 15:32:12 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-06366.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}

}

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

OSPERT.2022


Supporting Multiprocessor Resource
Synchronization Protocols in RTEMS

Junjie Shi∗, Jan Duy Thien Pham∗, Malte Münch∗, Jan Viktor Hafemeister∗, Jian-Jia Chen∗ and Kuan-Hsun Chen†
∗Department of Computer Science, Technische Universitat Dortmund, Germany

†Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, the Netherlands
E-mail: {junjie.shi, jan.pham, malte.muench, jan.hafemeister, jian-jia.chen}@tu-dortmund.de, k.h.chen@utwente.nl

Abstract—When considering recurrent tasks in real-time sys-
tems, concurrent access to shared resources can cause race con-
ditions or data corruption. Such a problem has been extensively
studied since the 1990s, and numerous resource synchroniza-
tion protocols have been developed for both uni-processor and
multiprocessor real-time systems, with the assumption that the
operating overheads are negligible. However, such overheads may
also impact the performance of different protocols depending on
the practical implementation, e.g., resources are accessed locally
or remotely, and tasks spin or suspend themselves when the
requested resources are not available. In this paper, to show
the applicability of different protocols in real-world systems, we
detail the implementation of several state-of-the-art multipro-
cessor resource synchronization protocols in RTEMS. To study
the impact of the implementation overheads, we deploy these
implemented protocols on a real platform with synthetic task
sets. The measured results illustrate that the developed resource
synchronization protocols in RTEMS are comparable to the
officially supported protocol, i.e., MrsP.

I. INTRODUCTION

In multi-tasking real-time systems, the accesses to shared
resources, e.g., file, memory cell, etc., are mutually exclusive,
to prevent race conditions or data corruptions. A code segment
that a task accesses to the shared resource(s) is called a critical
section, which is protected by using binary semaphores or
mutex locks. That is, a task must finish its execution of the
critical section before another task can access the same re-
source. However, the mutually exclusive executions of critical
sections may cause other problems, i.e., priority inversion and
deadlock, which could jeopardize the predictability of the real-
time system. In order to guarantee the timeliness of a real-time
system, a lot of resource synchronization protocols have been
developed and analyzed since 1990s for both uni-processor
and multiprocessor real-time systems.

In uni-processor real-time systems, the Priority Inheritance
Protocol (PIP) and the Priority Ceiling Protocol (PCP) by
Sha et al. [21], as well as the Stack Resource Policy (SRP)
by Baker [4] have been widely studied. Since PIP may
potentially lead to a deadlock requiring additional verification
to avoid [13], PCP has been relatively common and its
performance has been widely accepted. Specifically, a variant
of PCP has been implemented in Ada (named Ceiling locking)
and in POSIX (named Priority Protect Protocol).

Because of the increasing demand of computational power
of real-time systems, multiprocessor platforms have been

widely used. A lot of multiprocessor resource synchronization
protocols have been proposed and extensively studied in
the domain, such as the Distributed Priority Ceiling Proto-
col (DPCP) [20], the Multiprocessor Priority Ceiling Proto-
col (MPCP) [19], the Multiprocessor Stack Resource Policy
(MSRP) [14], the Flexible Multiprocessor Locking Protocol
(FMLP) [5], the O(m) Locking Protocol (OMLP) [7], the
Multiprocessor Bandwidth Inheritance (M-BWI) [12], gEDF-
vpr [2], LP-EE-vpr [3], the Multiprocessor resource sharing
Protocol (MrsP) [8], the Resource-Oriented Partitioned PCP
(ROP-PCP) [17], the Dependency Graph Approach (DGA) for
frame-based task set [11], and its extension for periodic task
set (HDGA) [26].

Although the protocols above provide the timing guarantees
by bounding the worst-case response time of tasks, most of
them rely on the assumption that the overheads invoked by
the implementation are negligible. However, rethinking of the
assumption is in fact needed. Depending on their settings, e.g.,
local or remote execution of critical sections, multiprocessor
scheduling paradigm, and the tasks’ waiting semantics, the
performance of different protocols is highly relevant to the
implementation. For example, under a suspension-based syn-
chronization protocol, tasks that are waiting for access to a
shared resource (i.e., the resource is locked by another task)
are suspended. This strategy frees the processor so that it can
be used by other ready tasks, which exploits the utilization of
processor, but also increases the context switch overhead due
to extra en-queue and de-queue operations for each suspension.
In contract, under a spin-based synchronization protocol, the
task does not give up its privilege on the processor and has
to wait by spinning on the processor until it can access the
requested resource and starts its critical section, which is
efficient when the critical sections are short [16].

In fact, there are only a few of the protocols have been offi-
cially supported, and there are two real-time operating systems
popular in the domain: the Linux Testbed for Multiprocessor
Scheduling in Real-Time Systems (LITMUSRT) [9], and Real-
Time Executive for Multiprocessor Systems (RTEMS) [1].
LITMUSRTis an experimental platform for timing analysis
mainly for academic usages. Brandenburg et al. implemented
DPCP, MPCP, and FMLP [6], Catellani et al. implemented
MrsP [10], and Shi et al. solidate the implementation of
MrsP [24]. In addition, the recently developed DGA and its

1

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
O

SP
E

R
T.

20
22



extension for periodic tasks HDGA have been implemented
by Shi et al. in [22], [23]. Alternatively, RTEMS is an
open-source real-time operating system which is popular for
industrial applications. RTEMS has been widely used in many
fields, e.g., space flight, medical, networking, etc. However, in
RTEMS, only MrsP implemented by Catellani et al. in [10],
is officially supported in the upstream repository.

Therefore, we believe it is beneficial to provide comprehen-
sively support on RTEMS with resource synchronization pro-
tocols for the related researches. Afterwards, the performance
of resource synchronization protocols might be clarified by
system designers, and the optimizations of implementation can
also be discussed. In this work, we focus on the resource syn-
chronization protocols which are based on (semi-) partitioned
scheduling, detailed as follows:

• Partitioned Schedule: Each task is assigned on a dedi-
cated processor, each processor maintains its own ready
queue and scheduler. Tasks are not allowed to migrate
among processors, e.g., MPCP.

• Semi-partitioned Schedule: Unlike the pure partitioned
schedule, semi-partitioned schedule allows tasks to mi-
grate to other processors under certain conditions. For
example, in DPCP and ROP-PCP, shared resources are
assigned on processors, the critical sections have to be
executed on the corresponding processors, where may not
be the same as the original partition of a task.

Our Contribution in a nutshell: We enhance the RTEMS
with the aforementioned multiprocessor resource synchroniza-
tion protocols and discuss how to revise the kernel with
RTEMS Symmetric Multiprocessing (SMP) support.

• To harden the open source development, we review the
SMP support of RTEMS and point out the potential
pitfalls during the implementation, so that the insights
can be reused on any other platforms (see Section III).

• We detail the development of three multiprocessor re-
source synchronization protocols, i.e., MPCP, DPCP, and
FMLP, and their variants in RTEMS (see Section IV).

• To study the impact of the implementation overheads, we
deploy our implementations on a real platform with syn-
thetic task sets (see Section V). The measured overheads
show that our implementation overheads are comparable
to the existed implementation of MrsP, in RTEMS, which
illustrates the applicability of our implementations.

The patches have been released under MIT license in [25] for
RTEMS 4.12. Please note that this release branch was planned
to be the latest release, but significant changes warranted to
bump the major number from 4 to 5. To apply our patches to
RTEMS 5, a certain adaption is additionally needed.

II. SYSTEM MODEL

We consider a task set T consists of n recurrent tasks to
be scheduled on M symmetric and identical (homogeneous)
processors. All tasks can have multiple (non-nested) critical
sections, each critical section accesses one of the Z shared
resources, denoted as sz Each task τi is described by a tuple
(Ci, µi, Ti, Di, qi), where:

rtems semaphore obtain

SEM Seize

SEM Get owner

owner
==

NULL

SEM Wait For
ownership

Ao

Enqueue task using
TQ functions of the
semaphore variant

Wait

SEM Claim
Ownership

Bo

Lock

YN

Fig. 1. Workflow of the lock directive. Block Ao and Bo are specified
according to the adopted protocols.

• Ci is the worst-case execution time (WCET) of task τi,
i.e., Ci > 0.

• µi is the set of resource(s) that τi requests.
• Ti is the period of task τi, i.e., Ti > 0.
• Di is the relative deadline of the task τi. To fulfill its

timing requirements a job of τi released at time t must
finish its execution before its absolute deadline t+Di. We
consider constrained-deadline task systems, i.e., Di ≤ Ti
for every task τi ∈ T.

• qi is the priority of task τi.

III. SYMMETRIC MULTIPROCESSING SUPPORT IN RTEMS

RTEMS allows users to implement new resource synchro-
nization protocols by strictly following the RTEMS API.
To create a new semaphore, SEM_Initialize function
is called to define the specified attributes for each resource
synchronization protocol. Besides the creation of semaphore,
which is defined by different protocols, some common com-
ponents that are similar for all the protocols, i.e., lock and
unlock directives, configuration for applications, and migration
mechanism, are introduced in this section.

A. Lock and Unlock Directives

The workflow of the lock directive is shown in Fig. 1. Once
a task τi requests a shared resource, it will try to lock the
corresponding semaphore. After selecting the right semaphore,
denoted as SEM, τi calls the _SEM_Seize function. Then,
the ownership of the semaphore is checked by getting the
owner of the Thread queue Control. If the semaphore is locked
by another task, τi has to wait for the owner to release the
semaphore. The detailed operations in block Ao are specified
according to the design of different protocols. If there is no
owner yet, τi is set as the owner of the semaphore, and starts
the execution of its critical section. The operations in block Bo

can be different depending on the specified design of protocols.
The workflow of the unlock directive is shown in Fig. 2.

It will be called when task τi has finished the execution of
its critical section and releases the lock of the semaphore. The
unlock directive selects the right _SEM_Surrender function

2

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
O

SP
E

R
T.

20
22



rtems semaphore release

SEM Surrender

SEM Get owner

owner !=
executing

Not owner

Ar

UnlockY

N

Fig. 2. Workflow of the unlock directive. Block Ar is specified according to
the adopted protocols.

to check whether the τi is the current owner of the semaphore.
If τi is not the owner, the semaphore cannot be unlocked.
Otherwise, τi can unlock the semaphore by executing the
commands in block Ar. The main function in Ar is to find
the next owner for the semaphore if (at least) one task that
is waiting for the semaphore. If there is no waiting task, the
owner will be set to NULL accordingly. The details of the
functions in Ar will be discussed in the corresponding sections
for different protocols.

B. Application Configuration

In order to support semi-partitioned schedule in RTEMS,
the flow for configuration in Fig. 3 has to be followed.
Firstly, processors have to be bound to specific scheduler
instances by using macro _RTEMS_SCHEDULER_ASSIGN
supported in RTEMS by default. After that, each task
is partitioned to a scheduler instance by using the
rtems_task_set_scheduler directive. Each task can
only be executed on the processor of the corresponding
scheduler instance.

Processor Scheduler Instance Tasks
Step 1 Step 2

Fig. 3. The steps to configure

When a RTEMS application is configured with SMP support
by following the work flow in Fig. 3, some new functions
have to be implemented. In Step 1, an initial task has to be
defined, which is executed in the beginning of the RTEMS
application. The binding of scheduler instances to processor
is based of the guide in the official c-user guide. The dedicated
schedule algorithm for the scheduler instances has to be
selected at first. In this paper, the Deterministic Priority SMP
Scheduler supported in RTEMS by default is selected for
all the protocols, which is the same as Fixed-Priority (FP)
scheduler in the literature. Please note that, the instances have
to be defined for all the available processors in the system, in
order to support the semi-partitioned schedule, i.e., tasks may
migrate to other processors by changing their scheduler nodes,
details can be found in next subsection.

Task τi
Executing on CPU#0

S1(255) [CPU#1]
BLOCKED

S0(7) [CPU#0]
SCHEDULED

S2(255) [CPU#2]
BLOCKED

Task τi
Migrated to CPU#1

S1(2) [CPU#1]
SCHEDULED

S0(7) [CPU#0]
BLOCKED

S2(255) [CPU#2]
BLOCKED

(1)

(2)

Fig. 4. Scheduler Node management: (1) Before migration, (2) After
migration. Dashed blocks and lines represent that τi has no access to the
respective scheduler instances, whereas green block is the currently used one.

C. Migration Mechanism

The migration mechanism by using arbitrary processor
affinity in [15] is not supported in the current version of
RTEMS. Therefore, a new migration mechanism has to be ap-
plied for those distributed-based protocols, e.g., DPCP. In our
implementation, the scheduler node is modified during the run
time in order to realize the task migration. When a task needs
to migrate to another processor, the scheduler node of the task
in its original scheduler instance is blocked, and the scheduler
node of the task in its destination processor is unblocked.
An additional function named _Scheduler_Migrate_To
is implemented in schedulerimpl.h, which contains the
task information block, the target processor, and the priority of
the task in the target processor. In addition, in order to guar-
antee the correctness of the migration, thread-dispatch
is disabled during the migration operation.

Fig. 4 demonstrates an example of the implemented task
migration. In Fig. 4 (1), task τi has a scheduler node for every
scheduler instance in the system. τi is currently executing on
CPU#0 with a priority of 7 by using scheduler node S0, which
is indicated by the the node with green background. Other
two nodes with grey background are blocked, since τi has no
access their respective scheduler instances, denoted as dashed
line. In Fig. 4 (2), task τi performs migration to CPU#1.
τi blocks itself on its original scheduler by using the block
function of the scheduler instance on S0. After that, it adds
S1 to the list of its active scheduler nodes and modifies the
priority of S1 accordingly. It unblocks S1 by using the unblock
function of the corresponding scheduler instance. Migrating
back to the original processor works similarly, i.e., Fig. 4 (1)
is restored by using the same unblock/block function of the
scheduler instances.

IV. MULTIPROCESSOR RESOURCE SYNCHRONIZATION

In this section, the implementation details of three protocols
and corresponding variants are explained and discussed. Please
note, we only consider non-nested resource accesses in our
implementation, i.e., only one shared resource is requested
during the execution of one critical section.

A. Multiprocessor Priority Ceiling Protocol

The Multiprocessor Priority Ceiling Protocol (MPCP) is a
typical protocol that is based on a partitioned fixed priority (P-

3

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
O

SP
E

R
T.

20
22



Algorithm 1 MPCP implementation
Input: Task τi, and ceiling_priority of related semaphore;

Function mpcp lock():
1: if semaphore_owner is NULL then
2: semaphore_owner ← τi;
3: τi.priority ← ceiling_priority;
4: τi starts the execution of its critical section;
5: else
6: Add τi to the corresponding wait_queue;
7: end if

Function mpcp unlock():
8: τi releases the semaphore lock;
9: Next task τnext ← the head of the wait_queue;

10: if τnext is NULL then
11: semaphore_owner ← NULL;
12: else
13: semaphore_owner ← τnext;
14: τnext starts the execution of its critical section;
15: end if

FP) scheduler. That is, each task has a pre-defined priority, and
the execution of a task is bound on a pre-defined processor,
i.e., no migration is allowed. The main features of MPCP are:
1) a task will suspend itself if the resource is not available. 2)
if a task is granted to access a shared resource, the priority of
the task will be boosted to the ceiling priority, which equals
to the highest priority of these tasks that request that resource.

The self-suspension feature is supported in RTEMS by
default. In order to implement the ceiling priority boosting,
one new semaphore structure is created. Besides these normal
components, e.g., semaphore lock, wait queue, and current
semaphore owner, one variable named ceiling_priority
is added. Please note that, in our implementation the ceiling
priority is defined by users instead of being calculated by the
system dynamically. The pseudo code provided in Algo. 1
shows two main functions in our implementation, which fits
the lock and unlock directive in Section III-A. The details
are as follows: Once a task τi requests a shared resource,
the ownership of the shared resource (semaphore) will be
checked. If the owner of the requested shared resource is
NULL, τi becomes the owner, and the priority of τi is boosted
to the ceiling priority on the corresponding scheduler instance
(operations in block Bo in Fig. 1). Otherwise, τi will be
added into a wait queue, which is sorted by tasks’ original
priorities, i.e., task with higher priority will get earlier position
(operations in block Ao in Fig. 1). Once the task τi finishes
the execution of critical section, it will release the semaphore.
The first task of the wait queue is checked, i.e., the task with
the highest priority in the wait queue. If there is no task in
the wait queue, the semaphore owner will be set to NULL.
Otherwise, the first task of the wait queue will be set as the
semaphore owner (operations in block Ar in Fig. 2).

B. Distributed Priority Ceiling Protocol

The Distributed Priority Ceiling Protocol (DPCP) is based
on semi-partitioned fixed priority schedule. In DPCP, tasks

and shared resources are assigned on different processors sep-
arately, i.e., these processors that are assigned for the execution
of non-critical sections are called application processors, and
processors for the execution of critical sections are called syn-
chronization processors. Once a task τi tries to access a shared
resource, it will migrate to the corresponding synchronization
processor where the shared resource is assigned on, before
trying to lock the corresponding semaphore. Afterwards, these
tasks on the same synchronization processor operate follow
the uni-processor PCP, which been supported in RTEMS by
default, i.e., Immediate Ceiling Priority Protocol (ICPP). When
a task τi finished its execution of critical section, it will
migrate back to the original application processor to continue
the execution of its non-critical section, if it exists.

Hence, the main challenge of the implementation of DPCP
is to allow task migrations among processors. In RTEMS, task
partitioning is realized by the scheduler node in the scheduler
function, i.e., scheduler node defines the original partition for
each task before the execution, and stays the same during the
run time. Details have been explained in Section III-C.

C. Flexible Multiprocessor Locking Protocol

In Flexible Multiprocessor Locking Protocol (FMLP), re-
quests of shared resources are divided into two groups, i.e.,
long and short, according to the length of the execution time
of corresponding critical section. When the requested resource
is not available, a task will suspend itself if it is a long
request, and a task will spin on the correspond processor if it
is a short request. However, there is no conclusion regarding
to how to divide requests to obtain a better schedulability.
Therefore, we divided our implementation into FMLP-L which
only supports long requests, and FMLP-S which only supports
short requests. Please note, to simplify the implementation, all
the tasks in one task set all belong to either long group or short
group, no mixed division of these two groups is allowed.

In both FMLP-L and FMLP-S, the wait queue in the
semaphore structure is in a FIFO order, rather than sorting by
priorities like MPCP and DPCP. The operations in block Bo

in Fig. 1 are as follows: In FMLP-L, we maintain a ceiling
priority dynamically for each resource, which equals to the
highest priority of these tasks that are currently waiting for
the resource, i.e., tasks in the corresponding wait queue. The
priority of the semaphore owner will be boosted to the ceiling
priority if the original priority is lower than the ceiling priority,
when it starts the execution of its critical section. In FMLP-
S, the owner of the semaphore gets priority boosted to the
highest possible priority in the system, so that the execution
of its critical section is the non-preemptive. The operations in
block Ao in Fig. 1 are the same for both FMLP-L and FMLP-
S, i.e., add task τi in the end of the corresponding wait queue.
The unlock operations in block Ar in Fig. 2 are also the same,
i.e., try to find the next owner for the semaphore by checking
the first task in the wait queue, if it exists.

Additionally, we implemented a distributed version of
FMLP, denoted as DFLP, where all the requests are treated as
long requests. The main difference between FMLP and DFLP

4

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
O

SP
E

R
T.

20
22



TABLE I
PROCESSOR ALLOCATION OF THE TEST APPLICATION.

CPU#0
Application

CPU#1
Application

CPU#2
Application

CPU#3
Synchronization

L (s1) L (s2) L (s3) -
ML (s2) ML (s3) ML (s1) -
M (s3) M (s1) M (s2) -
MH (s2) MH (s3) MH (s1) -
H (s3) H (s1) H (s2) -

is when a task requests a shared resource, it will migrate to
the corresponding synchronization processor, which is similar
to DPCP. The mechanism how we implement the migration
has been explained in Section III-C. After the migration,
critical sections are executed by following the FMLP-L on
the corresponding synchronization processor(s).

V. EVALUATION AND DISCUSSION

In this section, we introduce the setup of experiments for
overheads evaluation at first. Afterwards, the measured over-
heads are reported and analyzed. At the end, we discuss the
need of formal verification over the implementation generally.

A. Experimental Setup

We evaluated the overheads of our implementations on
the following platform: a NXP QorIQ T4240 RDB reference
design board, which is the same as used in [10]. It has 6
GB DDR3 memory with 1866 MT/s data rate, 128 MB NOR
flash(16-bit), and 2 GB SLC NAND flash. The processor
T4240 contains 24-virtual-core (12 physical cores) with the
PowerPC Architecture, and is running on 1.67 GHz.

To measure the overheads of our implemented protocols,
timestamps are added before and after the function of our
implementations. The obtain and release functions of the
semaphore are measured, denoted as lock and unlock respec-
tively. We consider a multi-processor system consists of four
processors, i.e., M = 4, including three application processors
and one synchronization processor. The total number of tasks
n = 15, and the number of available shared resources Z = 3,
i.e., µi ∈ {s1, s2, s3}. On each application processor, there are
five tasks with five different priority levels, i.e., qi ∈ {High
(H), Medium-High (MH), Medium (M), Medium-Low (ML)
and Low (L)}. Each task requests one of these three shared
resources. Details can be found in Table I.

B. Overheads Evaluation

The overheads for different protocols are reported in Fig-
ure 5, based on more than 9,000 instances of lock and unlock
operations. These distributed-based protocols, i.e., DPCP and
DFLP have higher overheads than others, due to the task
migrations. DFLP has the highest average overheads, since it
also maintains the dynamic ceiling priority update. MrsP also
has relative high overheads, since it has the help mechanism
requiring task migration (however, help mechanism may not be
activated all the time). Our results related to MrsP are similar

as reported in [10], i.e., 5376 ns for lock and 5514 ns for
unlock on average. FMLP-L has the lowest overheads, due
to the simplest mechanism. Overall, the overheads for all the
protocols are relatively low and acceptable. For distributed-
based protocols, we can observe that there are quite a few
outliers. In fact, a similar observation has been reported
in [24]. One reason could be that the behavior of cache
memories kicks in to introduced operation overheads, but we
have no sufficient data to pinpoint the exact cause here.

The migration overheads are measured separately, and re-
ported in the left side of Figure 5. The results show that
the overheads of task migration are significant, which might
substantially affect those distributed-base protocols, i.e., DPCP
and DFLP. Interestingly, we also notice that the overhead of
a task to migrate to the synchronization processor is faster
than migrating back to the application processor. The reason is
that, normally there are more tasks running on the application
processors than synchronization processors, which causes a
task has to wait for longer time to obtain the scheduler instance
lock on average. That is why the unlock overheads of DPCP
and DFLP are higher than the lock overheads.

Although our evaluated overheads on RTEMS are similar to
these protocols that are implemented on LITMUSRT [10], [26],
implementations of protocols on RTEMS and LITMUSRTare
not directly comparable due to the difference of purposes
and architectures in two operating systems. Please note that
RTEMS is a self-contained RTOS for real-world applications,
whilst LITMUSRTis a Linux-based testbed, which is mainly
used for functional validation. It might be interesting to
investigate which protocol is preferable on which operating
systems, but it is considered out of scope here.

C. Validation and Formal Verification

To validate the correctness of our implementation, at first we
test over the official coverage tests provided by RTEMS, i.e.,
the SMP test suites (https://github.com/RTEMS/rtems/tree/
master/testsuites/smptests) especially, on the PowerPC device
and also the QEMU emulator for ARM RealView Platform
realview-pbx-a9, and conclude that the SMP related
peripheries in RTEMS are not affected at all. Moreover, we
further design several dedicated corner cases for each protocol
and ensure that the designated tasks execute as the expected
behaviors, which are treated as the additional coverage test for
the future integration.

We note that such case-based validation may not be suf-
ficient, since it is not possible to test over every case ex-
haustively. One possible way is to adopt software model
checkers as proposed in [13] to detect potential data races
and deadlocks in the implementation of PIP with nested locks
in RTEMS. However, such searching approaches may not scale
well for multiprocessor protocols unless an effective pruning
strategy can be found beforehand. How to validate or formally
verify an existing implementation of synchronization protocols
is still an unsolved problem but out of the scope.

5

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
O

SP
E

R
T.

20
22



mig_to mig_bk mrsp_lk mrsp_ulk mpcp_lk mpcp_ulk dpcp_lk dpcp_ulk fmlps_lk fmlps_ulk fmlpl_lk fmlpl_ulk dflpl_lk dflpl_ulk
0

2000

4000

6000

8000

10000

12000

14000
Ov

er
he

ad
s i

n 
ns

Fig. 5. Overheads of protocols in RTEMS (lock operation is ended by _lk and unlock operation is ended by _ulkl)). The measurement of migrating a
task to the synchronization processor (denoted as mig_to) and back to the application processor (denoted as mig_bk).

VI. CONCLUSION

Over the decades, quite a few number of resource syn-
chronization protocols have been extensively studied for uni-
processor and especially multiprocessor real-time systems. In
this work, we reviewed the SMP support in one popular real-
time operating system RTEMS and detailed how we develop
three state-of-the-art multiprocessor resource synchronization
protocols, i.e., MPCP, DPCP, and FMLP, and their variants.
With extensive synthetic experiments, the measured results
showed that our implementations are comparable to MrsP,
which is officially supported in RTEMS. Considering the real
system overhead, the performance of resource synchronization
protocols might be clarified and decidable by system designers.

Although several dedicated tests are provided to verify the
correctness of the implementation, formal model checking is
still desirable to prevent the system from potential deadlock,
data races, and priority inversions. In the future work, we plan
to explore on nested resource synchronization and support the
arbitrary processor affinity in RTEMS to improve the gener-
ality and the efficiency. An ongoing effort is also provided to
support for the latest version of RTEMS [18].

ACKNOWLEDGEMENT

This paper is supported by DFG, as part of the Col-
laborative Research Center SFB876, subproject A1 and A3
(http://sfb876.tu-dortmund.de/).

REFERENCES

[1] RTEMs. http://www.rtems.org/.
[2] B. Andersson and A. Easwaran. Provably good multiprocessor schedul-

ing with resource sharing. Real-Time Systems, 46(2):153–159, 2010.
[3] B. Andersson and G. Raravi. Real-time scheduling with resource sharing

on heterogeneous multiprocessors. Real-Time Systems, 50(2):270–314,
2014.

[4] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, 1991.

[5] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In RTCSA, pages 47–56,
2007.

[6] B. B. Brandenburg and J. H. Anderson. An implementation of the pcp,
srp, d-pcp, m-pcp, and FMLP real-time synchronization protocols in
litmusrt. In RTCSA, pages 185–194, 2008.

[7] B. B. Brandenburg and J. H. Anderson. Optimality results for multipro-
cessor real-time locking. In RTSS, pages 49–60, 2010.

[8] A. Burns and A. J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol - MrsP. In ECRTS, pages 282–291, 2013.

[9] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUSRT : A testbed for empirically comparing real-time
multiprocessor schedulers. In RTSS, pages 111–126, 2006.

[10] S. Catellani, L. Bonato, S. Huber, and E. Mezzetti. Challenges in the
implementation of mrsp. In Ada-Europe, pages 179–195, 2015.

[11] J.-J. Chen, G. von der Brüggen, J. Shi, and N. Ueter. Dependency
graph approach for multiprocessor real-time synchronization. In IEEE
Real-Time Systems Symposium, RTSS, pages 434–446, 2018.

[12] D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor bandwidth
inheritance protocol. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 90–99, 2010.

[13] S. Gadia, C. Artho, and G. Bloom. Verifying nested lock priority
inheritance in RTEMS with java pathfinder. In K. Ogata, M. Lawford,
and S. Liu, editors, ICFEM, pages 417–432, 2016.

[14] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
Real-Time Systems Symposium (RTSS), pages 73–83, 2001.

[15] A. Gujarati, F. Cerqueira, and B. B. Brandenburg. Multiprocessor real-
time scheduling with arbitrary processor affinities: from practice to
theory. Real-Time Systems, 51(4):440–483, 2015.

[16] G. Han, H. Zeng, M. Natale, X. Liu, and W. Dou. Experimental
evaluation and selection of data consistency mechanisms for hard
real-time applications on multicore platforms. IEEE Transactions on
Industrial Informatics, 10(2):903–918, 2014.

[17] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented partitioned
scheduling in multiprocessor systems: How to partition and how to
share? In Real-Time Systems Symposium (RTSS), pages 111–122, 2016.

[18] C. Lin, J. Shi, N. Ueter, M. Günzel, J. Reineke, and J. Chen. Type-aware
federated scheduling for typed DAG tasks on heterogeneous multicore
platforms. IEEE Trans. Computers, 72(5):1286–1300, 2023.

[19] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In Proceedings.,10th International Conference on
Distributed Computing Systems, pages 116 – 123, 1990.

[20] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proceedings of the 9th IEEE Real-
Time Systems Symposium (RTSS ’88), pages 259–269, 1988.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Trans. Computers,
39(9):1175–1185, 1990.

[22] J. Shi. DGA-LITMUS-RT. https://github.com/Strange369/
Dependency-Graph-Approaches-for-LITMUS-RT, 2018.

[23] J. Shi. HDGA-LITMUS-RT. https://github.com/Strange369/
Dependency-Graph-Approach-for-Periodic-Tasks, 2019.

[24] J. Shi, K.-H. Chen, S. Zhao, W.-H. Huang, J.-J. Chen, and A. Wellings.
Implementation and evaluation of multiprocessor resource synchroniza-
tion protocol (mrsp) on litmusrt. In OSPERT, 2017.

[25] J. Shi, J. D. T. Pham, K.-H. Chen, M. Münch, J. V. Hafemeis-
ter, and J.-J. Chen. Supporting Multiprocessor Resource Syn-
chronization Protocols in RTEMS. https://github.com/Strange369/
RTEMS-Resource-Synchronization-Protocols, 2020.

6

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
O

SP
E

R
T.

20
22



[26] J. Shi, N. Ueter, G. von der Brüggen, and J.-J. Chen. Multiprocessor
synchronization of periodic real-time tasks using dependency graphs. In
RTAS, pages 279–292, 2019.

7

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
O

SP
E

R
T.

20
22


