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Formal Verification of Resource Synchronization
Protocol Implementations: A Case Study in RTEMS

Junjie Shi, Student Member, IEEE, Christoph-Cordt von Egidy, Kuan-Hsun Chen, Member, IEEE,
and Jian-Jia Chen, Senior Member, IEEE

Abstract—To avoid race conditions and ensure data integrity,
resource synchronization protocols have been widely studied in
real-time systems for decades, providing systematical policies to
guarantee a bound on priority inversion-induced blocking time
and the avoidance of deadlocks. However, the corresponding
realization is often based on assumed abstractions and neces-
sary adaptions in a real-time operating system, by which the
theoretically proven properties of such a protocol may not be
delivered, leading to potential mismatches.

To prevent such mismatches, in this work, we propose to
contract the obligations of involved primitives and operations,
and apply the deductive verification on a corresponding imple-
mentation. To this end, we present a modularized verification
framework and demonstrate its applicability by verifying the of-
ficial implementation of the Immediate Ceiling Priority Protocol
(ICPP) and the Multiprocessor Resource Sharing Protocol (MrsP)
in RTEMS, resulting in the discovery of long-stayed mismatches
for both synchronization protocols. To resolve them, we provide
a possible remedy for the ICPP and an additional precondition
regarding nested locking for the MrsP.

Index Terms—Formal Verification, Resource Synchronization
Protocol, Real-Time Operating System

I. INTRODUCTION

In real-time systems, concurrent tasks may access shared
resources, such as shared data, files, and memory. The code
segment that a task executes while accessing the shared
resource(s) is called critical section, which is protected by
binary semaphores or mutex locks provided by the operat-
ing system. To prevent race conditions, accesses to shared
resources are mutually exclusive. In the presence of critical
sections, some problems might break the timeliness, leading
to unbounded worst-case response time (WCRT): a) priority
inversion happens when a job with higher priority is blocked
(indirectly) by one or multiple other jobs with lower priority,
among which the job with the lowest priority has obtained
the same requested shared resource earlier; b) deadlock can
happen when two tasks request the same (at least) two shared
resources in a different order simultaneously, and are therefore
waiting for each other circularly.
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To prevent the above problems, resource synchronization
protocols have been widely studied since the 1990s. In unipro-
cessor real-time systems, the priority inheritance protocol
(PIP) and the priority ceiling protocol (PCP) were proposed
by Sha et al. [37] and the stack resource policy (SRP)
was proposed by Baker [8]. The Immediate Ceiling Priority
Protocol (ICPP), has been widely applied in real-time systems,
e.g., in Ada as Ceiling Locking and POSIX as Priority Protect
Protocol. Along with the demand of computational power,
several multiprocessor resource synchronization protocols also
have been proposed, such as the Distributed PCP (DPCP) [36],
the Multiprocessor PCP (MPCP) [35], the Multiprocessor
resource sharing Protocol (MrsP) [13], and the Dependency
Graph Approach (DGA) [18], [38].

Such a protocol can be formally described as a set of rules
that are composed of abstracted system models, under certain
assumptions at the operating system (OS) level. However,
these abstractions and assumptions may not always hold
while realizing a protocol. For example, some OSes may
not allow multiple tasks with the same priority, where the
inherited ceiling priority, e.g., in ICPP, has to be compensated
by setting ceiling priorities differently and excluding these
priorities from regularly priorities that have been assigned to
other tasks [31]. Some additional components, i.e., the helper
mechanism in MrsP and the busy waiting inside a FIFO-queue,
require appropriate data structures and operations in the target
OS [16]. Any necessary adaption due to the constraint imposed
by the OS in practice may lead to a mismatch to the original
specifications, resulting in unexpected consequences.

To this end, several prominent works have been proposed to
formally verify the real-time operating systems (RTOSes). The
seL4 is proposed as a high-assurance and high-performance
microkernel [30], which has been entirely formally verified
against its abstracted specifications. Gu et al. propose
CertiKOS, where an architecture for concurrent operating
system kernel is verified layer-wisely from the bottom
up [28]. An automatic verification approach is also proposed,
by checking all possibly reachable states of registers and
memory automatically [34]. However, most approaches only
study the verification of RTOSes, whilst how to verify the
implementations of resource synchronization protocols still
lacks research.

Our Contribution: In this work, we focus on the formal
verification of synchronization protocols implemented in an
RTOS by assuming the underlying functionalities are correct.
The contributions in a nutshell are:

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
E

M
SO

FT
.2

02
2



• We propose to contract the obligations of involved primi-
tives and operations, and apply the deductive verification
on the corresponding implementation of a protocol in a
targeted OS (see Section III).

• We present a framework for formally verifying the prop-
erties of the synchronization protocol implementations in
a given OS (see Section IV).

• We provide two case studies to verify ICPP (Section V)
and MrsP (Section VI), implemented in the official
RTEMS. In consequence, we discover long-stayed mis-
matches and provide possible remedies for both protocols.
The corresponding source code can be reviewed in [4].

II. BASIC RULES OF SYNCHRONIZATION PROTOCOLS

Resource synchronization protocols are defined as a set of
rules that each task has to follow during resource accesses. In
the following, we show their basic rules:

Scheduling Algorithms: A synchronization protocol has
to define the supported scheduling algorithms, either earliest
deadline first (EDF) or fixed priority (FP). When EDF is
applied, the job with the earliest absolute deadline has the
highest priority, whereas the priorities for all tasks are pre-
defined when FP is applied. For multiprocessor systems, under
global schedule, all tasks are dispatched dynamically over
different processors. In contrast, each task is assigned statically
on a certain processor in advance under partitioned schedule,
no migration is allowed.

Request Ordering: The order of concurrent requests for
the same shared resource also has to be determined. When
two or more tasks are blocked by the same shared resource,
the waiting queue of these tasks has to be sequenced by a
certain policy. Two common policies are FIFO queue and
priority-based queue. In a FIFO queue, tasks are ordered by the
requesting time, the task with earlier requesting time can ac-
quire the corresponding shared resource earlier, which bounds
the maximum waiting time for each task. In a priority-based
queue, tasks are ordered by their current priorities, which are
normally the tasks’ scheduling priorities. Additionally, there is
a third policy which is introduced by Shi et al. in [38], where
the access order for each shared resource is pre-defined in a
job-level for all tasks within one hyper-period. Therefore, the
wait queue is sequenced by the pre-defined access order.

Waiting Mechanism: The semantic, i.e., how a task is
waiting for an occupied resource, has to be identified. Under a
suspension-based synchronization protocol, a task that is wait-
ing for accessing to a currently unavailable shared resource is
suspended by adding itself into a wait queue. Under a spin-
based protocol, the task does not give up its privilege on the
current processor. It executes a spinning loop and continuously
checks if the requested resource is available until it can access
to the requested resource and start its critical section.

Bound Measure: The measure to bound the maximum
blocking time and prevent unbounded priority inversions has to
be set up. Under non-preemptive execution, once a task starts
its critical section, it cannot be preempted by any of other tasks
in this processor regardless of their priorities and deadlines.
Similarly, priority boosting allocates a boosted priority to

each critical section, which is higher than the highest regular
priority for scheduling of all tasks. However, under priority
boosting, a critical section can still be potentially preempted
by another critical section with higher boosted priority. The
other promising approach is priority ceiling: When a task
executes its critical section, the priority can be prompted to
the corresponding resource’s ceiling priority, where the ceiling
priority can be determined either statically or dynamically.
When the ceiling priority of a shared resource is defined
statically, it simply equals to the highest priority of any task
that may request the resource. If dynamic ceiling priority is
applied, the ceiling priority is defined as the highest priority
of all tasks that are currently locking or will lock the shared
resource, i.e., tasks in the corresponding waiting queue.

Execution Place: Different to the protocols for uni-
processor systems, the places where to execute the critical
sections of a task have to be determined for a multiprocessor
resource synchronization protocol, either locally or remotely.
For the former, the critical sections of a task can be executed
along with its non-critical sections on the processor where the
task is currently assigned. For the latter, critical sections are
executed on specified processor(s) where the corresponding re-
sources are assigned on. In some protocols, the local executed
critical sections can also be executed remotely. For example,
the help mechanism in MrsP allows the current resource owner
to execute its preempted critical section on a remote processor,
where a task is spin-waiting for the same resource.

III. DEDUCTIVE VERIFICATION VIA CONTRACTS

Although each protocol contains several rules that can be
implemented, the combination of these rules are complicated
when all the details have to be considered, e.g., the order of
priority modifications, the queue-based operations, and illegal
inputs checking. One approach is to test sufficient inputs and
validate the derived outputs. However, a sufficient test set
that covers all possible situations is difficult to be derived,
especially for multiprocessor systems. The execution of a test
case can only validate the behavior of the whole systems
including primitives from the OS’s kernel, hardware-specific
code, and the employed hardware or simulation platform. Any
observed error can also be caused by the interplay of these low
leveled components. Hence, it is difficult to pinpoint the real
issues in the implementation of protocol itself.

In fact, the formal descriptions of a protocol are based
on abstracting from operating system- or hardware-specific
details. Instead of validation, all the properties that are desired
to be achieved by a resource synchronization protocol can be
formally proven (so-called verification) based on its formal
descriptions. One approach is based on model checking. The
considered system is first modeled in a formal language where
all the required properties are specified in logic formulas,
by which a model checker can be applied to automatically
check the property specifications. However, the system model
is difficult to be specified and there is no guarantee of
correctness. To overcome the drawbacks of above approaches,
Deductive Verification [24], [29] is applied in this work to
verify the properties of a given implementation for a resource
synchronization protocol directly.
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A. Hoare Triple and Weakest Precondition

To specify a certain property of a program, a Hoare Triple of
the form {Pre}program{Post} is formulated, where the post-
condition Post holds if the program is executed with fulfilled
precondition Pre. If a postcondition is supposed to hold in
any possible case, the precondition is just true. To check such
a property against a program, its weakest precondition that
required to satisfy the post-condition is derived. If the defined
precondition Pre implies the derived weakest precondition,
the property is proven to hold for the analyzed program. The
development of the weakest precondition is often performed
backwards through the code by iteratively transforming the
postcondition based on the code statements using the rules
defined by Hoare [26].

We provide an example, considering a function
absDiv(x,y) that divides |x| by |y| in Listing 1.
Since a division by zero is illegal (function returns −1), the

1 int absDiv(int x, int y){
2 int d1, d2, res;
3 if (x >= 0) {d1 = x;}
4 else {d1 = x * −1;}
5 if (y > 0) {d2 = y;}
6 else if (y < 0) {d2 = y * −1;}
7 else {return −1;}
8 res = d1 / d2;
9 return res;

10 }
Listing 1. One implementation of the function absDiv.

desired behavior (Property) can be formulated as follows,
where \res is the value returned by absDiv:

{y 6= 0}absDiv{\res = |x|/|y|} (1)

Furthermore, the result is expected to be non-negative since
both divisor and dividend are with non-negative values. There-
fore, a new Property can be formulated:

{y 6= 0}absDiv{\res ≥ 0} (2)

Statement 3 based on a implementation in Listing 1 concludes
the derivation of the weakest precondition for Property 1.

x ≥ 0⇒ [(y > 0⇒ x

y
=
|x|
|y| ) ∧ (y < 0⇒ x

−y =
|x|
|y| )∧

(y = 0⇒ −1 =
|x|
|y| )]∧

x < 0⇒ [(y > 0⇒ −x
y

=
|x|
|y| ) ∧ (y < 0⇒ −x−y =

|x|
|y| )∧

(y = 0⇒ −1 =
|x|
|y| )]

(3)
By replacing the = |x|

|y| with ≥ 0, the weakest precondition for
Property 2 can be obtained as well.

B. ACSL Function Contracts and Frama-C

To verify a function’s specification consisting of Hoare-
triples, also called function contract, against the source code
of the implementation of a targeted protocol, Frama-C can be

applied [2]. The plugin wp (weakest precondition) of Frama-
C provides the capabilities for static analysis and deductive
verification of source code. The contracts are formulated by
using the ANSI/ISO C Specification language (ACSL) [10]. It
allows to formally specify the behavior(s) of a function as a
function contract in the form of annotations to its source code
enclosed in special comments, i.e., //@ or /*@ ... */.

Contracts can consist of different behaviors, each of which
ensures a set of postconditions depending on different precon-
ditions or assumptions and may be declared to be complete or
disjoint. To ease the formulation of a specification, constructs
like predicates, logic functions and assertions are provided.
A predicate evaluates received parameters to either true or
false. Predicates can be used within assertions, function
contracts or other predicates. Logic functions can have any
return type and perform assignments or computations. An
ACSL function contract for the previous example is given in
Listing 2. It describes the Property 1 and Property 2. The
behaviors are declared to be disjoint, i.e., no two behaviors
can occur as a consequence of one set of inputs. When Frama-
C is invoked and given the annotated code of a function, the
contract can be verified against the implementation with wp.

1 /*@ // auxiliary predicates and logic functions
2 predicate IsZero(int x) = x == 0;
3 predicate NonZero(int x) = ! IsZero(x);
4 logic int abs div(int x, int y) = \abs(x) / \abs(y);
5 */
6 /*@ // function contract
7 behavior err:
8 requires IsZero(y);
9 ensures \result == −1;

10 behavior div:
11 requires NonZero(y);
12 ensures \result >= 0;
13 ensures \result == abs div(x,y);
14 complete behaviors;
15 disjoint behaviors;
16 */
17 int absDiv(int x, int y) {...}

Listing 2. An example of ACSL function contract using predicates, logic
functions and builtin functions (\abs)

Another ACSL concept, i.e., ghost code, enables the use of
C code within annotations, which is helpful when specifying
more complex behaviors, e.g., loops. Ghost code makes im-
plicit information explicitly visible and addressable in function
contracts without affecting the behavior of the original source
code under analysis [11]. In this work, ghost code is applied
to transfer stateful information along a call hierarchy (in
Listing 6) and to abstract from low-level operating system
mechanisms (in Listing 9).

A memory model is employed to map the analyzed high-
level memory concepts of types and pointers to a math-
ematical representation. An example is wp’s default typed
memory model. To aid the abstraction, memory locations and
pointers can be annotated with several terms and predicates
predefined in ACSL. A valid pointer p that can be safely
dereferenced, is declared by \valid(p). All the modified
memory locations are listed in the assigns clause within
the contract. A function or its behavior that has no side-
effects and assigns no non-local memory can be annotated with
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Fig. 1. Abstracted layers of the verification concept within an RTOS

assigns \nothing [10]. In addition, the ACSL annota-
tions are preprocessed and integrated into the Abstract Syntax
Tree (AST), which is built using a modified form of the C
Intermediate Language (CIL). It specifies the transformation
of C programs into a reduced subset of C, which abstracts
from low-level language concepts, supports compiler-specific
extensions and facilitates automatic analyses. Furthermore,
the program is type-checked during the transformation. After-
wards, several syntactical transformations are performed, e.g.,
a unified representation for loops and conditional branches and
the removal of “syntactic sugar” like the convenience operator
for dereferencing pointers [21], [22], [33].

Analyses with wp are launched either for a complete func-
tion contract or for its properties individually. For the selected
properties, proof obligations are generated in a wp-own syntax
that describe the goals to be proven based on the first order
logic representation of the analyzed code and its annotations.
These obligations are simplified by the builtin Qed engine,
by either fully resolving them or adding further conditions
facilitating the proof [20]. If they are not resolvable by Qed,
obligations are forwarded to an automatic SMT prover in
the form of a Why3 script [12]. If existing provers are not
sufficient, interactive proof assistants such as Coq [3] can also
be utilized to complete the verification [9].

IV. VERIFICATION FRAMEWORK

In this section, the framework for formally verifying the
resource synchronization protocols is presented. We first show
the common assumption that is made for our framework.
Afterwards, the workflow of deductive verification used in this
work is illustrated. At the end, the necessary preprocessing for
the RTOS source code are discussed.

A. Common Assumption

In this work, only the implementation of a protocol is
verified.The proposed framework is applied to verify the cor-
rectness of the implementation for all the specified properties
from a given protocol, i.e., function contracts. Any other
components that are not specified in the protocol definitionare
assumed to be functionally correct, which is shown in Figure 1.

More precisely, the proposed framework assumes that an
implemented resource synchronization protocol is based on
a correct underlying operating system.

In order to verify the implementation layer separately from
its underlying layers with deductive program verification, sev-
eral abstractions have to be applied. First of all, the verification
scope does not include the basic locking and scheduling
operations, e.g., mutexes, queues and threads. The mutually
exclusive execution of critical sections is considered as a
part of the dependencies which are assumed to be correctly
implemented. Furthermore, no notion of time is considered.
Due to the verification perspective and the assumptions on
underlying OS concepts, temporal properties are not necessary
to verify the protocol specifications. Thus, if all the determined
properties of a protocol have been verified to be implemented
correctly, the protocol in the OS is formally verified.

B. Workflow of Deductive Verification

Verifying the implementation can be clarified as neither
verifying its compiled, i.e., compiler- and architecture-specific
results, nor its behavior in execution. Instead, the source code
of the corresponding implementation should be verified with
formal specifications of all required properties of the resource
synchronization protocol. This can be achieved by deductive
program verification, which proves whether a program fulfills
a set of post-conditions when assuming a set of preconditions.

When the deductive verification approach is applied, the
implementation under verification can be written in high-level
programming languages. Additionally, to allow for the separa-
tion of protocol-specific code and relied-upon OS primitives,
the analysis should be performed in a modular way. That is, a
set of conditions for a function body should be verified based
on its statements and, for further called functions, based on
their formal specification only. These called functions either
need to be verified if they are specified by the protocol or can
be assumed to be correct if they are provided by the RTOS.
Hence, the verification can be conducted within a certain
level. The protocol-specific code that is to be verified and its
dependencies have to be distinguished clearly. Precisely, the
workflow of our framework can be described as follows:

1) Identify the subset of the targeted OS’s source code that
represents the protocol implementation.

2) Identify the resource synchronization protocol’s proper-
ties and rules, e.g., the request and release of resources.

3) Design specifications consisting of Hoare-triples for the
behavior of all utilized OS primitives.

4) Design specifications consisting of Hoare-triples for the
protocol implementation based on the formal specifica-
tion of the protocol.

5) Verify the specification of the implementation against its
source code with deductive program verification, aided
by appropriate software.

C. Preprocessing the source code

To apply Frama-C for verification, the proposed framework
only needs to utilize the cross-compilation toolchain without
building or executing the OS code. However, the source code
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of the targeted RTOS needs to be preprocessed to resolve
the inclusion dependencies and gain meta-information from
macros and customized data types [21]. In order to describe the
customized data types in the memory model, information on
the bit width is also required. Furthermore, some header files
are architecture-dependent. These headers may come with the
cross-compilation toolchain or be generated during the source
configuration.

To analyze the implementations in RTEMS, a separate
source configuration is generated for uni- and a multiprocessor
configurations, respectively. To avoid compatibility problems,
32-bit PowerPC is chosen as the target architecture for the
toolchain, which comes with SMP support in RTEMS and is
supported by Frama-C as well [21]. Building the toolchain
yields the required header stddef.h. Please note that, the
term thread used in RTEMS is the same as task in this work
and also in the literature of real-time systems.

V. VERIFICATION OF ICPP IN RTEMS

In this section, we adopt the proposed verification frame-
work to verify the Immediate Ceiling Priority Protocol (ICPP)
officially implemented in RTEMS [14], which is a well-
known synchronization protocol for uniprocessor real-time
systems [15]. It is commonly considered as an advanced
variant of the PCP [37], as it has the same upper bound
on the blocking time but less context switches. However,
what is the standard implementation of ICPP has never been
discussed. Any mismatch between the implementation and the
formally proved properties can potentially lead to an error, e.g.,
deadlock.

Throughout our verification framework, we find out that
the current implementation is in fact not deadlock free. To
reach this serious conclusion, in the following we present
how we declare the function contracts for ICPP to employ
our verification framework, and give a concrete example to
elaborate how the deadlock can happen under the current
implementation. The verified functions are listed in Table I,
where the _CORE_ceiling_mutex is the common prefix
of all function names in the table. All the required properties
of ICPP are as follows:

1) For a resource Rj , the priority ceiling is defined as
Π(Rj) = max

{
π(τi) | τi requests Rj

}
, where π(τi)

is the priority of task τi.
2) The set of the resources’ priority ceilings that a

task τi holds at time t is denoted as Cτi,t ={
Π(Rj) | τi holds Rj at time t

}

3) At any time t, a task runs at the highest priority among its
base priority and the priority ceilings of its held resources:
π(τi, t) = max

{
π(τi), Cτi,t

}

4) Whenever a task τi requests a resource Rj at time t, it is
granted access and it immediately inherits Rj’s priority
ceiling: Cτi,t = Cτi,t−1 ∪

{
Π(Rj)

}
. Task τi executes its

critical section with the priority following Rule 3.
5) When task τi releases a resource Rj at time t, its priority

ceiling is revoked from the set, i.e., Cτ,t = Cτ,t−1 \{
Π(Rj)

}
. Afterwards, task τi is executed with its original

priority if there is no following critical section, or it is

TABLE I
FUNCTIONS FOR ACQUIRING AND RELEASING A RESOURCE UNDER ICPP.

Protocol Function Purpose
_CORE_ceiling_mutex[...]

_Seize Acquire an available or self-locked resource
↪→ _Set_owner Check and inherit resource ceiling, set re-

source owner

_Surrender Release a locked resource

executed for its next critical section with the priority
derived by following Rule 3.

In the ICPP implementation of RTEMS, after a task suc-
cessfully locks the semaphore1, then the priority of the task
is elevated to the ceiling priority if the original priority is
lower than the ceiling priority. When a task or thread waits
on a semaphore, it is added into a data structure, named as
thread_queue. The priority queuing discipline just orders
the threads according to their current priority and in FIFO
order in case of equal priorities.

A. Preprocessing

Before the verification, we decouple the implementation of
ICPP into two parts: a) the protocol-specific parts that will
be analyzed, and b) the employed non-specific OS function-
alities. To lock and unlock a resource, the RTEMS Classic
API exposes the functions rtems_semaphore_obtain
and rtems_semaphore_release. These functions lock
an actual semaphore object from the passed system-wide
ID and perform the demanded actions depending on its
type. For a semaphore controlled by ICPP, the corre-
sponding functions _CORE_ceiling_mutex_Seize and
_CORE_ceiling_mutex_Surrender are called, where
mutex locks are applied as binary semaphores to protect
shared resources. Besides, another protocol-specific function
is _CORE_ceiling_mutex_Set_owner. The remaining
functions are lower-level primitives, which provide operations
to update a thread’s priority, achieve basic mutual exclusion for
data consistency or access the underlying non-protocol Core
Mutexes and queues, are assumed to be implemented correctly.

Since the implementation of a protocol may be spread
across the source base, two header files are created to bundle
these functions’ specifications: a) fc_common_stubs.h is
used for all implemented protocols; b) fc_icpp_stubs.h
contains the ICPP-specific stub definitions.

B. Abstractions and Function Contracts

The OS utilities are treated in two different ways when
they are annotated to declare their (intended) behavior in the
analysis. On the one hand, functions that have no effect in the
analyzed situation, are “bypassed”. That is, the annotations do
not declare their behavior, but assert their invocation has no
side effects and can be ignored during verification. Listing

1The locking protocols are originally for mutex, but they are realized by
binary semaphores in RTEMS, which are technically as mutex locks. Here,
we stick to the terminology of locking protocol to ’lock’ a semaphore.
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3 shows an example for bypassing calls for basic locking
pairs, where the interrupt has already been disabled when the
function is called in a uniprocessor system. On the other hand,
OS functions that perform actions that are not considered as
a part of the protocol analysis but are critical to the ICPP
implementation, have to be annotated with a description of
their intended (and considered correct) behavior. The example
in Listing 4 shows a contract that ensures the thread’s priority
either remains the same or corresponds to the passed priority
node after its execution.

1 //@ assigns \nothing;
2 RTEMS INLINE ROUTINE void CORE mutex Acquire critical(
3 CORE mutex Control *the mutex,
4 Thread queue Context *queue context );

Listing 3. Bypassing of a system utility function.

1 /*@
2 requires \valid(the thread) && \valid(priority node);
3 assigns *the thread, g thread inherited, g prio node;
4 ensures g thread inherited == the thread && g prio node ==

priority node;
5 behavior inherit higher:
6 assumes priority node−>priority < Current Priority(the thread);
7 ensures Current Priority(the thread) == priority node−>priority;
8 behavior inherit lower or equal:
9 assumes priority node−>priority >= Current Priority(the thread);

10 ensures Current Priority(the thread) ==
11 \old(Current Priority(the thread));
12 disjoint behaviors;
13 complete behaviors;
14 */
15 void Thread Priority add(
16 Thread Control *the thread,
17 Priority Node *priority node,
18 Thread queue Context *queue context );

Listing 4. The system utility function adds a priority node to a thread.

C. Contracts for ICPP-Seize

Once all necessary OS functions have been provided with
contracts, the actual behaviors of the protocol operations seize
and surrender can be specified. The following two properties
are verified for seize in a pure ICPP:
• A task requesting a resource is granted the resource.
• After a resource is granted, the task runs on the highest

ceiling priority of all currently held resources.
The implementation in RTEMS considers and checks more

possible cases, which are not formally described by the
protocol specifications. Overall, these additional scenarios lead
to further properties:
• Acquiring a resource fails, if its priority ceiling is lower

than the acquiring thread’s base priority.
• Resources may be acquired again by the holding thread

before release. The level of self-nested access is tracked.
• Acquiring a locked resource enqueues the thread into the

resource’s priority-based waiting queue. Such a request
operation can be either successful by obtaining the re-
source eventually or failed if the request times out.

The check of the acquiring task’s base priority is a le-
gitimately safe measure to compensate incorrectly priority

ceilings setting or unallowed resource accesses. Locking an
already locked resource does not affect the ICPP. The last
case happens only if a task suspends while holding a resource.
This behavior is not considered in the definition of ICPP
and would break the property. Towards this, the precondition
is necessary that the requested resource is either available
or locked by the current requesting task (Listing 5, ll. 4-
5), which matches the formal property of ICPP, i.e., once
a task starts its execution, all required resources must be
available [14]. Therefore, the third case in the list is excluded
in the analysis, which makes annotations for the responsible
function _CORE_mutex_Seize_slow unnecessary.

These collected properties can be formulated as a function
contract for the function _CORE_ceiling_mutex_Seize,
shown in Listing 5. The preconditions in Lines 2-3 re-
quire that the pointers to the mutex and the executing
thread are valid, i.e., dereferenceable, and their memory
regions do not overlapped. The precondition in Lines 4-5
expresses the invariant for a seize operation under ICPP,
that the requested resource is free, and adds the situation
that the shared resource has been acquired by the requesting
task already. The default behavior of a successful acqui-
sition, behavior seize_successful, ensures that the
resource is locked by the requesting thread and the resource’s
ceiling priority is inherited. To ensure that, the inheritance is
performed from the acquired resource to the requesting thread,
the predicate PriorityInherited (Listing 6) is intro-
duced. It checks if the passed thread and priority are the same
as those set in the contract of _Thread_Priority_add
(Listing 4) and whether the priority of the thread is updated
after the change of the priority aggregation. The inheritance
does not necessarily lead to a priority raise, since the thread
may already hold a resource with a higher ceiling.

Within the seize function, the second relevant protocol-
specific function from Table I is the _Set_owner function
in Listing 7. It performs the check of the resource ceiling.
If valid, the executing thread inherits the acquired resource’s
priority ceiling and is set as the resource owner. If the resource
ceiling is violated due to the thread’s priority, the operation
fails. The conditions for the ceiling and the ceiling priority
inheritance are known from the invoking seize function.

D. Contracts for ICPP-Surrender

The contract for the ICPP surrender function, i.e.,
_CORE_ceiling_mutex_Surrender, can be designed
in a similar sense. Since the ICPP does not allow threads to be
enqueued and waiting for the shared resource, the contract is
constructed with a precondition that the resource’s queue has
to be empty. The revocation of the formerly inherited priority
is guaranteed by another predicate, i.e., PriorityRevoked.
The thread’s dynamic priority after surrendering the resource
is either lower than before, or remains the same if another
resource with the same ceiling is still held.

E. Verification and Mismatch

Due to the modular analysis, the seize function can
be analyzed without inspecting the code of the called
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1 /*@
2 requires \valid(the mutex) && \valid(executing);
3 requires \separated(the mutex, executing);
4 requires Mutex Owner(the mutex) == NULL ||
5 Mutex Owner(the mutex) == executing;
6 behavior seize ceiling violation:
7 assumes Mutex Owner(the mutex) == NULL && Base Priority(

executing) < Mutex Priority(the mutex);
8 ensures \result == STATUS MUTEX CEILING VIOLATED;
9 behavior seize successful:

10 assumes Mutex Owner(the mutex) == NULL && Base Priority(
executing) >= Mutex Priority(the mutex);

11 ensures PriorityInherited(executing, Mutex Priority(the mutex));
12 ensures Current Priority(executing) <= Mutex Priority(the mutex);
13 ensures Mutex Owner(the mutex) == executing;
14 ensures \result == STATUS SUCCESSFUL;
15 behavior seize nested:
16 assumes Mutex Owner(the mutex) == executing;
17 assumes nested == CORE recursive mutex Seize nested;
18 assigns the mutex−>Recursive.nest level;
19 ensures Nest Level(the mutex) == \old(Nest Level(the mutex)) + 1;
20 ensures \result == STATUS SUCCESSFUL;
21 disjoint behaviors;
22 */
23 RTEMS INLINE ROUTINE Status Control

CORE ceiling mutex Seize(
24 CORE ceiling mutex Control *the mutex,
25 Thread Control *executing,
26 bool wait,
27 Status Control ( *nested )( CORE recursive mutex Control * ),
28 Thread queue Context *queue context
29 ) { /*...*/
30 //@ calls CORE recursive mutex Seize nested;
31 status = ( *nested )( &the mutex−>Recursive );
32 /*...*/ }

Listing 5. Contract declaring the ICPP functionality for the seize operation

1 /*@ ghost // variables declared in coremuteximpl.h
2 extern Thread Control *g thread inherited;
3 extern Thread Control *g thread revoked;
4 extern Priority Node *g prio node;
5 extern bool prioritiesUpdated; */
6 /*@ predicate PriorityInherited(Thread Control *t, Priority Control p) =
7 t == g thread inherited && p == g prio node−>priority &&

prioritiesUpdated;
8 */

Listing 6. The predicate PriorityInherited checks priority inheritance.

_CORE_ceiling_mutex_Set_owner. Instead, only its
contract is used. Once the function under analysis fulfills
that contract’s preconditions, its postconditions are assumed
to be fulfilled. This analysis successfully proves all stated
properties. However, when attempting to verify the called set
owner function, the verification fails to prove the ceiling check
and parts of the successful acquisition. The reason for the
incapability to fulfill the conditions can be tracked down with
further annotations.

After a successful ceiling check, the task’s base priority
is assumed to be lower or equal to the resource’s ceiling.
However, this assertion cannot be verified. We note that the
resource’s ceiling is not checked against the thread’s base
priority, but against its current dynamic priority derived from
the task’s priority aggregation. However, a resource’s ceiling
is required to be set as the highest base priority of all tasks
that are requesting it. This mismatch may lead to a deadlock
by erroneously denying legitimate nested resource access if
resources are requested with descending order of priority

1 /*@
2 requires \valid(the mutex) && \valid(owner);
3 requires \separated(the mutex, owner);
4 behavior set owner ceiling violation:
5 assumes Base Priority(owner) < Mutex Priority(the mutex);
6 ensures \result == STATUS MUTEX CEILING VIOLATED;
7 behavior set owner successful:
8 assumes Base Priority(owner) >= Mutex Priority(the mutex);
9 assigns *owner, *the mutex, prioritiesUpdated, g thread inherited,

g prio node;
10 ensures Current Priority(owner) <= Mutex Priority(the mutex);
11 ensures PriorityInherited(owner, Mutex Priority(the mutex));
12 ensures Mutex Owner(the mutex) == owner;
13 ensures \result == STATUS SUCCESSFUL;
14 disjoint behaviors;
15 complete behaviors;
16 */
17 RTEMS INLINE ROUTINE Status Control

CORE ceiling mutex Set owner(
18 CORE ceiling mutex Control *the mutex,
19 Thread Control *owner,
20 Thread queue Context *queue context ){/*...*/}

Listing 7. Contract for the _Set_owner function.

ceilings. We give an example to elaborate such a case:
Consider two tasks τ1 and τ2 with π(τ1) > π(τ2) and

two resources R1 (used by both tasks) and R2 (used by
τ2 only) with Π(R1) = π(τ1) and Π(R2) = π(τ2). If τ2
acquires R1, it inherits its priority ceiling and executes with
the promoted dynamic priority π(τ1). If it requests the second
resource R2, its dynamic priority is higher than Π(R2), which
leads to a denial of the resource access by the implemented
ceiling check. The consequence of this is a deadlock, i.e.,
τ2 holds R1 but cannot successfully lock semaphore R2 due
to the implemented ceiling check, whilst τ1 cannot enter the
critical section guarded by R1. Such execution behavior with
a deadlock can also be demonstrated by a running example in
RTEMS, which will be released on Github. An acquisition in
the opposite order would be accepted.

To correct the mismatch, an adaption to the priority ceiling
check is proposed in Listing 8 for coremuteximpl.h.
Instead of checking the potentially already increased dynamic
priority, it uses the thread’s base priority for the comparison to
the newly requested resource’s priority ceiling. After applying
the correction, all stated properties are successfully verified.

1 if (
2 owner->Real priority.priority
3 < the mutex−>Priority ceiling.priority
4 ) {
5 Thread Wait release default critical( owner, &lock context );
6 CORE mutex Release(&the mutex−>Recursive.Mutex,

queue context);
7 return STATUS MUTEX CEILING VIOLATED;
8 }
9 //@ assert Base Priority(owner) >= Mutex Priority(the mutex);

Listing 8. Proposed correction for the priority ceiling check.

VI. VERIFICATION OF MRSP IN RTEMS

In this section, we verify the MrsP [13] officially imple-
mented in RTEMS, which is designed for semi-partitioned
fixed priority task systems on multiprocessors. We adopt our
verification framework to ensure whether the corresponding
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implementation derives the specified properties of the MrsP.
One highlight of the MrsP is the help mechanism that employs
a spin-waiting task to progress the execution of the current
blocked task which holds the resource. However, a seize
operation can be performed while being scheduled in the
presence of the help mechanism. This requires the priority
ceiling of the seized resource to be determined with a caution,
which is of key interest in this work.

The protocol functions that are going to be verified are listed
in Table II, where _MRSP is the common prefix of all function
names in the table. From the verification perspective, similar
preprocessing in Sec. V-A is necessarily operated for the
implementation of MrsP as well. The help mechanism can be
assumed to be implemented correctly as other OS utilities, as
long as dynamic priorities and ceilings are managed correctly.
In addition, the verification is based on one arbitrary thread
that performs the analyzed operation. Any other threads which
might interact with it are assumed to behave correctly. A
successful verification implies that this assumption holds as
well. The properties of the original MrsP are as follows:

1) Each task τi is assigned to a specified processor Pm,
and critical sections are executed locally, unless the help
mechanism is applied.

2) Each resource Rj has one local priority ceiling for each
processor Pm, which is defined by the highest priority
of every task assigned to Pm that requests the resource:
Π(Rj , Pm) = max

{
π(τi) | τi requests Rj on Pm

}
.

3) For local resources that are not shared between proces-
sors, the ICPP rules are applied.

4) For global resources, the ICPP inheritance mechanism is
applied with their local priority ceilings. If the requested
global resource is not available, the requesting tasks spin-
wait on their own processor in a FIFO order.

5) Help mechanism: a spin-waiting task for accessing to a
resource must be able to help (by offering its computation
time to) the current owner of the resource in case the
owner is preempted within the critical section.

In fact, the help mechanism in the original design of the MrsP
by Burns and Wellings [13] can cause additional local block-
ing, since threads are allowed to acquire priority-promoting
resources while being helped on other processors, which may
preempt threads dispatched on their home processors. Gar-
rido et al. [27] suggested to resolve this issue by postponing
the effect of inherited priorities to the time when the thread
returns to its home processor. The verified implementation
coincidentally realizes the same concept by dispatching idle
threads to run subsidiary for threads that migrate to seek help
by Catellani et al. [16].

A. Abstractions and Function Contracts

The multiprocessor setup requires further abstractions and
adaptions. While some OS utilities’ stub contracts designed
for the verification of ICPP can be reused, the others need to
be wrapped with a new contract. For example, the function in
Listing 9 retrieves a thread’s home node, i.e., the scheduler
node for its original processor. However, it is retrieved as
a chain element via several nested function calls and then

TABLE II
FUNCTIONS FOR ACQUIRING AND RELEASING A RESOURCE UNDER MRSP.

Protocol Function Purpose
_MRSP[...]

_Seize Acquire an available or wait for a
locked resource

↪→ _Claim_ownership Performed if the resource is free
↪→ _Wait_for_ownership Performed if the resource is used on

another processor
↪→ _Raise_priority Always performed to run at the re-

source’s local ceiling

_Surrender Release a locked resource and pass
it to the first (if any) waiting task

extracted by a macro. This macro is expanded over multiple
definitions and is eventually based on a compiler-specific offset
function, which is not able to be formulated in ACSL contracts
or logic functions.

Since the derivation reaches deeply into the OS specific
functions, it becomes a target for abstraction. Instead of tracing
the complete call and macro hierarchy, we declare a global
ghost pointer g_homenode of the type Scheduler_Node
to represent the executing thread’s home scheduler node in the
context of the verification. The getter function is specified
by an ACSL contract to return a reference to that scheduler
nodein Listing 9. The ghost object is then said to be valid by
the preconditions of the verified functions, which ensures the
validity of dereferencing and access to its fields. Therefore,
we consider the ghost object is equivalent to a scheduler node
retrieved by the original utility function.

1 // variable defined in mrspimpl.h
2 //@ ghost extern Scheduler Node *g homenode;
3 /*@ requires \valid(the thread);
4 assigns \nothing;
5 ensures \result == g homenode; */
6 RTEMS INLINE ROUTINE Scheduler Node *

Thread Scheduler get home node(const Thread Control *the thread
);

Listing 9. Abstraction of the function that returns a thread’s home node.

We also need to abstract the local resource priority ceilings
for each processor. A task has to raise its priority to the local
priority ceiling of the resource that is requested. From the
verification perspective, the task’s assigned processor may be
arbitrary, but fixed, and can be modeled by another ghost
variable const int g_core. The maximum number of
processors configured in the architecture specific cpu.h files
is 32, which can be formulated as a constraint for the variable
g_core. It also defines the amount of valid entries for a
resource’s local ceilings. The detailed function contract is
omitted here due to the space limitations.

The inheritance and revocation of priorities are
modeled by the predicates PriorityInherited and
PriorityRevoked similarly to the verification of ICPP.

B. Contracts for MrsP-Seize

When designing the contracts for the seize operation and its
corresponding functions, a ceiling check similar to the func-
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tion, i.e., _CORE_ceiling_mutex_Set_owner in ICPP
is detected. Inside _MRSP_Raise_priority, the priority
of the executing thread is checked against the local ceiling of
the requested resource. The comparison is performed with the
current scheduler node’s dynamic priority rather than with the
thread’s base priority. As a result, the current implementation
of the seize operation of MrsP in RTEMS does not allow
an arbitrary sequence of resource requests if they are not
properly nested. However, the implementation is valid only
under one assumption: a thread acquiring nested resources
always requests them in a non-descending order of priority
ceilings. The assumption is translated to a precondition in the
successful behaviors of the affected functions.

A resource that is additionally acquired while being helped
by a waiting thread does not necessarily have a priority ceiling
for the foreign processor to which the thread has migrated.
Instead, the migrated thread always inherits the resource’s
local ceiling stored for its home processor and does not affect
the priority of the helping thread. This feature indicates that
the ceiling check correction in Section V-E could be applied
for multiprocessor systems as well. As long as the thread still
holds the resource it is helped with, it stays in the migrated-to
processor and runs at a legitimate priority. The inheritance of
a new ceiling becomes effective as soon as the thread returns
back to its home scheduler.

C. Contracts for MrsP-Surrender

The surrender operation for MrsP has to be handled care-
fully due to possible waiting threads. The contract is shown
in Listing 10, where the the possible waiting tasks can
revoke the surrendered resource’s priority ceiling. Threads
waiting for the resource spin in the corresponding FIFO
queue. Therefore, based on the contents of that queue, we can
distinguish the behavior with the assistance of the predicate
MrsPThreadsWaiting in Listing 11. In case there is
no waiting thread, the resource owner (which corresponds
to the queue owner) is simply reset to NULL. On the
other hand, if the waiting queue is not empty, the first
thread is set to be the succeeding owner. These operations
are ensured by the stub contract for the queue’s surrender
function _Thread_queue_Surrender_sticky in List-
ing 12. This function ensures that the ownership is passed
to the next thread and the affected tasks’ priorities are up-
dated.The thread as the new resource owner can be abstracted
by the ghost variable g_new_owner. In both cases, the
surrendering thread loses the inherited priority.

The actual transfer of the ownership happens in the counter-
part during the waiting thread’s seize operation, by the queue
function _Thread_queue_Enqueue_sticky. When the
function is called successfully, the calling thread is guaranteed
to receive the ownership of the queue. Furthermore, the
waiting thread is expected to have raised its priority to the
resource’s local priority ceiling as expressed by the annotations
of the seize operation. Therefore, the surrendering thread does
not have to take care of priority manipulations for other tasks.

1 /*@
2 requires \valid(mrsp) && \valid(&mrsp−>Wait queue.Queue) &&
3 \valid(executing) && \valid(g homenode);
4 behavior surrender no successor:
5 assumes MrsP Owner(mrsp) == executing;
6 assumes ! MrsPThreadsWaiting(mrsp);
7 ensures MrsP Owner(mrsp) == NULL;
8 ensures PriorityRevoked(executing, MrsP Ceiling(mrsp));
9 ensures Executing Priority >= \old(Executing Priority);

10 ensures \result == STATUS SUCCESSFUL;
11 behavior surrender successor:
12 assumes MrsP Owner(mrsp) == executing;
13 assumes MrsPThreadsWaiting(mrsp);
14 ensures PriorityRevoked(executing, MrsP Ceiling(mrsp));
15 ensures Executing Priority >= \old(Executing Priority);
16 ensures MrsP Owner(mrsp) == g new owner;
17 ensures \result == STATUS SUCCESSFUL;
18 behavior surrender fail:
19 assumes MrsP Owner(mrsp) != executing;
20 ensures \result == STATUS NOT OWNER;
21 disjoint behaviors;
22 complete behaviors;
23 */
24 RTEMS INLINE ROUTINE Status Control MRSP Surrender(
25 MRSP Control *mrsp,
26 Thread Control *executing,
27 Thread queue Context *queue context ){/*...*/}

Listing 10. Function contract of the MrsP surrender operation.

1 /*@ predicate MrsPThreadsWaiting(MRSP Control *m) =
2 m−>Wait queue.Queue.heads != NULL;
3 */

Listing 11. Helper predicate to determine if a resource wait queue is empty.

D. Verification with Frama-C

As explained earlier, the official implementation of the seize
operation of MrsP in RTEMS does not allow an arbitrary
sequence of resource requests if they are not properly nested.
We have to additionally introduce an assumption, i.e., a thread
acquiring nested resources always requests them in a non-
descending order of priority ceilings, together with the derived
function contracts. After applying the remedy of ICPP and
the introduced assumption, all the implemented functions are
successfully verified with Frama-C and wp, i.e., satisfying
the original definition of MrsP. We also ensure that the help
mechanism conforms to the suggestions proposed by Garrido
et al. [27]. In case the implementation of the ceiling check
and the priority retrieval are changed, the annotations can be
adapted and the verification can be reattempted.

1 /*@
2 requires \valid(queue);
3 requires queue−>owner == NULL;
4 assigns queue−>owner, prioritiesUpdated;
5 ensures queue−>owner == g new owner;
6 ensures prioritiesUpdated;
7 */
8 void Thread queue Surrender sticky(
9 Thread queue Queue *queue,

10 Thread queue Heads *heads,
11 Thread Control *previous owner,
12 Thread queue Context *queue context,
13 const Thread queue Operations *operations );

Listing 12. Stub contract for the surrender operation on a queue for MrsP.
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TABLE III
DERIVED PROOF GOALS AND REQUIRED TIME OF THE VERIFICATION OF

ICPP AND MRSP.

Proof Goals Time
Qed Alt-Ergo

ICPP Functions 51 44 ≈ 8, 6s

MrsP Functions 75 27 ≈ 7s

VII. OVERHEAD AND DISCUSSION

In this section, we report the required overhead of verifying
ICPP and MrsP supported in RTEMS. Afterwards, we discuss
the challenges of verifying synchronization protocols and
extensibility of the proposed framework.

A. Annotation and Runtime

To verify the protocol-specific functions, we annotate every
encountered function, together with appropriate abstractions
from the OS’s details. The annotations for the protocols and
OS utilities comprise 318 lines in total which subdivide into
123 lines for ICPP, 186 lines for MrsP and 9 lines for
commonly used annotations. These numbers only count ACSL
annotations, excluding copied function declarations, blank
lines and lines containing only opening / closing symbols for
comments. The corresponding source code can be reviewed
in [4]. Please note that the verification framework does not
build or execute the annotated source code, so the annotation
is only for the verification purpose.

To determine the required time for performing the verifica-
tion, we executed Frama-C without GUI and verify the proto-
col functions by passing them via the argument -wp-fct
f1,f2,...,fn to Frama-C. The process was executed
single-threaded on an Intel Core i5-4200U CPU with 12 GB
main memory. The computation time was captured by the
time command and includes preprocessing, transformation
and normalization of the protocol implementation, the gener-
ation and simplification of proof obligations as well as the
delegation of selected proofs to Alt-Ergo [1]. The results for
derived proof goals and required time of the verification of
ICPP and MrsP are listed in Table III.

B. Discussion

Although there are corresponding functions for the acquire
and release operations in both ICPP and MrsP protocols
with ..._Seize and ..._Surrender, the distinction of
protocol-specific functions is still challenging. In RTEMS, the
implementations of the protocol rules are spread over vari-
ous sub-functions. Furthermore, the implementation includes
several additional checks and actions, which are not formally
described by the protocol specifications.

For ICPP, several additional check mechanisms are added:
• check the correctness of setting the resource’s priority

ceiling,
• check if the task reclaims an already locked resource or

claims a locked resource by enqueueing,
• check if the task is allowed to access the resource, and

• the resource owner actively switches its state to blocked,
i.e., self-suspending.

For MrsP, the priority ceiling check is included as well, along
with an extension which runs idle tasks to substitute helped
tasks during their migration phase to improve nested resource
access.

These rules above have to be split across the function
contracts, where a called function has to be one part of
the caller’s function contract. The call for one function can
generate a call chain of protocol-specific functions. A leaf
function’s preconditions have to be ensured by the calling
functions. In turn, its ensured postconditions can be relevant
to the root function along with its contract.

Our case studies show that a protocol is not necessarily im-
plemented exactly as specified. In practice, the implementation
has to cover a broad variety of possible configurations, e.g.,
a task requests a self-locked resource or the resource owner
is self-suspending. The approach to handle such difference in
this work is to require ICPP’s invariant as a precondition. Then
the protocol-conforming subset of the actual implementation
can be verified efficiently.

With the introduced techniques, further properties could
be verified. For example, the basic locking which was not
considered as part of the verification, could be included.
A possible approach is to introduce a boolean ghost status
variable for each locking level, e.g., for the thread-, mutex-
and MrsP-queues. Since the analyzed functions are called
from an API-function, the state of the locks at the time of
the call must be included in the preconditions of the called
functions. The contracts of the locking primitives that are
currently bypassed could be changed to ensure the correct state
of their affected locks in the postcondition. The contracts of
the protocol functions could then express the properties of the
locks by referring to the ghost variables’ states. To complete
the specification of memory assignments, some top-level func-
tions, e.g., _MRSP_Seize and _MRSP_Surrender would
have to be complemented with assigns clauses in order to
make sure that they have no unspecified side-effects. Such
annotations become important if these functions are included
in a possible verification of the invoking API functions.

The proposed verification framework can also be applied
on other OSes, with the assumption that all the low-layer
functions are implemented correctly in the targeted OS, e.g.,
mutexes, queues, and threads. For each targeted OS, the
definitions of the used helper predicates and logic functions
have to be adapted. Once the necessary OS utilities are ab-
stracted, these basis can be used to verify the implementations
of multiple protocols. For each implemented protocol, the
properties derived from the formal definition for the seize and
the surrender operation should be portable to the targeted OS
with reasonable effort. In the end, the function contracts for
the detailed implementation of a dedicated resource synchro-
nization protocol can be designed and verified.

VIII. RELATED WORK

In this section, related work on formal verification (in
general, for RTOSes, and for specific programs) is presented
to position the contribution of this work.
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A. Formal Verification

Frama-C has been widely used for various applications.
For example, Efremov et al. [23] proposed a method for
the deductive verification of Linux kernel functions, where
a new plugin was developed due to the incompatibilities of
Frama-C and certain kernel constructs. A similar approach to
deductive verification, the Verifier for Concurrent C (VCC),
was developed by Cohen et al. [19]. The program correctness
is verified to hold for every possible concurrent execution
of threads during runtime, which is enabled by tracking the
ownership of (non-volatile) data. VCC has been applied to
partially verify Microsoft’s Hyper-V Hypervisor [32] and a
small exemplarily implemented Hypervisor [5]. Deductive
verification is also applied for further languages aside from C.
An example is the Prusti project [7], which enables deductive
program verification for Rust by function contracts similar to
those adopted in this paper.

B. Formal Verification of Operating Systems

Several approaches have been developed and evaluated that
only focus on the formal verification of operating systems. One
concept aims at designing and implementing operating system
kernels with complete formal verification from the beginning,
instead of attempting to verify existing kernels. A concrete
example is seL4, which is presented by Klein et al. [30].
The microkernel is verified via refinement steps from the
abstract specification represented by a Haskell prototype over
the executable specification in Isabelle/HOL to a manually
optimized C version. Every layer below the verified source
code of the microkernel, from the compiler to the hardware,
is assumed correct and not target of the verification. Gu et
al. [28] presented an architecture for concurrent operating
system kernels consisting of multiple layers. The code of each
system layer is verified with Coq. As a demonstration of the
architecture, the kernel mC2 was developed for multiprocessor
x86 computers, supporting fine-grained locking, threads with
suspension and serving as a hypervisor.

An approach that targets RTEMS has been presented by
Gadia et al. [25]. In order to verify the implementation of
the Priority Inheritance Protocol (PIP) with a software model
checker, it was remodeled in Java along with the relevant asso-
ciated scheduling mechanisms. PIP- and race-condition-related
safety properties were included as assertions and the resulting
model was investigated with Java Pathfinder. During the
evaluation, an implementation error related to nested resource
sharing was confirmed and fixed. Additionally, Almatary et
al. [6] proposed an approach to reduce the kernel calls when
implementing ICPP in POSIX, where the implementation is
verified by using model checking.

Recently, Nicole et al. [34] have proposed an approach
to automatically verify two properties of a given operating
system: the absence of runtime errors (ARTE) and privilege
escalation (APE). The verification target is represented by the
binary executable. An abstract interpreter was developed to
process the executable and determine all possibly reachable
states of registers and memory. Based on this, ARTE and APE
can be verified automatically. Compared to verifying source

code, this approach is highly specific to the instruction set
architecture for which the image was built, and the verification
is restricted to critical, but fixed, low-level properties.

C. Formal Verification of Real-Time Programs

There are some works focusing on verifying specific real-
time programs that utilize locks as well. Chaki et al. in [17]
proposed an approach to verify safety and deadlock freedom
of programs with PIP locks. Their approach is based on
sequentialization. That is, a periodic program is converted
into an equivalent (non-deterministic) sequential program at
first. Afterwards, a model checker is applied for verifying
the correctness. In addition, Suresh et al. in [39] proposed
a technique that can statically detect data races in periodic
real-time programs with locks on uni-processor systems. Their
approach is based on a small set of rules that exploit the
priority, periodicity, locking, and timing information of tasks
in the program.

They focused on verifying specific programs that use locks
with concrete multiple tasks and resources. However, in this
work, we proposed a framework that can be applied to verify
whether the properties of the targeted resource synchronization
protocol are fulfilled in the corresponding implementation,
which is independent from specific use cases.

IX. CONCLUSION

In real-time systems, various resource synchronization pro-
tocols have been proposed since the 1990s for concurrent tasks
that share resources. Most of the studies focus on the worst-
case timing analysis in theory. Only a few work discusses
the realization details and pitfalls in practice. Although many
protocols are nowadays supported in different RTOSes, how
to ensure the implemented protocols (e.g., often from many
contributors) can always comply the proved properties is a
challenging problem to the community.

In this work, we present a pragmatic framework to verify
the existing protocol implementations in RTOSes. We propose
to specify the intended behaviors of the implementation in
the form of function contracts. The deductive verification
is applied to verify whether each implemented component
matches its formally described properties under the assumption
that the underlying primitives are implemented correctly. We
propose a verification framework to enable modular formal
verification of functional components. The analysis target is
defined and isolated from its dependencies, so that the work-
flow of the proposed framework is conceptually independent
to the platform.

The case studies for ICPP and MrsP implemented in
RTEMS show the applicability of the proposed verification
framework to an actual RTOS. Moreover, the discovery of
the mismatches in the RTEMS implementations shows its
functionality. After a proposed correction, the implementations
of ICPP and MrsP (under one additional assumption) can
be successfully verified. With the success of verifying the
protocols, we plan to verify other system software in different
RTOSes for future work.
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and V. Prevosto. ACSL: ANSI/ISO C Specification Language.
Available at https://frama-c.com/download/acsl-implementation-22.0-
Titanium.pdf, version 1.16 for Frama-C 22.0.

[11] A. Blanchard. Introduction to C program proof with Frama-C and its
WP plugin. Available at https://allan-blanchard.fr/publis/frama-c-wp-
tutorial-en.pdf.
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