
Scheduling Periodic Segmented Self-Suspending
Tasks without Timing Anomalies

Ching-Chi Lin1 and Mario Günzel1 and Junjie Shi1 and Tristan Taylan Seidl1 and
Kuan-Hsun Chen2 and Jian-Jia Chen1

1TU Dortmund, Deaprtment of Computer Science, Dortmund, Germany
2University of Twente, Computer Architecture and Embedded Systems, Twente,

Netherlands

Citation: 10.4230/LIPIcs.ECRTS.2023.10

BIBTEX:
@inproceedings{DBLP:conf/rtas/LinGSSCC23,

author = {Ching{-}Chi Lin and
Mario G{\"{u}}nzel and
Junjie Shi and
Tristan Taylan Seidl and
Kuan{-}Hsun Chen and
Jian{-}Jia Chen},

title = {Scheduling Periodic Segmented Self-Suspending Tasks without Timing
Anomalies},

booktitle = {29th {IEEE} Real-Time and Embedded Technology and Applications Symposium,
{RTAS} 2023, San Antonio, TX, USA, May 9-12, 2023},

pages = {161--173},
publisher = {{IEEE}},
year = {2023},
url = {https://doi.org/10.1109/RTAS58335.2023.00020},
doi = {10.1109/RTAS58335.2023.00020},
timestamp = {Wed, 28 Jun 2023 16:25:05 +0200},
biburl = {https://dblp.org/rec/conf/rtas/LinGSSCC23.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}

}

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

10.4230/LIPIcs.ECRTS.2023.10

Scheduling Periodic Segmented Self-Suspending
Tasks without Timing Anomalies

Ching-Chi Lin ∗, Mario Günzel∗, Junjie Shi∗, Tristan Taylan Seidl∗, Kuan-Hsun Chen†, and Jian-Jia Chen∗
∗ Technical University of Dortmund, Dortmund, Germany

Email: {chingchi.lin, mario.guenzel, junjie.shi, tristan.seidl, jian-jia.chen}@tu-dortmund.de
† University of Twente, Enschede, Netherlands

Email: k.h.chen@utwente.nl

Abstract—Timing guarantee is an important aspect and must
be ensured for every individual task in real-time systems. Even
for periodic tasks, providing timing guarantees for segmented
self-suspending tasks is challenging due to timing anomalies,
i.e., the reduction of execution or suspension time of some jobs
enlarges the response time of another job. The existing worst-
case response time analyses for sporadic self-suspending tasks
are only over-approximations and lead to overly pessimistic
results. In this paper, we focus on eliminating timing anomalies
without negative impacts on the worst-case response time (WCRT)
analysis when scheduling periodic tasks with segmented self-
suspension behavior. We propose two treatments, segment release
time enforcement and segment priority modification, and prove that
both treatments eliminate timing anomalies. In our evaluation,
the proposed treatments achieve higher acceptance ratios in
terms of schedulability compared to state-of-the-art scheduling
algorithms. We also implement the segment-level fixed-priority
scheduling mechanism on RTEMS, and showcase the validity of
the treatment segment priority modification.

Index Terms—real-time systems; segmented self-suspending
task; segment-level fixed-priority scheduling; timing guarantee.

I. INTRODUCTION

In real-time systems, timing guarantees for the individual
tasks must be ensured. In particular, to determine if a given
task set can be scheduled by an algorithm, a schedulability
test corresponding to the algorithm must be performed. Al-
ternatively, the worst-case response time (WCRT) of a task
can be first analyzed and used to validate whether a deadline
violation may occur.

The validation of timing guarantees is impeded if tasks self-
suspend. In addition to being preempted by another task with
a higher priority, a self-suspending task may cease to progress
and yield the processor when it self-suspends. Self-suspension
can arise due to I/O- or memory-intensive tasks [29], [30],
multiprocessor synchronization [9], hardware acceleration by
using coprocessors and computation offloading [35], [37],
[44], scheduling of parallel tasks [18], [46], real-time tasks in
multicore systems with shared memory [27], timing analysis of
deferrable servers [16], [34], dynamic reconfigurable FPGAs
for real-time applications [7], real-time communication for
networks-on-chip [45], etc. The suspension time between two
consecutive computation segments can range from a few
microseconds to a few hundreds of milliseconds (or even
seconds) depending on the application.

τ1

τ2

0 2 4 6 8 10

(a) Nominal schedule

τ1

τ2

0 2 4 6 8 10

(b) Online schedule

Fig. 1: Example of a timing anomaly. Assume that segments
from τ1 have higher priorities than segments from τ2. (a)
A nominal schedule generated based on the WCET and the
maximum suspension time of the segments; (b) Task τ2 misses
its deadline due to the suspension interval from τ1 finishes
earlier at time 4.5 instead of 5.

Due to the prevalence of self-suspensions in many scenarios
for real-time or cyber-physical systems, scheduling tasks with
self-suspension has been an important research topic since its
first appearance in 1988 [40]. However, as explained by the re-
view paper by Chen et al. [14], “allowing tasks to self-suspend
... conversely has the effect that key insights underpinning the
analysis of non-self-suspending tasks no longer hold.”. The
unintuitive timing behavior of self-suspending tasks resulted
in many flaws in the literature [14], [20], [21].

For tasks without self-suspending behaviors, the WCRT is
achieved when all jobs execute for their worst-case execution
time (WCET). However, self-suspending behavior can lead to
timing anomalies, i.e., the reduction of execution or suspension
time of some jobs enlarges the response time of another
job. Since the actual execution/suspension time of a segment
can be less than its WCET/maximum suspension time, its
succeeding segments may become ready for execution earlier
and interfere with segments from other tasks. Such timing
anomalies can be demonstrated by an example in Figure 1, in
which shorter suspension of a higher-priority task may result in
more interference of a lower-priority task. Counterintuitively,
enforcing the suspension time to the maximum can improve
the schedulability [41].

Two self-suspension models are mostly studied: the seg-
mented and dynamic self-suspension model. The segmented
model [8], [11], [12], [21], [26], [31], [36], [38], [41], [49],
[51] assumes a fixed iterating pattern of execution segments
and suspension intervals. The dynamic model [3], [5], [13],

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

[17], [20], [23], [24], [28], [34] allows arbitrary execution and
suspension interleaves, meaning that a job can self-suspend as
long as its total suspension time does not exceed its maximum
suspension time. The dynamic self-suspension model can
cater to any task model with self-suspending behavior, but
its flexibility results in a very pessimistic analysis if the
suspension behaviors of the tasks can be described more
precisely using the segmented self-suspension model. Detailed
discussions of self-suspension can be found in the survey
papers by Chen et al. [14], [15].

Furthermore, von der Brüggen et al. [47] provide a “sys-
tematic view of the value of special cases and the possible
drawbacks of placing too much emphasis on generalization in
real-time systems research”. In their definition,

Behaviour relaxation is a generalization that en-
ables additional behaviour to be modelled. More
specifically, model A is a behaviour relaxation of
model B if the runtime behaviours of the systems
described by model A are strict supersets of the
runtime behaviours of the corresponding systems
described by model B.

They demonstrate that the sporadic real-time task model is a
behavior relaxation against the periodic real-time task model
and the dynamic self-suspension model is also a behavior
relaxation against the segmented self-suspension model.

As reported in an empirical study [2], periodic task ac-
tivation is a common industry practice, with 82% of the
investigated systems following this approach. Despite the
prevailing research results of self-suspending tasks, most of
them focus on the sporadic real-time task model, where the
jobs of a task are specified with a minimum inter-arrival time.
To the best of our knowledge, only Günzel et al. [24] explicitly
consider periodic tasks (i.e., the jobs of a task are released
strictly periodically) with dynamic self-suspension, showing
that dedicated analysis of the periodic job release pattern
of a task can be beneficial. Specifically, Günzel et al. [24]
provide a utilization-based schedulability test for periodic
dynamic self-suspension tasks, which is the only one that
analytically dominates a trivial suspension-oblivious analysis,
under earliest-deadline-first (EDF) uniprocessor scheduling.

Contributions: In this paper, we focus on preemptive
scheduling of segmented self-suspension periodic tasks on
a uniprocessor system, which was previously analyzed by
over-approximation with sporadic tasks [8], [11], [12], [26],
[31], [36], [38], [41], [49], based on behavior relaxations. Our
solutions are based on the following two steps:

• Step 1: A nominal schedule is constructed and recorded
offline purely based on the worst-case execution time and
the maximum suspension time of a computation segment
and a suspension interval, respectively.

• Step 2: The online schedule refers to the nominal sched-
ule to make scheduling decisions without any risk of
timing anomalies so that the schedulability (feasibility) of
the online schedule is guaranteed as long as schedulability
(feasibility) of the nominal schedule is guaranteed.

Our contributions are summarized as follows:

• In Section IV, we propose two treatments for Step 2
above, regarding anomaly-free online schedules, segment
release time enforcement and segment priority modifi-
cation. With segment release time enforcement, a task
segment is enforced to start its execution no earlier than
its release time in the nominal schedule. For segment
priority modification, the priorities of the segments are
adjusted based on their nominal finishing times. The
rationale behind segment priority modification is that a
segment with an earlier nominal finishing time should
not be interfered by segments with later nominal finishing
times.
Therefore, the schedulability of the segmented self-
suspension periodic tasks under these two treatments is
guaranteed if and only if the nominal schedule ensures
that all jobs meet their deadlines, resulting in an exact
schedulability test without any over-approximation as
discussed in Section V.

• In Section VI, our empirical results demonstrate that
the proposed treatments achieve higher acceptance ra-
tios in terms of schedulability compared to state-of-
the-art over-approximations by considering segmented
self-suspension periodic tasks under different task set
configurations.

• We implement the segment-level fixed-priority scheduling
mechanism on RTEMS [1], an open-source Real-Time
Operating System (RTOS), so that the treatment segment
priority modification can be performed on RTEMS. We
discuss the implementation details and showcase the
validity of the treatment with an example in Section VII.

II. SYSTEM MODEL AND BACKGROUND

In this paper, we focus on preemptive schedules of seg-
mented self-suspension periodic tasks on a uniprocessor sys-
tem. First, we introduce the segmented self-suspension task
model and define the notations in Section II-A. Definitions
and observations on segment-level fixed-priority preemptive
scheduling are presented in Section II-B. Table I summarizes
the notations being used in this paper.

Please note that for the definition and the analysis of the
treatments in Section IV, we consider tasks that release jobs
according to any fixed release pattern. Only to ensure the
schedulability of the nominal schedule for the evaluation in
Section VI, we restrict to synchronous periodic tasks.

A. Task Model

We adopt the segmented self-suspension task model, which
assumes a fixed iterating pattern of execution segments and
suspension intervals. The system consists of several (finitely
many) tasks T. Each task τ ∈ T releases jobs successively,
and each job J is divided into several computation segments.
We denote by J the set of all jobs and by C the set of all
computation segments. Each computation segment belongs to

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

one job and each job belongs to one task, therefore we have
the following mappings:

C mJ−→ J mT−→ T,

where mJ maps a segment γ ∈ C to its corresponding job
mJ(γ) ∈ J, and the function mT maps a job J to its releasing
task mT(J) ∈ T.

We assume that the jobs are scheduled according to a
Segment-level Fixed-Priority (S-FP) scheduling mechanism,
which means that there is a total priority ordering <π of the
segments C. If a segment γ ∈ C has a higher priority than
another segment ω ∈ C, then we write ω <π γ. Segment-level
fixed-priority scheduling covers scheduling algorithms such as
Earliest-Deadline-First (EDF) or Task-level Fixed-Priority (T-
FP) [6], [33]. We distinguish two different schedules, S is the
nominal schedule that is obtained when each segment executes
its worst-case execution time (WCET) and is suspended for
its maximum suspension time. S̄ is the online schedule where
each segment executes up to its WCET and is suspended for
up to its maximum suspension time.

Each segmented self-suspending task τ consists of Mτ

computation segments and Mτ−1 suspension intervals, Mτ ≥
1. We denote τ as

τ = (Ex τ ,Relτ)

where Ex τ describes the execution behavior of τ and Relτ
describes the release behavior of τ . To be more specific,
Ex τ = (C0

τ , S
0
τ , C

1
τ , S

1
τ , . . . , S

Mi−2
τ , CMi−1

τ), where Cjτ > 0
is the WCET of the j-th computation segment in τ , Sjτ > 0 is
the maximum suspension time of the j-th suspension interval
in τ . Moreover, Relτ = (ρ1τ , ρ

2
τ , . . .) ∈ RN is the list of

all release times ordered in increasing order. For example, a
periodic task τ with a period of 10 and the first release at time
0 has Relτ = (0, 10, 20, . . .).

Each job J ∈ J has a certain starting and finishing time,
denoting the first and the last time that a job is executed. We
denote by sJ and fJ the starting and finishing time of job J
in the nominal schedule S, respectively. Moreover, we denote
by s̄J and f̄J the starting and finishing time of job J in the
online schedule S̄, respectively. We denote by rJ the release
time of job J , i.e., rJ ∈ Relτ if mT(J) = τ .

Similarly, each computation segment γ ∈ C has a starting
and a finishing time. In the nominal schedule S they are
denoted as sγ and fγ , respectively, and in online schedule
S̄ they are denoted by s̄γ and f̄γ , respectively. We denote by
ex (γ) ⊂ R the set of time points at which γ is executed in
S. Moreover, we denote by Cγ ∈ R the total amount of time
that the segment γ is executed and by Sγ the total amount
of time that the segment γ is suspended in S . By definition
Cγ = µ(ex (γ)) holds for the Lebesgue measure µ. For the
online schedule S̄ we use the notation ēx (γ), C̄γ and S̄γ
instead.

More specifically, let J be a job of task τ = (Ex τ ,Relτ)
with Ex τ = (C0

τ , S
0
τ , C

1
τ , S

1
τ , . . . , S

Mτ−2
τ , CMτ−1

τ), and let
(γ0, . . . , γMτ−1) denote the computation segments of job J .
Then in the nominal schedule S

τ1 γ0 γ2 γ4 γ6 γ8

J1 J3 J5

τ2

0 2 4 6 8 10 12 14 16 18 20 22 24

γ1 γ3 γ5 γ7
J2 J4 J6

Fig. 2: Example of a nominal schedule of a segmented self-
suspension task set.

TABLE I: Notations

Notation Description

τ a segmented self-suspension task
Ciτ the WCET of the i-th segment in task τ .

Siτ
the maximum suspension time of the i-th
suspending interval in task τ

J a job released by a task
γ a computation segment within a job
Cγ , C̄γ the WCET / actual execution time of segment γ.

Sγ , S̄γ
the maximum / actual suspension time after
segment γ

sJ ,s̄J , sγ , s̄γ
the nominal / actual starting time of job J
/ segment γ.

fJ ,f̄J , fγ , f̄γ
the nominal / actual finishing time of job J
/ segment γ.

rγ , r̄γ , r
enf
γ the nominal / actual / enforced release time of γ

ex(γ), ēx(γ)
the set of time points at which γ is executed
in the nominal / actual schedule

Wγ(r, t), W̄γ(r, t)
the total amount of time segments with a higher
priority than γ are executed during [r, t) in S / S̄.

mJ, mT the mapping from segment to job and job to task
S, S̄ the nominal schedule and the actual schedule
>π , >P total priority / preference ordering
µ() the Lebesgue measure

• γ0 is executed for Cγ0 = C0
τ time units

• γj is executed for Cγj = Cjτ time units and suspended
for Sγj = Sj−1τ time units, j ≥ 1

and in the online schedule S̄
• γ0 is executed for C̄γ0 ∈ (0, C0

τ] time units
• γj is executed for C̄γj ∈ (0, Cjτ] time units and suspended

for S̄γj ∈ (0, Sj−1τ] time units, j ≥ 1.

Example 1. Figure 2 demonstrates the nominal schedule
of a task set with two segmented self-suspension periodic
tasks, τ1 = (Ex τ1 ,Relτ1) = ((3, 2, 2), (0, 10, 20, . . .)) and
τ2 = (Ex τ2 ,Relτ2) = ((2, 2, 2), (0, 11, 22, . . .)). We have
T = {τ1, τ2}, J = {J1, J2, . . .}, and C = {γ0, γ1, . . .}.
The first job released by τ1, denoted as J1, consists of two
computation segments, γ0 and γ2. Segment γ0 has a starting
time sγ0 = 0 and executes for Cγ0 = 3 time units during
ex (γ0) = [0, 3), while sγ2 = 5, Cγ2 = 2 and ex (γ2) = [5, 7)
for γ2. The maximum suspension time after executing γ0,
denoted as Sγ0 , is 2. The starting time sJ1 and finishing time
fJ1 of job J1 are 0 and 7, respectively.

B. Segment-level Fixed-Priority Preemptive Scheduling

We make the following definitions for the nominal schedule
S . An online Segment-level Fixed-Priority (S-FP) scheduler

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

chooses the segment with the highest priority among all seg-
ments in the ready queue for execution. A segment is “ready”
and inserted into the ready queue according to Definition 2. If
the chosen segment has a higher priority than the one currently
being executed, the current executing segment is preempted
and moved to the ready queue.

Definition 2. A computation segment γ ∈ C is ready at time
t ∈ R in the nominal schedule S if:

1) there is remaining workload to be executed in γ in S;
2) γ is or has been released at time t in S.

Definition 3. Let J ∈ J be a job of task τ consisting of
segments (γ0, . . . , γMτ−1). The first segment γ0 is released
when the job J is released. A subsequent segment γj is
released as soon as the previous segment γj−1 finishes and
the suspension time is consumed, i.e., at time fγj−1

+ Sj−1τ .
In general, we denote by rγ the release time of a segment
γ ∈ C in the nominal schedule S.

With this definition of a segment being ready, the segment-
level fixed priority preemptive scheduler is work-conserving on
the segment-level, in the sense that whenever there are ready
segments, the segment of the highest priority task is executed.
This leads to the following observation for the offline schedule.

Observation 4. Let γ ∈ C be a segment. In S, the segment γ
finishes at the lowest t ∈ R such that

t ≥ rγ +Wγ(rγ , t) + Cγ , (1)

where Wγ(rγ , t) is the total amount of time that higher priority
segments are executed during the interval [rγ , t) in S, i.e.,

Wγ(rγ , t) := µ

 ⋃

ω>πγ∈C
ex (ω) ∩ [rγ , t)

 (2)

At all times during the interval [rγ , sγ), segments with
higher priorities than γ are executed. Hence, Wγ(rγ , t) =
(sγ − rγ) + Wγ(sγ , t) holds, and the observation can be
reformulated as follows.

Observation 5. Let γ ∈ C be a segment. In S , the segment γ
finishes at the lowest t ∈ R such that

t ≥ sγ +Wγ(sγ , t) + Cγ . (3)

Similar to Definitions 2 and 3, we define ready and release
time in the online schedule S̄ as follows.

Definition 6. A computation segment γ ∈ C is ready at time
t ∈ R in the online schedule S̄ if:

1) there is remaining workload to be executed in γ in S̄;
2) γ is or has been released at time t in S̄.

Definition 7. Let J ∈ J be a job of task τ consisting of
segments (γ0, . . . , γMτ−1). In the online schedule S̄, the first
segment γ0 is released at time r̄γ0 := rJ . A subsequent
segment γj is released at time r̄γj := f̄γj−1 +S̄j−1τ . In general,
we denote by r̄γ the release time of a segment γ ∈ C in the
online schedule S̄.

III. TIMING ANOMALIES AND ENFORCEMENTS

Scheduling tasks with self-suspending behavior can lead to
timing anomalies. Timing anomaly refers to the response time
increasing of a job due to the reduction of the execution or
suspension time of some other jobs.

Figure 1 demonstrates an example of a timing anomaly.
Given two segmented self-suspending tasks τ1 and τ2, each
with two computation segments. The computation segments
from τ1 have higher priorities than segments from τ2. Fig-
ure 1 (a) shows the nominal schedule generated based on the
WCET and maximum suspension time of the segments. If the
suspension interval of τ1 finishes earlier, the second segment
of τ1 preempts the first segment of τ2, leading to an increased
response time from τ2, as shown in Figure 1 (b).

Timing anomalies can affect the feasibility of a task set.
To be more specific, it is possible that a task set determined
to be schedulable based on the WCET and the maximum
suspension time of the segments can still have deadline
violations during runtime due to timing anomalies. Existing
schedulability analyses account for timing anomalies by over-
approximation. To avoid that analytical pessimism, a treatment
for eliminating the timing anomalies is essential. To that end,
different mechanisms to reduce the impact of timing anomalies
have been developed in the literature:
• Period enforcer [39] intends to apply a runtime rule so

that “it forces tasks to behave like ideal periodic tasks
from the scheduling point of view with no associated
scheduling penalties.”, summarized in Section 4.3.1 in the
survey paper [14]. However, Chen and Brandenburg [10]
show that “period enforcement [39] is not strictly supe-
rior (compared to the base case without enforcement) as
it can cause deadline misses in self-suspending task sets
that are schedulable without enforcement.”

• Release guard [42] and release enforcement [26] enforce
the j-th computation segments of two consecutive jobs
of a real-time task to be released with a guaranteed
minimum inter-arrival time, summarized in Section 4.3.2
in the survey paper [14]. Figure 3 provides a visual com-
parison between the online schedules for task τi under
two different enforcement methods: release enforcement
as described in [26], and our proposed approach, segment
release time enforcement. With release enforcement [26],
the inter-arrival time of each segment is fixed, whereas in
our proposed method, the release time of each segment
is determined according to the nominal schedule.

• Slack enforcement [32] creates execution enforcement by
utilizing the available slack. Günzel and Chen [21] pro-
vide counterexamples, indicating that slack enforcement
may provoke deadline misses and do not guarantee the
same WCRT as without slack enforcement.

The period enforcer and slack enforcement pursue the
ultimate goal to completely ignore the self-suspension be-
havior of higher-priority tasks, which would consequently
avoid timing anomalies. However, none of them achieves this
ultimate goal, as shown by Chen and Brandenburg [10] and

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

τi

(a) release enforcement proposed in [26]

τi

0 2 4 6 8 10 12 14 16 18 20

(b) segment release time enforcement in this work

Fig. 3: The online schedules of task τi under different release
time enforcement policies, assuming τi = ((3, 2, 3), Di = 10).
The red upward (downward) arrows indicate the enforced
release time (deadline) of each computation segment. Note
that the inter-arrival time of each segment is fixed in [26].

Günzel and Chen [21], and therefore they are not able to
guarantee that timing anomalies are eliminated. The release
guard and release enforcement do not intend to ignore the self-
suspension behavior of higher-priority tasks or eliminate tim-
ing anomalies, but only aim for easier schedulability analyses.
The analyses are achieved by decoupling the segment release
time from the finishing time of earlier segments. Although
not explicitly stated, such treatments avoid timing anomalies
as a side effect. However, the treatments do not sustain the
Worst-Case Response Time (WCRT) of a task, meaning that
the WCRT of a task with treatment may be much larger than
the WCRT without treatment.

To the best of our knowledge, in this work we provide the
first sustainable treatments that prevent timing anomalies.

IV. TREATMENTS OF ELIMINATING TIMING ANOMALIES

In this paper, our objective is to eliminate timing anomalies
without negative impact on the worst-case response time when
scheduling periodic tasks with segmented self-suspension be-
havior. To that end, we propose two treatments, segment
release time enforcement and segment priority modification. In
Section IV-A, we introduce segment release time enforcement,
and prove that no timing anomaly can occur after applying
this treatment. However, segment release time enforcement can
lead to poor job response time in the average case, since it de-
lays the segments artificially. Therefore, we propose a segment
priority modification in Section IV-B, which eliminates timing
anomalies without delaying the segment release time but by
altering the segment priority based on the nominal schedule.

A. Treatment 1: Enforcing the Release Time of Segments

Although the nominal schedule S for a segmented self-
suspending task set is feasible, timing anomalies can still
occur during runtime, as shown in the example in Section III.
The cause of such timing anomalies is that a higher priority
segment may start its execution before its release time in S
due to the early completion and/or reduced suspension of
a previous segment from the same job. This higher priority
segment blocks or preempts segments from lower priority jobs,
therefore increasing their response times. To eliminate timing
anomalies, one method is to enforce the release time of the

τ1

τ2

0 2 4 6 8 10

(a) Nominal schedule

τ1

τ2

0 2 4 6 8 10

(b) Online schedule

Fig. 4: Example of the treatment segment release time enforce-
ment. A computation segment cannot start before its nominal
release time (red arrow) even if the processor idles.

segments, such that all the segments start no earlier than their
release time in the nominal schedule.

We note that our proposed enforcement is different from
the release guard [42] and release enforcement [26], presented
in Section III. In release guard and release enforcement, a
computation segment of all jobs from a task have the same
offset. In our approach, the offset is computed for each job
individually.

Our first treatment, segment release time enforcement, works
as follows. If a segment γ is ready at time t according to
Definition 6 but the release time in the nominal schedule rγ
is not reached, then the segment execution is delayed further
until rJ . Formally, we redefine the term released for the online
schedule under segment release time enforcement as follows:

Definition 8. Let J ∈ J be a job of task τ consisting of
segments (γ0, . . . , γMτ−1). In the online schedule S̄ under
segment release time enforcement,
• the first segment γ0 is released when the job J is released.
• a subsequent segment γj is released as soon as the

previous segment γj−1 finishes and the suspension time
is consumed, and the release time in the nominal schedule
rγj is reached. That is, the segment γj is released at time
max(f̄γj−1

+ S̄j−1τ , rγj).
In general, we denote by r̄enfγ the release time of a segment
γ ∈ C in S̄ under segment release time enforcement.

In practice, we can enforce the segment release time by
maintaining another queue. All the segments which are sup-
posed to be inserted into the ready queue are inserted to the
new queue instead. Only the segments that have a nominal
starting time no lesser than the current time t can be moved
to the ready queue. Figure 4 demonstrates the new execution
states with segment release time enforcement.

Similar as in Definition 6, a segment is ready to be executed
under segment release time enforcement if there is remaining
workload to be executed and if the segment is released accord-
ing to the previous definition. In particular, with this definition
of being ready, the segment-level fixed-priority preemptive
scheduler under segment release time enforcement executes
segments that are ready in a work-conserving manner, leading
to the following observation.

Observation 9. Let γ ∈ C be a segment. Then the segment
γ finishes in the online schedule with segment release time

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

enforcement at the lowest t ∈ R such that

t ≥ r̄enfγ + W̄γ(r̄enfγ , t) + C̄γ , (4)

where W̄γ(r̄enfγ , t) is the amount of time that higher priority
segments are executed during the interval [r̄enfγ , t) in the
schedule S̄ with segment release time enforcement, i.e.,

W̄γ(r̄enfγ , t) := µ

 ⋃

ω>πγ∈C
ēx (ω) ∩ [r̄enfγ , t)

 (5)

We now prove that with the treatment segment release time
enforcement, timing anomalies cannot occur in the online
schedule S̄. Intuitively, if the release time of a segment γ ∈ C
is fixed, the segment finishing time can only become larger
if W̄γ is larger than Wγ . However, since no segment release
can be moved forward under the treatment, and if all previous
segments finish no later than their finishing time in the nominal
schedule, W̄γ cannot be larger than Wγ . To make this proof
formal, we start by rewriting W̄γ and Wγ using the following
lemma.

Lemma 10. Let γ ∈ C be a segment. With segment release
time enforcement, the following equations hold:

⋃

ω>πγ∈C
ex (ω) =

⋃

ω>πγ∈C
[rω, fω) (6)

⋃

ω>πγ∈C
ēx (ω) =

⋃

ω>πγ∈C
[r̄enfω , f̄ω) (7)

Proof. In the following we provide the proof for the nominal
schedule S (Equation (6)). The proof for the online schedule
S̄ (Equation (7)) is analogous.
⊆: Since a segment can only be executed during the interval

[rω, fω), ex (ω) ⊆ [sω, fω) holds for all segments ω ∈ C.
Therefore,

⋃
ω>πγ

ex (ω) ⊆ ⋃ω>πγ [rω, fω) as well.
⊇: Consider a segment ω >π γ. Since the schedule

is work-conserving, if the segment ω is not executed dur-
ing [rω, fω), then a segment with higher priority must be
executed, i.e., [rω, fω) ⊆ ex (ω) ∪ ⋃η>πω ex (η). There-

fore,
⋃
ω>πγ

[rω, fω) ⊆ ⋃
ω>πγ

(
ex (ω) ∪⋃η>πω ex (η)

)
=⋃

ω>πγ∈C ex (ω) which concludes the proof.

With the previous lemma, we reformulate Wγ(rγ , t) from
Eq. (2) as µ

(⋃
ω>πγ∈C[rω, fω) ∩ [rγ , t)

)
and W̄γ(r̄enfγ , t)

from Eq. (5) as µ
(⋃

ω>πγ∈C[r̄enfω , f̄ω) ∩ [r̄enfγ , t)
)

. This al-
lows us to prove the following theorem which states that
timing anomalies cannot occur under segment release time
enforcement.

Theorem 11. The finishing time of each segment in the online
schedule S̄ with segment release time enforcement is no larger
than the finishing time in the nominal schedule S, i.e., fγ ≥ f̄γ
for all γ ∈ C.

Proof. Let Seg = (γ0, γ1, . . .) denote the list of all segments
C ordered by their finishing time in the nominal schedule,
i.e., fγ0 < fγ1 < . . . holds. We consider the online schedule

S̄ obtained under segment release time enforcement. By in-
duction over the segments in Seg we show that for each γn,
n = 0, 1, . . . :
(i) γn is released at the same time in the online and in the

nominal schedule, i.e., r̄enfγn = rγn .
(ii) The finishing time of γn in the online schedule is no later

than in the nominal schedule, i.e., f̄γn ≤ fγn .
Base case (n=0): Since γ0 has the earliest finishing time

in the nominal schedule, it must be the first segment of some
job. Therefore, by definition r̄enfγ0 = rγ0 , which implies that
(i) holds.

We prove (ii) by contradiction. By Observation 9, we know
that f̄γ0 is the smallest t ∈ R such that t ≥ r̄enfγ0 +

W̄γ0(r̄enfγ0 , t) + C̄γ
(i)
= rγ0 + W̄γ0(rγ0 , fγ0) + C̄γ . Assume that

fγ0 < f̄γ0 , then we have

fγ0 < rγ0 + W̄γ0(rγ0 , fγ0) + C̄γ0 . (8)

For all segments ω ∈ C, r̄enfω ≥ rω by the enforcement
mechanism. Moreover, since γ0 is the first segment in Seg ,
it has the lowest finishing time in S. Hence, [r̄enfω , f̄ω) ∩
[rγ0 , fγ0) ⊆ [rω, f̄ω) ∩ [rγ0 , fγ0) ⊆ [rω, fγ0) ∩ [rγ0 , fγ0) ⊆
[rω, fω) ∩ [rγ0 , fγ0). We obtain that
⋃

ω>πγ0

[r̄enfω , f̄ω)∩ [rγ0 , fγ0) ⊆
⋃

ω>πγ0

[rω, fω)∩ [rγ0 , fγ0) (9)

holds as well. Hence, W̄γ0(rγ0 , fγ0) ≤ Wγ0(rγ0 , fγ0) holds.
We use that to obtain

fγ0 < rγ0 + W̄γ0(rγ0 , fγ0) + C̄γ0
≤ rγ0 +Wγ0(rγ0 , fγ0) + C̄γ0
≤ rγ0 +Wγ0(rγ0 , fγ0) + Cγ0 .

Since rγ0 +Wγ0(rγ0 , fγ0)+Cγ0 ≤ fγ0 holds by Observation 4,
we obtain a contradiction. This proves (ii).

Induction Step (n − 1 7→ n): We assume that (i) and (ii)
hold for all segments in Segn := (γ0, γ1, . . . , γn−1). In the
following we show that (i) and (ii) hold for γn.

For (i), if γn is the first segment if its job mJ(γn), then γn
is released at time r̄enfγn = rmJ(γn) = rγn similar to the base
case. If γn is not the first segment of mJ(γn), then denote by ω
the segment of mJ(γn) prior to γn. By definition r̄enfγn ≥ rγn .
r̄enfγn > rγn is only possible if f̄ω > fω . However, ω ∈ Segn
since ω finishes before γn. By induction, f̄ω > fω is not
possible. We conclude r̄enfγn = rγn . This proves (i).

As in the base case we prove (ii) by contradiction and
assume that fγn < f̄γn . Similar to the base case, we obtain

fγn < rγn + W̄γn(rγn , fγn) + C̄γn . (10)

By the enforcement mechanism, for all segments ω ∈ C,
r̄enfω ≥ rω holds. Hence,

[r̄enfω , f̄ω) ∩ [rγn , fγn) ⊆ [rω, f̄ω) ∩ [rγn , fγn). (11)

As in the base case, in the following we show that

[rω, f̄ω) ∩ [rγn , fγn) ⊆ [rω, fω) ∩ [rγn , fγn). (12)

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

However, for the induction step we distinguish two cases: If
fω < fγn , then we know that ω is in Segn, and by induction
f̄ω ≤ fω holds. Therefore, [rω, f̄ω) ∩ [rγn , fγn) ⊆ [rω, fω) ∩
[rγn , fγn). If fω ≥ fγn , then [rω, f̄ω)∩[rγn , fγn) ⊆ [rω, fγn)∩
[rγn , fγn) = [rω, fω) ∩ [rγn , fγn) holds as well. By applying
Equations (11) and (12), we obtain that
⋃

ω>πγn

[r̄enfω , f̄ω) ∩ [rγn , fγn) ⊆
⋃

ω>πγn

[rω, fω) ∩ [rγn , fγn).

(13)
Hence, W̄γn(rγn , fγn) ≤Wγn(rγn , fγn) holds. Similar to the
base case, we use that to obtain

fγn < rγn + W̄γn(rγn , fγn) + C̄γn
≤ rγn +Wγn(rγn , fγn) + C̄γn
≤ rγn +Wγn(rγn , fγn) + Cγn .

Since rγn + Wγn(rγn , fγn) + Cγn ≤ fγn holds by Ob-
servation 4, we obtain a contradiction, and (ii) is proven.
This concludes the induction step and therefore proves the
theorem.

B. Treatment 2: Modifying the Segment Priority

In Section IV-A, we eliminate the timing anomalies and
ensure that a feasible segmented self-suspending task set
remains schedulable in online scheduling by enforcing the
release time of the segments. Although delaying the segment
release has no negative impact on the worst-case behavior,
this treatment may lead to poor average-case performance.
To demonstrate this, consider the case shown in Figure 5,
where the WCETs and the maximum suspension times of
segments are significantly larger than the actual execution
and suspension times. Figure 5 (a) demonstrates the nominal
schedule, Figure 5 (b) shows the schedule with enforcement,
and Figure 5 (c) shows the schedules without enforcement.
Compared to the schedule without enforcement, enforcing the
starting time leads to a longer per-job response time, i.e., the
time elapsed between the release and the completion of a job.
Therefore, a treatment without artificially delaying segments
and without timing anomalies at the same time is desirable.

To that end we propose a treatment that modifies the
segment priorities to eliminate timing anomalies. In particular,
we redefine the segment priorities according to their finishing
time in the nominal schedule. The rationale is that a segment
with later finishing time should not be able to interfere a
segment with an earlier finishing time. To distinguish original
segment priorities and modified segment priorities, we call
the modified priorities preference instead. More specifically,
we say that a segment γ ∈ C has a higher preference than
ω ∈ C if γ finishes earlier than ω in the nominal schedule.
We denote the preference as:

γ >P ω :⇔ fγ < fω (14)

This leads to a total ordering of all segments in C. In the online
schedule, segments with higher preference are scheduled first.

For example, consider the system of Figure 5. We denote
by γ11 and γ12 the two segments of the first job of task τ1, and

we denote by γ21 and γ22 the two segments of the first job of
task τ2. The total preference ordering is:

γ11 >P γ
2
1 >P γ

1
2 >P γ

2
2 (15)

Therefore, under the treatment with modified segment prior-
ities, the online schedule will look exactly like the schedule
without treatment in Figure 5 (c).

Since in the online schedule, the segment priority is replaced
with the segment preference, we can observe the following.

Observation 12. Let γ ∈ C be a segment. The segment γ
finishes in the online schedule with priority modification at
the lowest t ∈ R such that

t ≥ r̄γ + W̄γ(r̄γ , t) + C̄γ , (16)

where W̄γ(r̄γ , t) is the total amount of time that higher
preference segments are executed during the interval [r̄γ , t)
in S̄, i.e.,

W̄γ(r̄γ , t) := µ

 ⋃

ω>P γ∈C
ēx (ω) ∩ [r̄γ , t)

 . (17)

To prove that timing anomalies do not occur, we need to
show that the interference from higher preference segments in
the online schedule is not higher than the interference from
higher priority segments in the nominal schedule. To achieve
this, we first prove the following key ingredient.

Lemma 13. For all segments γ ∈ C, the interference in the
nominal schedule is lower bounded by:

Wγ(sγ , fγ) ≥
∑

ω∈C
sγ<fω<fγ

Cω (18)

Proof. We know Wγ(sγ , fγ) = µ
(⋃

ω>πγ
ex (ω) ∩ [sγ , fγ)

)
,

by definition of Wγ in Equation (2). We first show that:
⋃

ω>πγ

ex (ω) ∩ [sγ , fγ) ⊇
⋃

ω∈C
sγ<fω<fγ

ex (ω) (19)

To that end, consider an arbitrary t ∈ ⋃
ω∈C

sγ<fω<fγ

ex (ω).

Then there exists ω ∈ C with sγ < fω < fγ such that
t ∈ ex (ω). Since sγ < fω < fγ , we know that ω 6= γ
and that ω is executed during [sγ , fγ). Since no segment with
lower priority than γ can be executed during [sγ , fγ), ω must
have higher priority than γ, i.e., ω >π γ. We know that every
higher priority segment that is executed before sγ must finish
before γ can start. Therefore, ω cannot be executed before
sγ and sω ≥ sγ holds. Since sγ ≤ sω and fω < fγ , we
know that ex (ω) ⊆ [sγ , fγ). Hence, t ∈ ex (ω) ∩ [sγ , fγ).
In conclusion, we have shown that there exists some ω ∈ C
with ω >π γ such that t ∈ ex (ω) ∩ [sγ , fγ). This shows that
t ∈ ⋃ω>πγ ex (ω) ∩ [sγ , fγ), which proves Equation (19).

By applying µ on both sides of Equation (19), we obtain

that Wγ(sγ , fγ) ≥ µ

(⋃
ω∈C

sγ<fω<fγ

ex (ω)

)
. Since only one

segment can be executed at the same time,
⋃

ω∈C
sγ<fω<fγ

ex (ω)

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

τ1

τ2

0 2 4 6 8 10

(a) T-FP schedule (nominal)

τ1

τ2

0 2 4 6 8 10

(b) Segment release time enforcement (online)

τ1

τ2

0 2 4 6 8 10

(c) No treatment (online)

Fig. 5: Schedules of the task set T = {τ1, τ2} under task-level fixed-priority scheduling where τ1 has higher priority than τ2.
Enforcing the segment release time leads to a longer per-job response time, compared to the schedule without treatment.

is a disjoint union, and we can apply µ on each ex (ω)
individually. We obtain Wγ(sγ , fγ) ≥ ∑ ω∈C

sγ<fω<fγ

µ(ex (ω))

which proves this lemma.

The previous lemma allows us to prove that no timing
anomalies occur with the treatment that modifies segment
priorities, as formulated in the following theorem.

Theorem 14. The finishing time of each segment in the
online schedule S̄ with segment preference instead of segment
priorities is no larger than the finishing time in the nominal
schedule S, i.e., fγ ≥ f̄γ for all γ ∈ C.

Proof. In the proof of Theorem 11, let Seg = (γ0, γ1, . . .)
denote the list of all segments C ordered by their finishing time
in the nominal schedule, i.e., fγ0 < fγ1 < . . . holds. Please
note that this ordering respects the segment preferences, i.e.,
γ0 >P γ1 >P We consider the online schedule S obtained
with segment preferences instead of segment priorities. By
induction over the segments in Seg we show that for each γn,
with n = 0, 1, . . . , the inequality fγn ≥ f̄γn holds.

Base case (n = 0): We prove fγ0 ≥ f̄γ0 by contradiction,
i.e., we assume fγ0 < f̄γ0 . By Observation 12, we know that
f̄γ0 is the lowest t ∈ R such that t ≥ r̄γ0 + W̄γ0(r̄γ0 , t) + C̄γ0
holds. Since fγ0 < f̄γ0 , we have

fγ0 < r̄γ0 + W̄ (r̄γ0 , fγ0) + C̄γ0 . (20)

Since γ0 has the earliest finishing time in S among all
segments, it must be the first segment of its corresponding
job mJ(γ0). Hence, γ0 is released at time r̄γ0 = r̄mJ(γ0) =
rmJ(γ0) = rγ0 . Moreover, since γ0 has the highest preference,
W̄γ0(r̄γ0 , fγ0) = µ(∅) = 0. This leads us to

fγ0 < rγ0 + C̄γ0 ≤ rγ0 + Cγ0

≤ rγ0 +Wγ0(rγ0 , fγ0) + Cγ0 .

Since fγ0 ≥ rγ0 +Wγ0(rγ0 , fγ0)+Cγ0 holds by Observation 4,
we obtain a contradiction. This proves fγ0 ≥ f̄γ0 .

Induction Step (n − 1 7→ n): We assume that f̄γj ≤
fγj holds for all the previous segments γj ∈ Segn :=
(γ0, γ1, . . . , γn−1). In the following we show that f̄γn ≤ fγn .
To achieve this, we first prove that

W̄γn(sγn , fγn) ≤Wγn(sγn , fγn). (21)

By Lemma 13, we already know that Wγn(sγn , fγn) ≥∑
ω∈C

sγn<fω<fγn

Cω . Therefore, it is left to show that

W̄γn(sγn , fγn) ≤
∑

ω∈C
sγn<fω<fγn

Cω. (22)

By definition of W̄γn , we know that W̄γn(sγn , fγn) =

µ
(⋃

ω>P γn
ēx (ω) ∩ [sγn , fγn)

)
. In that definition, the con-

dition ω >P γn is equivalent to fω < fγn . Moreover, if
ēx (ω) ∩ [sγn , fγn) 6= ∅, then f̄ω > sγn must hold. Since
ω ∈ Segn, we have fω ≥ f̄ω > sγn by induction. We obtain

W̄γn(sγn , fγn) ≤ µ

⋃

ω∈C
sγn<fω<fγn

ēx (ω) ∩ [sγn , fγn)

≤
∑

ω∈C
sγn<fω<fγn

C̄ω ≤
∑

ω∈C
sγn<fω<fγn

Cω.

This proves Equation (22) and therefore, also Equation (21)
is proven.

We show fγn ≥ f̄γn by contradiction, i.e., we assume that
fγn < f̄γn . By Observation 12, we know that f̄γn is the lowest
t ∈ R such that t ≥ r̄γn + W̄γn(r̄γn , t) + C̄γn holds. Since
fγn < f̄γn , we have

fγn < r̄γn + W̄γn(r̄γn , fγn) + C̄γn . (23)

If γn is the first segment of its job, then similar to the base
case it is released at the release of the corresponding job and
r̄γn = rγn holds. Otherwise, the segment ξ ∈ C prior to
γn in its corresponding job mJ(γn) is in Segn. By induction
f̄ξ ≤ fξ, and therefore the segment γn is released in S̄ no
later than in S, i.e., r̄γn ≤ rγn ≤ sγn . We obtain

fγn < r̄γn + W̄γn(r̄γn , fγn) + C̄γn

≤ r̄γn + (sγn − r̄γn) + W̄γn(sγn , fγn) + C̄γn

= sγn + W̄γn(sγn , fγn) + C̄γn

≤ sγn +Wγn(sγn , fγn) + Cγn .

Since fγn ≥ sγn + Wγn(sγn , fγn) + Cγn holds by Observa-
tion 5, we obtain a contradiction. Hence, fγn ≥ f̄γn holds.
This concludes the induction step and therefore the theorem
is proven.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

V. APPLICATION OF TREATMENTS

In the previous section, the segment release time enforce-
ment and the segment priority modification are introduced. In
this section we discuss how the treatments can be applied for
a system of periodic, synchronous, segmented self-suspending
real-time tasks with constrained deadlines. More specifically,
we assume that each task τ releases jobs according to its period
Tτ > 0 starting at time 0 (i.e., Relτ = {0, Tτ , 2Tτ , . . .}) and
has a relative deadline Dτ ≤ Tτ (i.e., each job J of task τ
must finish until its absolute deadline rJ +Dτ).

To apply the treatments, we follow a 2-step process:
• Step 1: The nominal schedule S is constructed and

recorded offline, based on the worst-case execution time
and the maximum suspension time of a computation
segment and a suspension interval, respectively.

• Step 2: The finishing times of all segments in S are
used to define the segment release times for the segment
release time enforcement, or to define the segment pref-
erence for the segment priority modification. The online
schedule S̄ is generated according to the descriptions in
Section IV.

Theorems 11 and 14 show that under any of those treatments
the finishing time of each segment in the online schedule S̄ is
upper bounded by the finishing time in the nominal schedule
S. Therefore, the schedule with treatment is schedulable (i.e.,
each job finishes before its absolute deadline S̄) if and only
if the nominal schedule S is schedulable.

For periodic, synchronous tasks with constrained deadlines,
the nominal schedule S repeats every hyperperiod (i.e., the
least common multiple of all task periods) if it no deadline
miss occurs in the first hyperperiod. Therefore, it is sufficient
to schedule only one hyperperiod and calculate the following
finishing times of each segment accordingly. Moreover, the
simulation of one hyperperiod for Step 1 directly serves as an
exact schedulability test for scheduling under the treatments:
There are no deadline misses under schedule with treatment if
and only if there are no deadline misses in the first hyperperiod
of the nominal schedule S.

VI. EVALUATION

We compare the proposed treatments to state-of-the-art
scheduling algorithms in terms of schedulability on synthetic
task sets. We first describe how the task sets are synthe-
sized, and briefly introduce the comparing algorithms in Sec-
tion VI-A. In Section VI-B, we report the acceptance ratios
of the algorithms under different task set configurations, then
propose an approach based on a combination of scheduling
algorithms to achieve a higher acceptance ratio.

A. Task Sets and Algorithms

In our evaluation, we focus on segmented self-suspension
periodic synchronous tasks with constrained deadlines. The
synthetic task sets were generated as follows. First, we con-
sider different total utilization settings of a task set, ranging
from 0% to 100% in a 5% step. For each total utilization
setting, we generated 100 task sets, each with 10 tasks

{τ1, . . . , τ10}. Given the total utilization of a task set, we ap-
plied the Dirichlet-Rescale (DRS) algorithm [19] to determine
the utilization Uτi of each individual task τi. Tτi , the period of
task τi, was selected uniformly at random from a set of semi-
harmonic periods Tτi ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000},
which is used in automotive systems [25], [43], [50]. Each
task τi has a relative deadline Dτ ≤ Tτ . With the utilization
Uτi and period Tτi , the total execution time of task τi was
calculated accordingly, i.e., Cτi = Uτi ∗ Tτi .

Next, we divided the total execution time Cτi into the Mτi

segments. In our evaluation, Mτi was selected from the set
{2 (Rare), 5 (Moderate), 8 (Frequent)} based on the config-
uration of the task set. The number of suspension intervals
was set to Mτi − 1 accordingly. The total suspension length
of task τi was generated according to a uniform distribution in
one of the following three ranges, as suggested in [26], [48]:
• Short suspension: [0.01(Tτi − Cτi), 0.1(Tτi − Cτi)]
• Medium suspension: [0.1(Tτi − Cτi), 0.3(Tτi − Cτi)]
• Long suspension: [0.3(Tτi − Cτi), 0.6(Tτi − Cτi)]

Having the number of computation segments Mτi , the total
execution time Cτi , and the total suspension length, we
applied the DRS algorithm to determine the execution time of
each computation segment and the length of each suspension
interval, thus constructed the execution behavior Ex τi for task
τi as defined in Section II-A.

We considered the following segmented self-suspending
scheduling algorithms:1

• NOM-EDF: Our approach, the nominal schedules are
generated using EDF scheduling.

• NOM-RM: Our approach, the nominal schedules are
generated using RM scheduling.

• SCAIR-OPA [41]: A pseudo-polynomial time schedu-
lability test under Audsley’s Optimal Priority assign-
ment [4].

• SCAIR-RM [41]: A pseudo-polynomial time schedula-
bility test under RM priority assignment.

• EDAGMF-OPA [26]: A fixed-priority equal deadline
assignment scheduling with Audsley’s Optimal Priority
assignment.

Recall that the proposed treatments depend on information
such as the nominal release times of segments and the total
preference order in a nominal schedule. NOM-EDF and
NOM-RM generate a nominal schedule by simulating the
execution of the given task set based on the WCET and
maximum suspension time of the segments using EDF /
RM scheduling, respectively. As discussed in Section V, our
treatments derive a feasible schedule whenever the nominal
schedule simulated over one hyperperiod is feasible. Note that
although we focus on synchronous periodic tasks to ensure
the schedulability of the nominal schedule in our evaluation,
NOM-EDF and NOM-RM can work on any task set with

1The evaluation framework for self-suspending task systems, i.e., SS-
SEvaluation [22], is applied for evaluating SCAIR-OPA, SCAIR-RM,
and EDAGMF-OPA. The framework is available at https://github.com/
tu-dortmund-ls12-rt/SSSEvaluation.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

a repetitive release pattern, e.g., periodic tasks with different
offsets, as long as the nominal schedule repeats.

B. Schedulability under Different Task Set Configurations

We compare the acceptance ratio between the scheduling
algorithms mentioned in Section VI-A. Figure 6 demonstrates
the results on task sets with different configurations, i.e.,
number of segments in a task and total suspension length.
We observe that in almost all the evaluated configurations,
our NOM-EDF approach outperforms all the state-of-the-arts.
The reason is that in order to eliminate timing anomalies
for scheduling sporadic tasks, the existing methods over-
approximate the WCRTs of tasks, which leads to overly
pessimistic results. The only exception appears in Figure 6 (g),
where EDAGMF-OPA has the highest acceptance ratio among
all algorithms when the total utilization reaches 95% for task
sets with long suspension intervals and only two segments. We
conclude that under certain configurations, priority assignment
approaches such as EDAGMF-OPA can significantly improve
the performance, i.e., schedulability, of fixed-priority schedul-
ing. Still, our proposed treatments remain high acceptance
ratios under all the other configurations.

Although we achieved high acceptance ratios with NOM-
RM and NOM-EDF in almost all the evaluated configurations,
we would like to point out that the proposed treatments do
not bind to any specific scheduling algorithms for generat-
ing a nominal schedule. Given a feasible nominal schedule
of a segmented self-suspension periodic task set generated
by any fixed-priority scheduling algorithm, segment release
time enforcement and segment priority modification eliminate
timing anomalies and guarantee the schedulability, as proven
in Section IV. Therefore, we propose a new approach COMB-
ALL, which applies several scheduling algorithms to a task
set, and returns a nominal schedule if the task set is feasible
by any of these algorithms. In our current design, we consider
NOM-EDF, NOM-RM, and EDAGMF-OPA in COMB-
ALL since these approaches in general outperformed the
others in Figure 6. Figure 7 demonstrates the acceptance ratios
of COMB-ALL and those of the three approaches individually
under the same configuration in Figure 6 (g). We observe
that COMB-ALL has the highest acceptance ratio among the
anomaly-free approaches.

VII. IMPLEMENTATION ON RTEMS

We implemented a Segment-Level Fixed-Priority (S-FP)
scheduling mechanism on RTEMS, an open-source RTOS, to
demonstrate the applicability of the treatment segment priority
modification. In Section VII-A, we introduce the key APIs
for implementing the S-FP scheduling. We then showcase the
validity of the treatment on RTEMS with a working example
in Section VII-B.

A. Implementation of S-FP Scheduling

There are three major functionalities to be taken into con-
sideration while designing the Segment-Level Fixed-Priority
(S-FP) scheduling mechanism on RTEMS: 1) self-suspension

of a task, 2) resuming a self-suspended task, and 3) modifying
task priority. In our current design, we introduce a middle layer
which wraps all the required functions provided by RTEMS
at the API layer without modifying the underlying kernel.
To perform self-suspension, the current executing task calls
the function rtems_task_suspend() with its own task
id RTEMS_SELF at the end of a segment execution, except
for the last segment. Since a task cannot resume itself after
suspension, the resume of a suspended task must be triggered
by other sources, e.g., another task.

In the S-FP scheduling, segments from the same task are
allowed to have different priorities. However, RTEMS only
supports task-level priority assignment in the current version.
Therefore, we adjusted the priority for each segment by calling
the function rtems_task_set_priority().

There are three possible moments for modifying the pri-
ority: Before, After, and During the suspension of the pre-
vious segment, as shown in Figure 8. If the priority is
modified before the suspension starts, i.e., during the ex-
ecution of the previous segment, the remaining execution
of the previous segment can be preempted by another job
(Figure 8 (a)). Alternatively, if the priority is modified af-
ter the segment starts, it can incur unexpected preemptions
(Figure 8 (b)). This is due to the gap between calling the
function rtems_task_set_priority() and the priority
modification is issued. Therefore, the ideal solution is to
perform priority modification during the suspension, as shown
in Figure 8 (c).

Considering the priority modification during suspension,
we introduce a customized resume mechanism. Given the
priority of each segment as inputs, we keep a lookup table
in the middle layer. Every time before a suspended task
is about to be resumed, the controlling task first calls the
function rtems_task_set_priority() to assign the
new priority to the task according to the lookup table, then
it calls rtems_task_resume() with the id of the task to
be resumed.

B. Working Example

We validated the proposed treatment, segment priority mod-
ification, on RTEMS with our S-FP implementation using
the following example. Given a taskset T = {τ1, τ2} of
two tasks to be scheduled on a uniprocessor system, where
τ1 = (Ex τ1 ,Relτ1) = ((3, 5, 3), (0, 12, 24, . . .)), and τ2 =
(Ex τ2 ,Relτ2) = ((1), (0, 6, 12, . . .)). Since a task cannot
resume itself after suspension, we add one additional lowest
priority task τsus = (Ex τ3 ,Relτ3) = ((3), (0, 12, 24, . . .))
which resumes τ1 when it finishes execution. We consider
three scenarios: (a) T-FP WCET, (b) T-FP with early com-
pletion, and (c) S-FP with early completion. In T-FP WCET
and T-FP with early completion, the tasks are scheduled
using task-level fixed priority scheduling. Each segment is
executed to its WCET, and then suspended for the maximum
length of the suspension interval in T-FP WCET. On the
other hand, the segments and the suspension interval can finish
earlier in T-FP with early completion. In this scenario, we

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

) 5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(a) Short, Rare

NOM-EDF NOM-RM SCAIR-OPA SCAIR-RM EDAGMF-OPA

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(b) Short, Moderate

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(c) Short, Frequent

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(d) Medium, Rare

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(e) Medium, Moderate

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(f) Medium, Frequent

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(g) Long, Rare

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(h) Long, Moderate

5 15 25 35 45 55 65 75 85 95
0

20
40
60
80

100
(i) Long, Frequent

Fig. 6: Acceptance ratio of the approaches under different task set configurations.

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

5 15 25 35 45 55 65 75 85 95

0

20

40

60

80

100

NOM-EDF NOM-RM EDAGMF-OPA COMB-ALL

Fig. 7: Acceptance ratios under the Long, Rare configuration
while considering the COMB-ALL approach.

decrease the execution time of the first segment in τ1. In S-FP
with early completion, the tasks are scheduled using task-
level fixed priority scheduling. The priorities of the segments
follow the treatment segment priority modification, which use
the schedule generated by task-level fixed priority scheduling
as the nominal schedule.

Figure 9 demonstrates the schedules generated in the three
scenarios. The numbers in the segments are their priorities.
A lower number indicates a higher priority. We observe that
in Figure 9 (b), the first segment of τ1 finishes earlier, which
delays the second job of τ2. With priorities generated from the
treatment segment priority modification, the second job of τ2

τ1 1 3

τ2

0 2 4 6 8

2

(a) Before

τ1 1 1 3

τ2

0 2 4 6 8

2 2

(b) After

τ1 1 3

τ2

0 2 4 6 8

2

(c) During

Fig. 8: Impact of the time to perform priority modification. The
red arrow indicates the time point that the priority is modified.
Only option (c) leads to the desired behavior.

is not affected, i.e., no timing anomalies occur.

VIII. CONCLUSION AND FUTURE WORK

For tasks with self-suspending behavior, providing timing
guarantees is challenging due to timing anomalies, i.e., the
reduction of execution or suspension time of some jobs
enlarges the response time of another job. In this paper, we
propose two treatments, segment release time enforcement
and segment priority modification, for scheduling segmented
self-suspension periodic tasks without any risk of timing
anomalies. Given a nominal schedule generated based on
the WCET and the maximum suspension time of segments,
segment release time enforcement eliminates timing anomalies
by enforcing the release time of each segment to be no earlier
than its nominal release time. On the other hand, segment

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

τ1 1 1

τ2 2 2

τsus

0 2 4 6 8 10 12

(a) T-FP WCET

τ1 1 1

τ2 2 2

τsus

0 2 4 6 8 10 12

(b) T-FP with early completion

τ1 1 4 4

τ2 2 3

τsus

0 2 4 6 8 10 12

(c) S-FP with early completion

Fig. 9: The working example implemented in RTEMS. With early completion of the first segment of τ1, the finishing time
of the second job from τ2 (marked in blue) increases under T-FP scheduling (T-FP with early completion). By applying the
priorities from the treatment segment priority modification on S-FP scheduling (S-FP with early completion), the finishing time
remains the same as in the nominal schedule (T-FP WCET).

priority modification maintains the total order of the segments
in the nominal schedule to prevent timing anomalies.

In our evaluation, we compared the proposed treatments to
state-of-the-art scheduling algorithms in terms of schedulabil-
ity. The results on synthetic task sets show that our proposed
treatments achieve the highest acceptance ratio under almost
all scenarios compared to the state of the art. We also depict
how to realize the segment-level fixed-priority scheduling
mechanism on RTEMS, an open-source RTOS, and showcase
the validity of the treatment segment priority modification with
an example.

In this paper we discuss treatments to eliminate timing
anomalies when scheduling segmented self-suspending peri-
odic tasks on uniprocessor systems. In our future work, we
aim to investigate timing anomalies across diverse execution
environments, such as task with release jitter, dynamic self-
suspending task model, and/or multi-core platforms.

ACKNOWLEDGMENT

This result is part of a project (PropRT) that has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 865170). This paper has
been (partly) supported by Deutsche Forschungsgemeinschaft
(DFG) Sus-Aware (Project No. 398602212), the Federal Min-
istry of Education and Research (BMBF) in the course of the
project 6GEM under the funding reference 16KISK038.

REFERENCES

[1] RTEMs. http://www.rtems.org/.
[2] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. A

comprehensive survey of industry practice in real-time systems. Real
Time Syst., 58(3):358–398, 2022.

[3] F. Aromolo, A. Biondi, and G. Nelissen. Response-time analysis for self-
suspending tasks under EDF scheduling. In 34th Euromicro Conference
on Real-Time Systems, ECRTS, pages 13:1–13:18, 2022.

[4] N. Audsley. On priority assignment in fixed priority scheduling.
Technical report, May 2001.

[5] N. C. Audsley and K. Bletsas. Fixed priority timing analysis of real-
time systems with limited parallelism. In 16th Euromicro Conference
on Real-Time Systems (ECRTS), pages 231–238, 2004.

[6] T. P. Baker. Multiprocessor EDF and deadline monotonic schedulability
analysis. In IEEE Real-Time Systems Symposium, pages 120–129, 2003.

[7] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. C.
Buttazzo. A framework for supporting real-time applications on dynamic
reconfigurable fpgas. In IEEE Real-Time Systems Symposium, RTSS,
pages 1–12, 2016.

[8] K. Bletsas and N. C. Audsley. Extended analysis with reduced pessimism
for systems with limited parallelism. In 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 525–531, 2005.

[9] B. B. Brandenburg. Multiprocessor real-time locking protocols. In
Y. Tian and D. C. Levy, editors, Handbook of Real-Time Computing,
pages 347–446. Springer, 2022.

[10] J.-J. Chen and B. Brandenburg. A note on the period enforcer algorithm
for self-suspending tasks. Leibniz Transactions on Embedded Systems
(LITES), 4(1):01:1–01:22, 2017.

[11] J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen.
Scheduling self-suspending tasks: New and old results. In S. Quinton,
editor, 31st Euromicro Conference on Real-Time Systems, ECRTS,
volume 133 of LIPIcs, pages 16:1–16:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[12] J.-J. Chen and C. Liu. Fixed-relative-deadline scheduling of hard real-
time tasks with self-suspensions. In Real-Time Systems Symposium
(RTSS), pages 149–160, 2014.

[13] J.-J. Chen, G. Nelissen, and W.-H. Huang. A unifying response time
analysis framework for dynamic self-suspending tasks. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 61–71, 2016.

[14] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. C. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen. Many suspensions, many problems:
a review of self-suspending tasks in real-time systems. Real Time Syst.,
55(1):144–207, 2019.

[15] J.-J. Chen, G. von der Brüggen, W.-H. Huang, and C. Liu. State of
the art for scheduling and analyzing self-suspending sporadic real-time
tasks. In 23rd IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA, pages 1–10, 2017.

[16] K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen.
Unikernel-based real-time virtualization under deferrable servers: Analy-
sis and realization. In 34th Euromicro Conference on Real-Time Systems,
ECRTS, pages 6:1–6:22, 2022.

[17] U. C. Devi. An improved schedulability test for uniprocessor periodic
task systems. In 15th Euromicro Conference on Real-Time Systems
(ECRTS), pages 23–32, 2003.

[18] J. C. Fonseca, G. Nelissen, V. Nélis, and L. M. Pinho. Response time
analysis of sporadic DAG tasks under partitioned scheduling. In 11th
IEEE Symposium on Industrial Embedded Systems, SIES, pages 290–
299, 2016.

[19] D. Griffin, I. Bate, and R. I. Davis. Generating utilization vectors for
the systematic evaluation of schedulability tests. In 41st IEEE Real-
Time Systems Symposium, RTSS 2020, Houston, TX, USA, December
1-4, 2020, pages 76–88. IEEE, 2020.

[20] M. Günzel and J.-J. Chen. Correspondence article: Counterexample for
suspension-aware schedulability analysis of EDF scheduling. Real Time
Systems Journal, 56(4):490–493, 2020.

[21] M. Günzel and J.-J. Chen. A note on slack enforcement mechanisms

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

for self-suspending tasks. Real Time Systems Journal, 57(4):387–396,
2021.

[22] M. Günzel, H. Teper, K. Chen, G. von der Brüggen, and J. Chen. Work-
in-progress: Evaluation framework for self-suspending schedulability
tests. In 42nd IEEE Real-Time Systems Symposium, RTSS 2021,
Dortmund, Germany, December 7-10, 2021, pages 532–535. IEEE,
2021.

[23] M. Günzel, N. Ueter, and J.-J. Chen. Suspension-aware fixed-priority
schedulability test with arbitrary deadlines and arrival curves. In 42nd
IEEE Real-Time Systems Symposium, RTSS, pages 418–430, 2021.

[24] M. Günzel, G. von der Brüggen, and J.-J. Chen. Suspension-
aware earliest-deadline-first scheduling analysis. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):4205–4216, 2020.

[25] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. Com-
munication centric design in complex automotive embedded systems.
In Euromicro Conference on Real-Time Systems, ECRTS, pages 10:1–
10:20, 2017.

[26] W.-H. Huang and J.-J. Chen. Self-suspension real-time tasks under fixed-
relative-deadline fixed-priority scheduling. In Design, Automation, and
Test in Europe (DATE), pages 1078–1083, 2016.

[27] W.-H. Huang, J.-J. Chen, and J. Reineke. MIRROR: symmetric timing
analysis for real-time tasks on multicore platforms with shared resources.
In Design Automation Conference, DAC, pages 158:1–158:6, 2016.

[28] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority
assignment of real-time tasks with dynamic suspending behavior under
fixed-priority scheduling. In Proceedings of the 52nd Annual Design
Automation Conference (DAC), pages 154:1–154:6, 2015.

[29] W. Kang, S. Son, J. Stankovic, and M. Amirijoo. I/O-Aware Deadline
Miss Ratio Management in Real-Time Embedded Databases. In Proc.
of the 28th IEEE Real-Time Systems Symp., pages 277–287, 2007.

[30] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A Responsive GPGPU Execution Model for
Runtime Engines. In 2011 IEEE 32nd Real-Time Systems Symposium,
pages 57–66, 2011.

[31] J. Kim, B. Andersson, D. de Niz, J.-J. Chen, W.-H. Huang, and
G. Nelissen. Segment-fixed priority scheduling for self-suspending real-
time tasks. Technical Report CMU/SEI-2016-TR-002, CMU/SEI, 2016.

[32] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-
time tasks with rate-monotonic priorities. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 3–12, 2010.

[33] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
Real-Time Systems Symposium’89, pages 166–171, 1989.

[34] C. Liu and J.-J. Chen. Bursty-interference analysis techniques for ana-
lyzing complex real-time task models. In Real-Time Systems Symposium
(RTSS), pages 173–183, 2014.

[35] W. Liu, J.-J. Chen, A. Toma, T.-W. Kuo, and Q. Deng. Computation
offloading by using timing unreliable components in real-time systems.
In Design Automation Conference (DAC), volume 39:1 – 39:6, 2014.

[36] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Timing Analysis of
Fixed Priority Self-Suspending Sporadic Tasks. In Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 80–89, 2015.

[37] Y. Nimmagadda, K. Kumar, Y.-H. Lu, and C. G. Lee. Real-time
moving object recognition and tracking using computation offloading.
In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 2449–2455. IEEE, 2010.

[38] B. Peng and N. Fisher. Parameter adaption for generalized multiframe
tasks and applications to self-suspending tasks. In 22nd IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA, pages 49–58. IEEE Computer Society, 2016.

[39] R. Rajkumar. Dealing with Suspending Periodic Tasks. Technical report,
IBM T. J. Watson Research Center, 1991. http://www.cs.cmu.edu/afs/
cs/project/rtmach/public/papers/period-enforcer.ps.

[40] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proceedings of the 9th IEEE Real-
Time Systems Symposium (RTSS ’88), pages 259–269, 1988.

[41] L. Schönberger, W. Huang, G. von der Brüggen, K.-H. Chen, and J.-J.
Chen. Schedulability analysis and priority assignment for segmented
self-suspending tasks. In 24th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA,
pages 157–167, 2018.

[42] J. Sun and J. W.-S. Liu. Synchronization protocols in distributed real-
time systems. In Proceedings of the 16th International Conference on
Distributed Computing Systems, pages 38–45, 1996.

[43] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein. System-level
timing feasibility test for cyber-physical automotive systems. In 2016
11th IEEE Symposium on Industrial Embedded Systems (SIES), pages
1–10, May 2016.

[44] A. Toma and J.-J. Chen. Computation offloading for frame-based real-
time tasks with resource reservation servers. In 2013 25th Euromicro
Conference on Real-Time Systems, pages 103–112, 2013.

[45] N. Ueter, J.-J. Chen, G. von der Brüggen, V. Venkataramani, and T. Mi-
tra. Simultaneous progressing switching protocols for timing predictable
real-time network-on-chips. In 26th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA,
pages 1–10, 2020.

[46] N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen. Hard real-time
stationary gang-scheduling. In 33rd Euromicro Conference on Real-Time
Systems, ECRTS, pages 10:1–10:19, 2021.

[47] G. von der Brüggen, A. Burns, J.-J. Chen, R. I. Davis, and J. Reineke.
On the trade-offs between generalization and specialization in real-time
systems. In 28th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA, pages 148–
159, 2022.

[48] G. von der Brüggen, W.-H. Huang, and J.-J. Chen. Hybrid self-
suspension models in real-time embedded systems. In International Con-
ference on Real-Time Computing Systems and Applications (RTCSA),
2017.

[49] G. von der Brüggen, W.-H. Huang, J.-J. Chen, and C. Liu. Uniprocessor
scheduling strategies for self-suspending task systems. In International
Conference on Real-Time Networks and Systems, RTNS ’16, pages 119–
128, 2016.

[50] G. von der Brüggen, N. Ueter, J. Chen, and M. Freier. Parametric
utilization bounds for implicit-deadline periodic tasks in automotive
systems. In Proceedings of the 25th International Conference on Real-
Time Networks and Systems, RTNS, pages 108–117, 2017.

[51] B. Yalcinkaya, M. Nasri, and B. B. Brandenburg. An exact schedulability
test for non-preemptive self-suspending real-time tasks. In Design,
Automation & Test in Europe Conference & Exhibition, DATE, pages
1228–1233, 2019.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.4
23

0/
L

IP
Ic

s.
E

C
R

T
S.

20
23

.1
0

