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Abstract—Safety-critical systems are often subjected to tran-
sient faults. Since these transient faults may lead to soft errors
that cause catastrophic consequences, error-handling must be
addressed by design. Full-protection against faults is too costly
in terms of resource usage. A common approach to relax the
resource demands and limit the impact of errors is to consider
(m, k)-constraints, which requires that at least m jobs out of any
k consecutive jobs are error-free. To assure (m, k)-compliance,
static patterns are widely used to select the job execution
modes, i.e., either in an error-free mode at the cost of increased
worst-case execution time or in an error-prone mode with the
advantage of less execution time. Although static patterns have
been shown to be effective in energy-aware designs, resource
over-provision is inevitable due to the relatively low rate of error
probability. In this work, we propose two dynamic (and adaptive)
approaches that allow the scheduler to opportunistically select
execution modes based on the error-history of the past jobs
and the actual error probability. We firstly propose a Markov
chain based solution if the error-probability is known and static
and secondly a reinforcement learning-based approach that can
handle unknown error probabilities. Experimental evaluations
show that our approaches outperform the state-of-the-art in most
of the evaluated cases in terms of average utilization for each task
and the overall utilization for multitask systems.

I. INTRODUCTION

Safety-critical embedded systems are often subjected to
transient faults due to environmental factors such as cosmic
radiation and electromagnetic interference [3]. The sensitivity
to such environmental factors is exacerbated by the high
integration density of modern systems-on-chips, which leads
to non-negligible transient fault-rates. Since these transient
faults can lead to soft errors that may cause catastrophic
consequences, error-handling must be addressed during system
design. Software-based techniques such as explicit output
comparison (EOC) [13], control flow checking by using
software signatures [33], and redundant multithreading [10],
are widely adopted due to their flexibility to trade-off error
protection with additional runtime.

In practice, it has been noticed, that some safety-critical
applications can tolerate a limited number of errors at the
cost of temporarily downgrading the quality of service (QoS),
without catastrophic consequences if some constraints of error
tolerance are guaranteed. For instance, robotic applications can
still successfully finish their tasks under a limited number
of errors [9], [45], where an (m, k) robustness constraint is
considered. That is, a task must have at least m correct jobs
out of any k consecutive jobs. While the original concept
of (m, k)-constraints [17] was designed for allowing limited

deadline misses [11], [18], the concept of (m, k)-constraints
is equally applicable to specify admissible limited numbers of
soft errors.

The most prevalent techniques that are currently used to
guarantee (m, k)-constraints, rely on static decisions to instan-
tiate jobs using suitable fault-tolerance techniques to assure
a reliable job execution such as the deeply red pattern (R-
pattern) [24] or the evenly distributed pattern (E-pattern) [37].
To improve the adaptivity of the static pattern based tech-
niques, Chen et al. [9] proposed to track the current resilience
during runtime and to adapt the patterns accordingly. More
precisely, the pattern-based scheduler defers the time-costly
reliable executions to the possible last moment by tracking
the number of upcoming jobs that can still be faulty without
violating the constraints. Despite that approach allowing for
some adaptivity, it might still lead to pessimistic resource
usage since the actual soft error probability is not considered.

In the literature of fault tolerant systems, one often stated
objective is to minimize the overall system utilization in order
to minimize the energy consumption [9], [30], [31], which is
due to the processors starkly differing power consumption pro-
files in the busy and idle state, respectively. As shown in [8],
the power consumption of a processor can be modeled by the
power consumption Pbusy in the busy state (a job is executed)
and the power consumption Pidle in the idle state (nothing
is executed). In the busy state, the consumed power can be
decomposed into static and dynamic power consumption in
contrast to the idle state, in which (ideally) only static power
is consumed. Moreover, keeping the processor in a busy state
for a sustained amount of time leads to a temperature increase,
which in turn results in higher energy consumption for cooling
and increases in the static leakage power consumption, due to
the super linear relationship between temperature and static
leakage power [40], [29]. The average energy consumption
is given by the average amount of time spent in either state
weighted with the power consumption associated with each
state. Using the the average utilization (Uavg), this can be
expressed as Pidle · (1 − Uavg) + Pbusy · Uavg and thus the
energy saving is directly linked to the reduction of the average
utilization.

In this work, we propose an adaptive state-based algorithm
that uses explicit knowledge and/or estimations of the soft
error probabilities and assures (m, k)-compliance of each task
under real-time constraints, whilst minimizing the expected
execution time of each task. Consequently of that mini-
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mization, the expected overall system utilization and energy
consumption of the system is minimized. We emphasize that
even though our studied execution time minimization is more
universal than just energy-consumption minimization, we here
focus on that use-case due to the practical importance, which
is evident in the plethora of published results concerning that
problem. We summarize our contributions as follows.
Our Contributions.
• Our fundamental contribution is the enforcement of

(m, k) constraints using a finite automata. We formu-
late all (m, k) compliant states of a task as a minimal
automata in Sec. III and only allow transitions between
compliant states. Based on the soft error probability and
a stochastic transition system, a Markov chain model is
derived.

• In Section IV, under the assumption that a stationary
error-probability can be accurately estimated, we propose
an optimization algorithm based on the Markov chain for-
mulation above, that calculates the stochastic parameters
in the job selection strategy to minimize the expected
execution time.

• Furthermore, we propose a reinforcement learning (RL)-
based approach to aid the job mode selection strategy
when soft error probabilities are unknown. We formulate
the mapping from a task’s execution information to the
RL recognizable environment and discuss the barrier
function and learning policy in Section V.

• To demonstrate the applicability of our approaches, we
provide extensive numerical evaluations in Section VI.
The results show that our approaches outperform the
state-of-the-art in most of the evaluated cases with respect
to the systems average utilization. Furthermore, the over-
heads of two approaches are discussed in Section VI-C.

II. SYSTEM MODEL

In this section, the considered task-, fault-, and error model
are explained in detail. In particular, we explain how faults
are prevented by job level software-based fault tolerance
techniques. Afterwards, we explain and state the here studied
problem of minimizing the expected execution time under
(m, k)-constraints. Lastly, we define the scheduling problem
of the task system under real-time constraints and clarify
the impacts of our approach on the worst-case response time
analysis.

A. Task Model

We consider a set of periodic and constrained-deadline
real-time tasks T = {τ1, . . . , τn} such that each task τi is
modeled by a tuple (Ci, Di, Ti,mi, ki) where:
• Ci = {Cui , Cdi , Cri } is a set of worst-case execution

times (WCETs) representing the different WCET de-
mands of the different execution modes of unreliable
mode, detected mode, and reliable mode task instances.
Throughout this work, we assume that Cui < Cdi < Cri
holds due to the additional overheads for the detected and
reliable modes.

• Di is the relative deadline of τi, i.e., a job of τi released
at time t must finish its execution no later than its absolute
deadline t + Di. We consider constrained-deadline task
systems, i.e., Di ≤ Ti, ∀ τi ∈ T.

• The period of τi is denoted by Ti. Each task releases
an infinite number of task instances, called jobs, strictly
periodically with period Ti. We denote the `-th job of τi
as J`i .

• Each task is subject to an (mi, ki) constraint, i.e., a
task τi is required to have at least mi jobs out of
any ki consecutive jobs to be correctly executed, where
0 < mi ≤ ki.

With regards to the different execution modes, we assume
that software-based fault tolerance techniques are used to de-
tect and recover fault-induced soft errors. Each task is allowed
to instantiate jobs in the reliable, detected, or unreliable mode
and the additional composite mode detected+reliable, which
is an immediate compensation in the same release window,
i.e., a reliable execution mode instance can be triggered right
after the detected mode instance when it is necessary. The
different elementary modes have the following implications
for soft errors and overheads; a) In the unreliable mode,
no additional implementation effort is needed. However it
is not known if a error occurred during the execution of
this job or not. In consequence, in order to guarantee (m, k)
constraints, we have to assume that an soft error occurred by
default. b) In the detected mode, techniques can be applied to
verify the correctness of the executed job, e.g., error detection
with special encoding of data, or control flow checking. In
this mode it can be observed if a error has occurred during
execution or not. c) In the reliable mode, it must be assured
that no soft error manifests which requires detection and
subsequent recovery thereof. To that end, several redundant
copies of the job are executed to ensure high reliability of the
final result.

The considered system does not allow to skip any job in
order to potentially improve the QoS. In the remainder of this
work, we omit the task index whenever it is irrelevant what
task is referred to.

B. Fault and Error Model

Transient faults can lead to soft errors that cause incorrect
results calculated by the affected executed jobs. In this work,
we assume that the probability that an executed job is affected
from transient faults, which then results in at least one soft
error, is given by a stationary probability pe. Subsequently,
the soft error probabilities for a sequence of jobs of the same
task is an independent stochastic process. We assume that soft
errors can occur at any time during a job’s execution, but such
error-affected job is assumed to halt after executing for at most
its worst-case execution time – even in the unreliable mode –
by means of e.g., watchdog timers. Moreover, the error detec-
tion in the reliable and detected mode is certain in the sense
that an incurred soft error is detected with the same (very high)
probability as other system reliability dependent parameter
guarantees. In either the detected mode or the reliable mode,
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errors are detected at the end of a job’s execution by using
sanity or consistency checks [35]. To guarantee a correct result
in the reliable mode, either a recovery routine can be issued
to guarantee the job’s correctness or task replication [19]
can be applied to achieve high reliability. For instance, in
the simultaneously, and redundantly threaded processors with
recovery approach (SRTR) [41], the register values of all
redundant threads are compared and are only committed if the
register values of all threads agree. Otherwise, the threads are
re-executed – for at most a specified number m times – until
either the register values of all threads agree or the maximum
number of re-executions is reached. Hence, the probability that
a correct result is produced in the reliable mode by the SRTR
approach after at most m re-executions is given by 1− (pe)

m

under the assumption that soft error probabilities of the re-
executions are independent and that each soft error results
in a disagreement of the compared to register values1. The
overhead for detection and recovery is henceforth integrated
into the WCETs of the corresponding jobs’ execution modes.

C. Problem Definition

In this work, we consider a periodic and constrained-
deadline task set T that is scheduled by an arbitrary preemptive
scheduling algorithm under some form of temporal constraint,
which is further detailed in the following Section II-D. Each
task τi releases an infinite number of jobs J`i for ` ∈ N, each
of which has an arrival time a`i and finishing time f `i and
is run exclusively in either the unreliable, reliable, detected
mode or the composite mode detected + reliable, which is
a detected mode instance immediately followed by a reliable
mode instance in case of a soft error detection during the
same interval [a`i , f

`
i ). Depending on the mode in which a

job J`i is executed, a soft error that occurs during the interval
[a`i , f

`
i ) affects the correctness of that job, i.e., a faulty job

in case of the unreliable and detected mode and a correct
job in case of the reliable or detected + reliable mode. Our
objective is to devise a job mode selection strategy – for
the next-to-be-released job – based on the error history and
currently executed job that is reconstructed from the observed
soft errors by the detected and reliable job modes and the
additional information of an estimated error probability pe.
In particular, that job mode selection strategy must guarantee
that the task under consideration satisfies the specified (m, k)-
constraints at all times under the optimization objective that
the expected execution time of the task is minimized.

D. Schedulability and Scheduling

We assume an arbitrary preemptive scheduling algorithm
to schedule the task set T that is capable of guaranteeing
the temporal requirements such as strict deadline compliance
in case of hard real-time systems. Our proposed approach is
not strictly limited to hard real-time task systems and focuses
on the generation of guaranteed (m, k)-compliant schedules

1The maximum number of replications m must be determined by the
system designer depending on the required confidence and how hardened the
considered system must be.

for each task under the objective to minimize the expected
execution time. However, the worst-case job mode sequence
that can be generated by our approach is identical to the R-
Pattern in which the first k − m instances are executed in
detected mode and the remaining m instances are successively
executed in the reliable mode. Therefore, any hard real-time
schedulability analyses adopting the R-Pattern can be used.

We note that our approach does not improve the worst-case
response time analyzability in contrast to static patterns that
restrict the possible worst-case generated job mode sequences.
Instead, we improve the average case performance, but can still
provide hard real-time guarantees. For instance, our approach
can be analyzed by adopting the multi-frame task model to
analyze the worst-case execution pattern as suggested by Chen
et al. [9]. If on the other hand soft real-time or best-effort is
required, then a suitable algorithm such as earliest-deadline
first (EDF) may be used.

III. MINIMAL COMPLIANT AUTOMATA CONSTRUCTION

In this section, we formalize the problem described in
Section II-C. Afterwards, we propose an algorithm to construct
(m, k)-compliant automata with the minimal number of states.

A. Automata Construction

Definition 1 (Correctness Indication). We indicate the correct-
ness of a job at the end of its execution by an element of the
set Σ = {0, 1}. That is, an error-free executed job is indicated
by a 1 and an erroneously executed job is denoted by a 0.

We indicate the correctness of the `-th job J`i of task τi by
the character c` ∈ Σ and use a (possibly infinite) sequence
of concatenated characters, i.e., a word w = c1 ◦ c2 ◦ · · · ◦ cn
to indicate the correctness of the job sequence J1

i to Jni for
n ∈ N. We denote the sub-word of w that starts at index a and
ends at index b as w(a, b) = ca ◦· · ·◦cb for a < b. The w(a, :)
and w(:, b) are used to denote the sub-word starting at index
a to the end or from the beginning to the index b inclusively.

To eventually guarantee (m, k)-compliance of a task, i.e.,
of an infinite sequence of jobs, any sequence of k-consecutive
jobs must be analyzed. While there are infinitely many sub-
words (since there may be infinite job releases), there are only
2k many different outcomes Q := {00 . . . 0, . . . , 11 . . . 1} for
which we define a k-error-automata.

Definition 2 (k-Error-Automata). A k-error-automata Ak :=
(qs, Q,Σ, δ) is defined by a 4-tuple, where Q := {0, 1}k
denotes the finite set of states of all possible outcomes in
any k consecutive job releases. The start qs := 11 . . . 1 ∈ Q
denotes the unique starting state, Σ := {0, 1} denotes the input
alphabet, and δ defines the transition system δ : (Q,Σ) 7→ Q
such that for any state q ∈ Q := {00 . . . 0, . . . , 11 . . . 1}

δ(q, 0) = q(2, :) ◦ 0 ∈ Q (1)
δ(q, 1) = q(2, :) ◦ 1 ∈ Q (2)

An exemplary 3-error-automata A3 is illustrated in Figure 1.
While a k-error-automata models all error sequences in k
consecutive jobs, not each sequence is (m, k) compliant.
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Fig. 1. An exemplary k-error-automata Ak and the (2, 3)-compliant automata
A∗

k is highlighted in bold, where the darker states are critical states and the
lighter states are nominal states.

Definition 3 ((m, k)-Compliant State). A state q ∈ Q of a
k-error-automata Ak is called (m, k)-compliant if 1[q] ≥ m
is satisfied, where the operator 1 counts the number of 1’s
in q’s representation. The set of all (m, k)-compliant states is
called the (m, k)-compliant state-space denoted by Q∗ ⊆ Q.

In order to verify if a task satisfies its (m, k) constraint after
the finishing of the `-th job given the indication c` it must be
tested if every sub-word of length k in w = c1 ◦ · · · ◦ c` for
` ≥ k contains at least m correct executions.

Definition 4 (Job Sequence Induced State). Let any concrete
word w = c1◦· · ·◦c` for ` ≥ k, that indicates the outcomes of
all finished jobs. A sub-word of length k starting at the j-th job
w(j, j+k−1) for j ∈ {1, . . . , `−k+1} induces a state q ∈ Q
in the k-error-automata Ak denoted as ψ(w(j, j + k− 1)) =
q ∈ Q if q’s binary representation is identical to w(j, j+k−1).

As the word w, indicating the correctness of all finished
jobs, evolves with the finishing of each released job, the
state of the k-error-automata transitions accordingly. More
precisely, let the (j + k)-th job finish at time fj+k and let
the sub-word w(j, j + k − 1) denote the latest k-consecutive
job outcomes prior to time fj+k. Based on the outcomes of the
(j + k)-th job as indicated by cj+k, the evolved job sequence
induced state inAk is given by δ(ψ(w(j, j+k−1)), cj+k). The
outcome of the (j+k)-th job is determined by the occurrence
of an error, which is assumed to be stochastic in nature and be-
yond our control. That is, under the assumption of a stationary
soft error probability pe we have that P(cj+k = 0) = pe and
conversely P(cj+k = 1) = 1−pe. We can however control the
execution mode of the (j + k)-th job release, i.e., unreliable,
detected, reliable or detected followed by reliable.

As described in Section II-A, in the unreliable mode, the
correctness of (j + k)-th job, i.e., cj+k = 0 with probability
1. In detected mode, if an error occurred then cj+k = 0 with
probability pe and cj+k = 1 with probability 1−pe otherwise.
In the reliable mode, the execution is guaranteed to be correct,
i.e., cj+k = 1 with probability 1. In the detected followed by
an optional reliable mode, a reliable instance is only released
if an error was detected and the current instance has to be

correct in order to ensure the corresponding (m, k) constraint.
Recall that our objective is to devise a state-based execution

mode selection such that any infinite sequence of outcomes
of jobs as indicated by an evolving word w is firstly (m, k)
compliant and secondly minimizes the expected execution
time. More precisely for any job sequence induced compliant
state ψ(w(j, j + k − 1)) ∈ Q∗ of Ak, we devise a mode
selection strategy

α : Q∗ 7→ {u, d, r, d+ r} (3)

to choose either an unreliable, detected, reliable, or a detected
job optionally followed by a reliable instance for the (j+k)-th
job release such that P(ψ(w(j+ 1, j+ k)) /∈ Q∗ | ψ(w(j, j+
k − 1) ∈ Q∗, α(ψ(w(j, j + k − 1))) = 0 for all j ∈ N. For
short, let xj := w(j, j + k − 1) for some j ∈ N then

P(cj+k = 1 | α(xj)) =





0 if α(xj) = u

1− pe if α(xj) = d

1 if α(xj) = r ∨ (d+ r)

Conversely, P(cj+1 = 0 | α(xj)) = 1−P(cj+1 = 1 | α(xj)).
Please note that while the job may actually execute correctly
even in unreliable mode, we have to consider it an error
to guarantee (m, k) compliance, since the outcome is not
observable. From a design perspective, we have to design the
transitioning system of Ak such that only the compliant states
Q∗ are reachable.

Definition 5 (Compliant Transitions). A transition system δ of
a k-error-automata Ak is (m, k)-compliant if and only if for
any given word w with j ≥ 1 the following implication holds

ψ(w(j, j+k−1)) ∈ Q∗ ⇒ δ(ψ(w(j, j+k−1)), cj+k(α)) ∈ Q∗

Definition 6 (Critical State). A compliant state ψ(w(j, j+k−
1)) ∈ Q∗ is a critical state with respect to (m, k)-constraints
if there are only (m− 1) correctly executed jobs in the word
w(j + 1, j + k − 1), i.e., the latest previous (k − 1) jobs.

Definition 7 (Nominal State). A compliant state ψ(w(j, j+k−
1)) ∈ Q∗ is a nominal state with respect to (m, k) constraints
if there are at least m correctly executed jobs among the latest
previous (k − 1) jobs, i.e., w(j + 1, j + k − 1).

It can be observed that in order for the transition system to
be compliant, we have to enforce an outcome cj+k based on
whether ψ(w(j, j + k− 1) is a critical or nominal state. That
is if ψ(w(j, j+k− 1)) ∈ Q∗ and critical then cj+k = 1 must
be enforced. In the case that ψ(w(j, j + k − 1)) ∈ Q∗ and
nominal then any cj+k ∈ {0, 1} is a feasible outcome. These
observations are formalized in the following corollaries.

Corollary 1 (Critical State Transition). If a compliant state
ψ(w(j, j+k−1)) ∈ Q∗ is a critical state then only a correct
execution of the (j + k)-th job leads to a transition into a
compliant state Q∗.

Proof. The updated word after concatenation of cj+1 is given
by w(j+1, j+k), i.e., w(j+1, j+k−1)◦cj+1. By definition,
the number of correct instances is given by 1[w(j+1, j+k−
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1)] = m − 1. Clearly |w(j + 1, j + k)| = k and if cj+1 = 0
then 1[w(j + 1, j + k)] = m− 1 and 1[w(j + 1, j + k)] = m
if cj+1.

Corollary 2 (Nominal State Transition). If a compliant state
ψ(w(j, j + k − 1)) ∈ Q∗ is a nominal state then either
execution outcome of the (j + k)-th job leads to a transition
into a compliant state Q∗.

Proof. The updated word after concatenation of cj+k is given
by w(j+1, j+k), i.e., w(j+1, j+k−1)◦cj+k. By definition,
the number of correct instances is given by 1[w(j+1, j+k−
1)] = m. Clearly |w(j + 1, j + k)| = k and if cj+k = 0 then
1[w(j + 1, j + k)] = m and 1[w(j + 1, j + k)] = m + 1 if
cj+k each of which complies with the (m, k) constraints.

Based on these results, we can formulate properties that
must be met by any feasible strategy.

Lemma 1 (Compliant Mapping Strategy). Any mapping strat-
egy α for the k-error-automataAk that satisfies the constraints

α(ψ(xj)) =

{
r ∨ (d+ r) if ψ(xj) is a critical state
u ∨ d ∨ r if ψ(xj) is a nominal state

(4)

leads almost certainly to a compliant transition system for
xj := ψ(w(j, j + k − 1)) ∈ Q∗ for all j.

Proof. By the results of Corollary 1 and Corollary 2, we know
that for any induced state q := ψ(xj) ∈ Q∗, the strategy α(q)
must almost certainly enforce a correct outcome of cj+k if q
is a critical state and any outcome if q is a critical state to
lead to a compliant transition. Clearly, a reliable instance or
a detected instance followed by an optional reliable instance
in case of an error in case of q being a critical state enforces
that P(cj+k = 1 | α(q)) = 1. Conversely, if an unreliable
or a detected instance is chosen if q is a nominal state then
P(cj+k = 0 | α(q)) + P(cj+k = 1 | α(q)) = 1 which thus
almost certainly leads to a compliant state.

An α-induced (m, k)-compliant subset of a k-error-
automataAk is denoted byA∗k(α) and only contains compliant
states Q∗ ⊆ Q and a compliant transition system δ∗ ⊆ δ such
that for any q ∈ Q∗ the transition δ∗(q, c(α(q))) ∈ Q∗, which
is exemplified in Figure 1.

B. States Reduction and Minimal Automata Construction

In the remainder of this section, we propose an algorithm
to generate a minimal (m, k)-compliant automata A∗k(α),
which is necessary to improve the computational complexity
of our to be designed expected execution time minimization
algorithms. We note that the approach to generate minimal
finite-state machines as e.g., used in Vreman et al. in [43]
is applicable for (m, k) constraints as well. However, their
generation algorithm is similar to Hopcroft’s algorithm [21],
which generates all states and merges equivalent states whilst
our Algorithm 1 utilizes the specificity of the problem to only
generate compliant states right away.

Definition 8. For given (m, k)-constraints the set of n-step
equivalent compliant states of the compliant k-error-automata
A∗k is given by

[q]n := {q, q′ ∈ Q∗ | (δ(q, w) = δ(q′, w)) ∀w ∈ {0, 1}n}

and we say q ∼n q′ if q and q′ are n-step equivalent.

We use the don’t care notation to denote the representative
state [q]n, e.g., ∗ ◦ q(2, :) = ∗ ◦ q′(2, :) for 1-step equivalent
states q ∼1 q

′ and ∗ ∗ · · · ∗ ◦q(n+ 1, :) = ∗ ∗ · · · ∗ ◦q′(n+ 1, :)
for q ∼n q′.
Lemma 2. If there exist q, q′ ∈ Q∗ such that q ∼n+1 q

′ then
there exist v, v′ ∈ Q∗ such that v ∼n v′ or conversely if there
are not n-step equivalent states then there are no (n+1)-step
equivalent states.

Proof. We prove this lemma constructively, i.e., let q ∼n+1

q′ then δ(q, w) = δ(q′, w) for all w ∈ {0, 1}n+1, which is
equivalent to δ(q, w(1) ◦w(2, :)) = δ(δ(q, w(1)), w(2, :)) and
thus δ(δ(q, w(1)), w(2, :)) = δ(δ(q′, w(1)), w(2, :)). Let v =
δ(q, w(1)) ∈ Q∗ and v′ = δ(q′, w(1)) ∈ Q∗ then due to the
fact that |w(2, :)| = n it must be that v ∼n v′.

From this lemma it follows that state equivalence must be
constructed iteratively until no further n-step equivalent states
can be generated from the set of (n−1)-step equivalent states
for n ≥ 1. We emphasize that we do not need to consider
special constraints on w as e.g., only critical transitions exist
for critical states, since only nominal states can be equivalent
as shown in the following.

Lemma 3. Only nominal states can be equivalent states in a
compliant non-minimized automata A∗k.

Proof. We prove by contradiction that only nominal states
can be n-step equivalent. Assume that there exist any
q ∼n q′ such that q is a critical state and q′ is a
nominal state, i.e., by definition 1[q(n+ 1, :)] = m− 1 and
1[q(n+ 1, :)] ≥ m. Since q′ is equivalent by assumption we
have that q′(n+ 1, :) = q(n+ 1, :) and thus 1[q′(n+ 1, :)] =
m − 1, which implies however that q′ is not a nominal state
and contradicts the assumption.

Corollary 3. The initial set of nominal states can be mini-
mized to a set of representatives of the form ∗ · · · ∗ ◦v where
v is the shortest v such that 1[v] = m and the prior k − |v|
characters are don’t cares.

Proof. This follows from Lemma 2 and Lemma 3, since we
know that states q, q′ are merged up to n-step equivalence if
1[q(n+ 1, :)] ≥ m and thus 1[∗ · · · ∗ ◦q(n+ 1, :)] ≥ m where
n is the maximal equivalence found and thus v = q(n+ 1, :)
|v| = k − (n+ 1) + 1 = k − n, i.e., shortest |v|.

Theorem 1 (Minimal Automata). The minimal number of
compliant states Q∗ of a (m, k)-compliant A∗k is given by

|Q∗| = k!

m!× (k −m)!
(5)
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Algorithm 1 Generation of minimal compliant A∗k
Input: Constraint (m, k);

1: A∗k ← (qs, Q
∗ := ∅, δ := ∅,Σ := {0, 1});

2: qs ← {∗ ∗ . . . 1 };
3: for each z ∈ {0, . . . , k −m− 1} do
4: add q := ∗k−m−z ◦ 1 ◦ b(m+ z − 1,m− 1) to Q∗;
5: add transition δ(q, 1) = q(2, :) ◦ 1 to δ;
6: add transition δ(q, 0) = q(2, :) ◦ 0 to δ;
7: for each q ∈ {w ∈ b(k − 1,m− 1) | 1 ◦ w} do
8: add q to Q∗;
9: add transition δ(q, 1) = q(2, :) ◦ 1 to δ;

10: return A∗k;

Proof. The number of compliant states is composed of critical
and nominal states, where the number of critical states is given
by
(
k−1
m−1

)
since exactly the last k − 1 characters in a critical

state q must contain exactly m− 1 ones.
From Lemma 3, we know that m ≤ |v| ≤ k − m and

thus states with |v| = ` and 1[v] = m are merged into
one representative state for ` ∈ {m,m + 1, . . . , k −m}. The
number of combinations for each above class is given by the
binomial

(
`
m

)
. However for each ` the number of combinations

for ` − 1 must be substracted. This is due to the fact that
by Lemma 2, we know that each state is represented by the
maximal equivalence representative and the combinations with
m ones in the last ` characters can be extended to combinations
with m ones in the last ` + 1, which should then be covered
by the representative of `. In consequence, we have that |Q∗|
is given by
(
k − 1

m− 1

)
+

(
m

m

)
+
k−m∑

`=1

(
m+ `

m

)
−
(
m+ `− 1

m

)
=

(
k

m

)

which proves the theorem.

Let b(z, n) denote all bit strings of length z with exactly n
ones which can be recursively defined and computed using
dynamic programming. Using the above observations and
lemmas, we can generate all critical states by {w ∈ b(k −
1,m − 1) | 1 ◦ w} and for each critical state q, we add a
critical transition δ(q, 1) = q(2, :)◦1. To generate the minimal
set of nominal states for (m, k)-constraints, we generate the
representatives iteratively using ∗` to denote a string of ` many
∗-characters as follows:

k−m−1⋃

z=0

∗k−m−z ◦ 1 ◦ b(m+ z − 1,m− 1) (6)

For instance in the case of (2, 4) constraints, the minimal
nominal states are given by Eq. (6) as ∗∗◦1◦ b(1, 1) = ∗∗11,
∗ ◦ 1 ◦ b(2, 1) = {∗110, ∗101}. For each merged critical state
q the transitions δ(q, 0) = q(2, :) ◦ 0 and δ(q, 1) = q(2, :) ◦ 1
to the automata.

IV. MINIMIZATION OF EXPECTED EXECUTION TIME

In this section, we explain our mapping strategy of exe-
cution modes to jobs by considering different strategies for

critical and nominal states in detail. Afterwards, an optimiza-
tion strategy based on induced the Markov chain is proposed.
In the end, an example is provided to illustrate the work flow
of our proposed strategy.

A. Mapping Strategy

Our mapping strategy utilizes the design space of the com-
pliant mapping strategy from Lemma 1 to select the execution
mode for next job as follows.

Critical State Action. If the current state q is a critical state
then the next job has to be executed correctly and therefore
either of the following two actions must be taken:

1) Release a reliable task instance, i.e., α(q) = r.
2) Release a detected task instance and only release an

immediate follow-up reliable task instance in case of a
detected error, i.e., α(q) = d+ r.

By this mapping, we have enforced that c(α(q)) = 1 with
probability 1. In the first case, the expected WCET of a job
released in state q is either Cr or (1−pe) ·Cd+pe ·Cr. It can
be seen that for very low error probabilities pe it is better to
first run a detected instance followed-up by a reliable instance.

Nominal State Action. If the current state q is a nominal
state then the next job must not be enforced to be executed
correctly. Thus we have the following three options to choose
the next job’s mode:

1) Release a reliable mode instance, i.e., α(q) = r and
c(α(q)) = 1 with probability 1.

2) Release a detected mode instance, i.e., α(q) = d and
c(α(q)) = 1 with probability 1 − pe and c(α(q)) = 0
with probability pe.

3) Release an unreliable mode instance, i.e., α(q) = u and
c(α(q)) = 0 with probability 1.

Due to the assumed high worst-case execution time of the
reliable instances, we opt to select either a detected or an
unreliable mode instance in each nominal state q. We draw
either a detected mode instance at random with probability pd
or an unreliable mode instance with probability pu such that
pd + pu = 1 and the expected execution time is thus given by
pd · Cd + pu · Cu. Based on this randomized mode selection,
the outcomes are stochastic in nature, i.e., P(c(α(q)) = 1) =
pd · (1− pe) and P(c(α(q)) = 0) = pd · pe + pu.

B. Induced Markov Chain

Using the mapping strategy α, we can derive an α-induced
Markov chain from the automata A∗k.

Observation 1 (Induced Markov Chain). The α-induced
(m, k)-compliant A∗k(α) is a finite discrete-time Markov chain
with transition probability determined by the error probability
and the mapping strategy α.

Due to the state-based mode selection strategy, the proba-
bility of being in state q′ at time k+1, i.e., P(xk+1 = q′) only
depends on the probability of being in a state q at time k for
which (q, q′) ∈ δ∗ holds and the probability of taking a specific
transition thereof. Therefore the Markov property is trivially
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satisfied. Moreover, the specific transition probabilities are
derived based on the error probability pe and the stochastic
state-based mode selection, i.e., if q is a nominal state then by
our strategy α the following state transitions are given:

P(xn+1 = δ(q, 0)|xn = q) = P(c(α(q)) = 0) = pd · pe + pu

P(xn+1 = δ(q, 1)|xn = q) = P(c(α(q)) = 1) = pd · (1− pe)
and for critical states

P(xn+1 = δ(q, 0)|xn = q) = P(c(α(q)) = 0) = 0

P(xn+1 = δ(q, 1)|xn = q) = P(c(α(q)) = 1) = 1

Definition 9 (Stationary Distribution). Let a finite, irreducible
Markov chain be given by xn+1 = A · xn, where xn ∈ Q∗r,
A ∈ Fr×r and ||xn||1 = 1 for all n ∈ N and |Q∗| < ∞. A
probability distribution ξ is said to be a stationary distribution
or invariant distribution if

A · ξ = ξ (7)

We then obtain the corresponding stationary distribution ξ
according to Eq. (7) by treating ξ as an eigenvector of A with
an eigenvalue 1 that can be efficiently numerically solved by
e.g., eigenvalue decomposition (spectral theorem [36]). Let
the stationary distribution ξT = (ξ1, . . . , ξr) where the ξi
corresponds to the stationary probability to be in state qi ∈ Q∗.
In consequence the expected execution time is:

E(C) :=

r∑

i=1

ξi · (pd · Cd + pu · Cu) · [qi is nominal]

+ξi ·min{Cr, (1− pe) · Cd + pe · (Cd + Cr)} · [qi is critical]

Our formal objective is to minimize E(C) for each task
individually with respect to the parameters pd (pu = 1− pd).
What is left to show is that each α-induced (m, k)-compliant
Markov chain always has a stationary distribution.

Theorem 2 (Renewal Theorem [16]). A finite, irreducible
Markov chain has a unique stationary distribution.

Definition 10 (Irreducibility). A Markov chain is irreducible
if for any two states, i.e., q, q′ there exist n, n′ ∈ N0 such that
P(xi+n = q|xi = q′) > 0 and P(xi+n′ = q′|xi = q) > 0 for
some i ∈ N.

Theorem 3. The α-induced (m, k)-compliantA∗k(α) is a finite
and irreducible discrete-time Markov chain.

Proof. From Theorem 1, it immediately follows that A∗k(α)
has finite states. Moreover, since the α-induced (m, k)-
compliant A∗k(α) has non-zero probability for each transition
by construction, we only have to prove that any two states
q, q′ are reachable from one another. We prove this theorem
for the non-minimized automata, but since in the minimized
automata only equivalent states are merged, it is obvious that
the reachability property remains.

Let q, q′ any two states in the non-minimized α-induced
Markov chain A∗k(α) then there always exists a sequence of
compliant transitions from q  q′ by decomposition of the
transitions into q  11 . . . 1 (k ones) and 11 . . . 1 q′. Since

∗11 110 101

0 1

1

1

Fig. 2. A minimal (2, 3)-compliant 3-error-automata A∗
3 .

for each feasible state q ∈ Q the transition δ(q, 1) ∈ Q is de-
fined for critical- and nominal states, the state 11 . . . 1 can be
reached from any state q by successive 1-transitions. Secondly,
for any given (m, k)-constraints, starting from state 11 . . . 1,
(by construction of the automata) we can use a 0-transition at
most (k −m) times and always be in a compliant state. This
allows to reach any compliant state q ∈ Q with 1[q] ≥ m
to be reachable from 11 . . . 1, since q = δ(11 . . . 1, q) and
1[q] + 0[q] = k and thus 0[q] = k − 1[q] ≤ k −m.

C. An Illustrative Example

To illustrate our approach, we here provide a full example
of the previously described task with (m = 2, k = 3)-
constraints and assume that the execution times of the different
job modes are given by Cu = 1, Cd = 1.5, and Cr = 3 and
the task has a stationary soft error probability of pe = 0.1.
After minimization according to Algorithm 1, the generated
automata is shown in Figure 2 The ordered set of the states
Q is given by 〈Q〉 = 〈∗11, 110, 101〉 where ∗11 is a nominal
state and 110, 101 are critical states. By using the mapping
strategy described in Section IV-A, we derive the following
non-zero transition probabilities:

P(xn+1 = ∗11|xn = ∗11) = pd · (1− pe) = 0.9 · pd
P(xn+1 = 110|xn = ∗11) = pe · pd + pu = 1− 0.9 · pd
P(xn+1 = 101|xn = 110) = 1

P(xn+1 = ∗11|xn = 101) = 1

The corresponding transition probability matrix A is:

A =




0.9 · pd 0 1
1− 0.9 · pd 0 0

0 1 0


 (8)

where the row and column indexes are referring to the index
of 〈Q〉. By solving the equation ξ ∈ ker(A − I) such that
||ξ||1 = 1, we obtain the values ξ1 = 1/(3 − 1.8 · pd) and
ξ2 = ξ3 = (1 − 0.9 · pd)/(3 − 1.8 · pd) which yields the
following expected execution time ξ1 · pu ·Cu + ξ1 · pd ·Cd +
2 · ξ2 ·min{Cr, Cd + pe · Cr} and evaluates to

pu · Cu + pd · Cd + 2(1− 0.9 · pd) ·min
{
Cr, C

d + 0.1 · Cr
}

3− 1.8 · pd

=⇒ 230− 137 · pd
150− 90 · pd

for any pd ∈ [0, 1] (9)

The function in Eq. (9) is monotonically increasing on the
interval [0, 1], which implies that the minimum value of the
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expected execution time is attained for pd = 0. Therefore, in
every nominal state q the mapping is given by α(q) = u, i.e.,
to always instantiate an unreliable instance next. Moreover, for
each critical state q we always select

α(q) =

{
d+ r if Cd < (1− pe) · Cr
r otherwise

(10)

In summary, we obtain the following mapping strategy:

α(q) =

{
d+ r if q ∈ {101, 110}
u if q ∈ {∗11} (11)

that results in a minimal expected execution time of 1.533.
However, if we decrease the stationary soft error probability
to 1%, i.e., pe = 0.01, the expected execution time becomes

1150− 766 · pd
750− 495 · pd

for any pd ∈ [0, 1] (12)

In contrast to Eq. (9), Eq. (12) is monotonically decreasing
on the interval [0, 1] and thus the minimum expected execution
time is attained when pd = 1. This results in the altered
strategy

α(q) =

{
d+ r if q ∈ {101, 110}
d if q ∈ {∗11} (13)

Despite the randomized mode selection strategy attempt,
due to the linear form of the optimization objective, e.g., in
Eq. (9) and Eq. (12), the maximum will always be at one of the
interval ends resulting in an off-line calculated deterministic
look-up table such as in Eq. (11) or Eq. (13).

V. REINFORCEMENT LEARNING BASED APPROACH

When the error probability for each task is unknown, the
probabilities of state transitions are no longer explicit, which
makes the static optimization approach proposed in Sec. IV
inapplicable. To this end, we propose an artificial expert
(agent) based on reinforcement learning (RL), to optimize
the selections of execution modes opportunistically during
the runtime. In this section, we first give a short overview
of RL. Afterwards, we demonstrate how the execution mode
selection with (m, k) constraints problem is formulated to the
RL-solvable problem. Furthermore, the barrier function that
assures the (m, k) constraint is discussed. Finally, we present
the learning policy for RL agent for the studied problem.

A. Overview of Reinforcement Learning

As one of the machine learning paradigms, RL can be
reformulated as a Markov Decision Process (MDP). Fig. 3
shows the basic components of a MDP. The environment E is
defined as a state space, which is denoted as S. Each state
instance, i.e., st ∈ S, is a description of the environment
at time t. All the actions that an agent can take formulate
the action space, i.e., A. One iteration of MDP is shown in
Fig. 3: when an action at ∈ A is taken based on current state
st, the environment is transited to a new state st+1. During the
transition, a reward rt is given to the agent according to the
reward function R. Therefore, reinforcement learning problem

Agent

Environment

at

st

st+1 rt

Fig. 3. Schematic of the agent and environment interaction, with the time-
dependent states s, rewards r and action a

can be formulated as a four tuple, i.e, (S,A, P,R), where
P : S × A × S 7→ R represents the probability of state
transitions P (st+1 | st, at), and R : S × A × S 7→ R denotes
the corresponding reward function. According to the Markov
property, the next state st+1 only depends on the current state
st and current action at, and is conditionally independent to
all previous states and actions.

The objective of a reinforcement learning task is to let the
agent learn a policy π, which is a probability density function
to describe the state-to-action mapping. That is, an agent can
take an action according to the policy and current state, i.e.,
a = π(s). A policy π can be formed into two different
ways: a) the deterministic policy π : S 7→ A is a unique
mapping from state to action; b) uniform stochastic policy
π : S ×A 7→ A defines the probability distribution of actions
according to a given state, i.e., π(at|st) = P(a = at | s = st)
where

∑
at∈A π(at|st) = 1. The learned policy is evaluated

by the cumulative future reward, i.e., Wt =
∑∞
i=t ri. Since

future reward is often less valuable than present reward, a
discount rate γ ∈ (0, 1] is included, i.e., Wt =

∑∞
i=t γ

i−tri.
In addition, value function is applied to estimate the expected
future reward. On the one hand, state-value function is defined
as Vπ(st) = EA[Qπ(st, A)], which defines the expected
cumulative reward from state st by applying policy π. On
the other hand, action-value function for a policy π is defined
as Qπ(st, at) = E[Wt|s = st, a = at], which indicates the
quality of the action at under state st.

B. RL Formulation

We consider each task as an agent, and hence multiple
agents are in the same task system. These multiple agents in
this work are independent, i.e., they are not the same as multi-
agents reinforcement learning. Each agent independently takes
its own actions based on its observation without requiring any
information from the others. Hence, in the following, we focus
on the selection strategy of execution modes for one task.

As shown in Sec. IV-B, the job level execution modes
selections for each task is an independent MDP. The action
space for each task is, selecting the execution mode for its next
job, i.e., A = {0 : unreliable, 1 : detected, 2 : reliable}.
The environment state is a set of execution statuses for a tasks’
corresponding jobs, i.e., st = [s1t , s

2
t , . . . , s

`
t]. The execution

status of each job, i.e., sjt , has the following four attributes:
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• Correctness: it is a binary variable, that indicates the
correctness of the corresponding job, i.e., according to
Definition 1, 0 denotes error execution and 1 denotes
correct execution.

• Execution mode: it is used to record the execution mode
of a job, i.e., one element from the action space.

• Expected execution time: according to the corresponding
execution mode, each job has its own expected execution
time, e.g., Cu, Cd, or Cr. Please note, the expected
execution times here are the same as the WCET of
different modes, which are different to the expected
execution times in Sec. IV-A.

• Real execution time: it is used for recording the execution
time of a job. For both unreliable and reliable modes,
a job should have the same real execution time as the
expected execution time. However, for the detected mode,
the real execution time may be much longer than expected
when a job is forced to be correct according to (m, k)
constraint but is detected as error. The job has to re-
execute the reliable mode to satisfy the (m, k) require-
ment, where the real execution time equals to Cd + Cr.

The length of an environment state ` should not be less than k,
so that the execution statuses of at least k jobs can be recorded
and used to check the (m, k) constraint. Once the length of
the environment state is determined and fixed (` = 2k in this
work), a FIFO stack-like mechanism is applied, i.e., the state
matrix only records the latest ` jobs’ execution statuses.

One example of the environmental state transition is shown
in Fig. 4, where a task has the (m = 3, k = 5) constraint.
The length of the environment state is set to k = 5. The
task takes the action to execute the detected mode, i.e., at =
1 : detected for its next new job J6. The second and third

elements of J6’s status have been determined as
(

1
Cd

)
by

default. By checking the (m = 3, k = 5) constraint, the J6 has
to be executed correctly, therefore, the first element is marked
as 1. However, in the real execution, J6 is detected as error, an
additional reliable mode has to be executed immediately. As a
result, the last element of J6’s status is Cd +Cr. Afterwards,
the state is transited from st to st+1 by adding the status of
J6 and deleting the status of J1.

J1 J2 J3 J4 J5

1 0 1 0 1

1 0 1 1 2

Cd Cu Cd Cd Cr

Cd Cu Cd Cd Cr




J2 J3 J4 J5 J6

0 1 0 1 1

0 1 1 2 1

Cu Cd Cd Cr Cd

Cu Cd Cd Cr Cd + Cr




st st+1at = 1

Fig. 4. An example for state transition of a task.

Please note, different environment construction approaches
can also be applied. For example, a three dimensional tensor
can be applied to record several latest aforementioned two
dimensional matrices, so that the more comprehensive infor-
mation is recorded without discarding.

C. Barrier Function

To achieve the objective of minimizing the average exe-
cution time for each task, the reward is intuitively set to be
inversely proportional to a job’s real execution time, i.e., the
longer real execution time a job has, the less reward the agent
obtains. Besides the objective of the RL-based approach, i.e.,
maximize the cumulative reward, the (m, k) constraint has to
be satisfied as well. Towards this, we design a barrier function,
by which the category of the current state is checked before
the agent deploys the job with selected execution mode. If
the current state st ∈ Snom, the barrier function bypasses the
checking, since all three execution modes are legal for next job
However, if the current state st ∈ Scrt, the result of next job
has to be correct. If the agent decides to execute the unreliable
mode, the barrier function forbids the action and limit the
options to only execute the detected or the reliable mode. In
addition, an extremely large negative reward is returned to
the agent. Such a barrier function thus can: 1) guarantee the
satisfaction of (m, k) constraint, and 2) let the agent learn to
not select the unreliable mode when st ∈ Scrt.

Although our agent is model free, the barrier function
implicitly enforces it follow the R-pattern in the worst case:

Theorem 4. The worst case execution pattern of RL-based
approach is the same as the R-pattern adopted in [9], [24].

Proof. The worst case execution R-pattern in [9] contains (k−
m) incorrect jobs that are executed in the detected mode, and
m correct jobs that are executed in the detected mode and
the reliable mode, where all the results of k jobs with the
detected mode are incorrect. In our RL-based approach, the
agent can only select one execution mode for the next job.
The barrier function is applied to check the feasibility of the
selected execution mode and the correctness of the result when
a job finishes its execution. If the current state st ∈ Snom,
no additional effort is needed. Only when the current state
st ∈ Scrt, the execution pattern, i.e., the detected mode and
reliable mode are executed for the same job, can happen. The
worst case of the RL approach is that the agent always decides
to execute detected mode and all the execution results are
incorrect. Therefore, m jobs with reliable mode are executed
right after the detected mode, which is the same as the R-
pattern in [9], [24].

Theorem 5. The derived schedule from the RL-based ap-
proach under the barrier function is schedulable if the schedu-
lability based on the R-pattern has been ensured.

Proof. Given a static pattern, a task is schedulable if it passes
the schedulability test in Lemma 1 from [9]. As shown in
Theorem 4, in the worst case the RL-based approach performs
the same as the R-pattern. Therefore, if a task has passed
the schedulaiblity test in Lemma 1 from [9] based on the
R-pattern, the derived schedule for this task from the RL-
based approach must be schedulable in the worst case, which
concludes the proof.
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D. Learning Policy

In this work, we utilize the deep Q network (DQN) agent
as our RL model, where Boltzmann Q Policy is applied to
estimate the Q value of each action. While exploring, the
agent creates an action distribution. This distribution describes
how optimal an action is according to the data gathered by
the agent. Afterwards, Boltzmann policy turns the agent’s
exploration behavior into a spectrum between picking the
action randomly (random policy) and always picking the most
optimal action (greedy policy). The DQN agent is constructed
by a 10-layer neural network, which contains 1 input layer, 1
activation layer, 1 flatten layer, 6 fully connected layers, and
1 output layer.

Please note that the proposed RL-based approach is not lim-
ited to any specific learning policy, all the learning approaches
support discrete action space are applicable. Finding the best
policy to train a DQN agent is considered out of scope.

VI. EVALUATION

To evaluate the effectiveness of our proposed approaches,
we numerically simulate the task system and compare the
performance of the proposed mapping strategy when pe is
known and RL-based approach when pe is unknown with the
state-of-the-art over a wide range of different configurations.
The adopted hardware platform was a cache-coherent SMP,
consisting of one 64-bit Intel i7-8700k processors running at
3.7 GHz, with 32 GB of main memory. Overall, the following
approaches are evaluated, namely:
• Optimized mapping strategy in Sec. IV (OPT): the se-

lection of execution mode for each state follows the
optimized mapping between states and execution modes.

• RL-based approach in Sec. V (RL): the environment is
constructed by using OpenAI Gym [6]. The implemen-
tation of RL agent relies on Keras-rl package [34] and
TensorFlow [1].

• Adaptive approach (ADP) [9]: R-pattern is applied, i.e.,
postpone the forced-correct jobs as late as possible, which
can benefit this approach due to the flexibility.

• Static approach (STA) [30]: executes m jobs in the
reliable mode and (k −m) jobs in the unreliable mode
for any consecutive jobs. Here, R-pattern will be equal to
E-patterns in terms of utilization reduction, e.g., energy
saving, regardless of the given error probabilities.

A. Single Task Evaluation

We conducted evaluations for one single task with different
experimental settings, e.g., (m, k) constraint and error proba-
bility. The m was selected from a set, i.e., m ∈ {2, 4, 6, 8}, the
k was a constant number, i.e., 10, and the error probability was
given as pe ∈ {0.05, 0.15, 0.3}. We set Cd = 1.5 × Cu and
Cr = 3.5×Cu to emulate the software-based error detection
and error recovery. Each task released 10, 000 jobs for one
iteration, and 100 iterations were performed.

Fig. 5 shows the results for one single task, where the
y-axis represents the normalized average execution time for
jobs of one task, i.e., the lower the better. In general, the
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Fig. 5. Results for tasks with different settings.

OPT approach outperforms all the other approaches in all the
evaluated cases. When the error probability pe or the ratio
m/k is relatively low, e.g., in Fig. 5 (a)-(h), (j), and (k),
the OPT approach outperform other approaches significantly.
When both error probability and the ratio m/k increase, e.g.,
in Fig. 5 (i) and (l), the options to select the execution modes
become more limited, which result in negligible difference of
the OPT approach, RL approach, and ADP approach.

The RL approach also dominates in most of the evaluated
cases of ADP and STA approaches, e.g., in Fig. 5 (a)-(g)
and (j), but it always performs worse than the OPT approach
(without knowing the error probability in advance). When the
error probability is relatively low, e.g., in Fig. 5 (a), (d), (g) and
(j), or both error probability and the ratio m/k are relatively
high, e.g., in Fig. 5 (i) and (l), the difference between OPT
and RL is minor. For a given (m, k) constraint, when the error
probability increases, e.g., rows of Fig. 5, or for a given error
probability, the number of tolerable error jobs becomes less
(m increases with a constant k), e.g., columns of Fig. 5, we
can observe that the achievable benefit from the RL approach
significantly decreases. It is because the agent tends to execute
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Fig. 6. Results for multitask systems with different error probabilities.

the unreliable modes first to maximize the cumulative reward.
However, such an intention in fact also reduces the resilience,
so that the upcoming jobs executing in the detected modes
often have to execute the reliable mode immediately when a
error is detected.

B. Multitask System Evaluation

We conducted the evaluation for multitask on multiprocessor
systems as well, where tasks were scheduled by partitioned
scheduling. We considered 100 task sets, each of them con-
tained 40 tasks that were scheduled on 4 processors. The total
utilization for each task set UT ∈ [20%, 200%] with each step
20%, when all tasks only executing in the reliable modes.
For each task, the utilization was generated by applying the
Dirichlet-Rescale (DRS) algorithm [15], where utilization for
each task was not higher than 50%. The task periods Ti were
randomly selected from a set of semi-harmonic periods, i.e.,
Ti ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000}, which is the periods
recommended for automotive systems [25]. The execution time
of reliable mode for each task was calculated, i.e., Cri =
Ui ∗Ti, and Cui and Cdi are calculated with the same ratios in
Sec. VI-A. We considered the worst-fit partitioning algorithm.
That is, tasks are sorted decreasingly at first. Afterwards, each
unassigned task (with the largest utilization) was assigned on
the processor with lowest utilization. The configurations for
(m, k) constraints were the same as described in Sec. VI-A.
We set each system with only one unified error probability for
all the tasks running on it. We set a hyper-period as 10,000
time units, and obtain the average utilization of the system.

Due to the similarity over results, we selectively show the
task systems with total utilization 50% in Fig. 6 to present the
trends. In general, the results show that the both OPT approach
and RL approach can decrease the utilization for multitask
systems in all the evaluated cases. The proposed OPT approach
can save 11.7%, 9.56%, and 6.31% in comparison to the state-
of-the-art in [9], and save 54.1%, 49.42%, and 40.08% in
comparison with the static approach in [30] with different
error probabilities respectively. In particular, the OPT approach
and RL approach can unleash their power, when the error
probability is relatively low, i.e. Fig. 6 (a).

C. Overhead and Applicability Discussion

For each task, the optimal approach generates a lookup
table in offline for the mode selection on the fly. The offline

computational overhead depends on the (m, k) constraints,
e.g., (m = 2, k = 10) takes 10 seconds, (m = 4, k = 10)
takes 20.7 hours, (m = 6, k = 10) takes 7.8 hours, and
(m = 8, k = 10) takes 0.5 seconds on average. The runtime
overhead is only table lookup and negligible.

To evaluate the overhead of training and mode selection,
we deployed our RL-base approach on both Intel desktop and
Nvidia Jetson AGX Xavier (32G) board. On the Intel desktop,
the training process for each task with one configuration took
450 seconds on average. The training process is repeated for 20
times, and the trained DQN with the highest reward is selected,
and the overhead for each task to select the execution mode
for next job is 300 microseconds. On the Nvidia Jetson AGX
Xavier board, two power modes with different power budgets
are evaluated, i.e., a) default mode with 15W power budget
with 4 processors running at 2188 MHz and b) MAXN mode
without power budget limitation with 8 processors running at
2265.6 MHz. The detailed configurations can be found in [32].

The overhead for training and online execution mode se-
lection of RL-based approach only depends on the structure
of DQN, regardless of given (m, k) constraints. In default
mode, the training process took 19.7 minutes, and execution
mode selection took 1.06 milliseconds on average. In MAXN
mode, the training process took 15 minutes, and execution
mode selection took 1 milliseconds on average. We observe
that, the number of processors increasing from default to
MAXN does not reduce the training time proportionally, and
none of the processor is full-loaded in our evaluation. In the
inference phase, i.e., selecting execution mode, the MAXN
mode slightly outperforms the default mode due to the minor
boost of single core frequency.

For the applicability in real world, a lookup table can also
be utilized, because the state space in our application, i.e.,
the minimal legal space S∗, is limited. That is, the trained
DQN network can be converted to a table, that shows the
mapping between states and corresponding probabilities of
different execution modes. In that case, the runtime overhead
for selecting execution modes of tasks is negligible.

For systems with unknown probabilities, as one safe policy,
the ADP proposed in [9] can be first applied to estimate a
safe probability for the current scenario. If the overhead is
acceptable, the proposed automata-based approach can derive
the selection policy. However, to optimize the policy, recalcu-
lating for each scenario is rather expensive. The RL approach
could still be more effective in this case.

VII. RELATED WORK

In control theory, controllers are designed to be able to
tolerate erroneous input signals and ensure the functionalities
of control systems in the environments with uncertainties.
Towards this, several techniques are proposed to deal with
delayed [38], [26] or dropped signal samples [20], [7], [14].
In case an error is present in the sample input, the sample can
be dropped. Successively, a control decision can be computed
by using previous inputs to continue the loop [38], [20], [7].
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Another series of fault tolerance techniques rely on the
(m, k) models, which is originally developed for guaranteeing
limited deadline misses for firmed real-time systems, or so-
called weakly-hard real-time systems [4], where a task has
to meet at least m deadlines, or can miss at most m dead-
lines, in any of k consecutive jobs2. Although the original

work [4] applied
(
n
m

)
to describe the any n of m, most

of the following works utilize the (m, k) to describe the
weakly-hard constraints [11], [18], [39], [43]. Afterwards,
such (m, k) models are commonly applied for fault tolerance
related domain as well to describe the robustness constraints
of (control) systems. That is, a task must have at least
m functionally correct instances out of any k consecutive
instances. Such a requirement can ensure that a control system
is still feasible only if it can satisfy the corresponding (m, k)
robustness constraint [9], [45]. In order to comply a given
(m, k) constraint, several static patterns are widely applied
for different purposes, i.e., deep red pattern (R-pattern) [24],
evenly distributed pattern (E-pattern) [38], and reverse E-
pattern [37]. Besides the static pattern based approaches,
Chen et al. proposed an adaptive approach in [9]. Such an
approach tries to minimize the overall execution time of a
task by postponing the execution of reliable mode. Liang
et al. in [28] developed new methods and an optimization
algorithm to analyze and improve control stability and sys-
tem schedulability under deadline misses, faults, and the
application of two different fault-tolerance techniques, where
redundant execution is applied of EOC [13] techniques and
re-execution are performed in case of a soft error. In addition,
to maintain the control quality and ensure the schedulability,
skipping certain control computation is considered. AlEnawy
et al. in [2] presented an on-line speed adjustment algorithms
to exploit the slack time of skipped and completed jobs in
order to minimize the number of dynamic failures (in terms
of (m,k)-firm deadline constraints) while remaining within the
energy budget. Von der Brüggen et al. in [42] determined if
the system with dynamic real-time guarantee can provide full
timing guarantees or limited timing guarantees without any
online adaptation after a fault occurred. Wang et al. in [44]
presented a cross-layer approach to improve system adaptabil-
ity by allowing proactive skipping of task executions. Huang
et al. developed an online intermittent-control framework in
[23], which combines formal verification with model-based
optimization and deep reinforcement learning. The objective
of the proposed framework is to opportunistically skip certain
control computation and actuation to save actuation energy
and computational resources without compromising system
safety. Their main constraint is the control safety rather than
schedulability and (m, k) robustness.

In recent years, machine learning (ML) has attracted a lot of
interests in both academic and industrial areas. However, only
a few of works applied ML based approaches in (real-time)

2Although nonconsecutive situations are considered as well in the original
work, this situation is not considered in this work and hence omitted here.

embedded systems domain due to the stringent requirements,
e.g., timing guarantee, security, and power consumption. Bo et
al. in [5] proposed a deep RL based scheduler for multiproces-
sor real-time systems, which models the real-time scheduling
process as a multi-agent cooperative game. In [27], a ML-
based approach for priority assignment was proposed. To meet
the complex time critical requirements, Dole et al. in [12]
advocated the use of Duration Calculus (DC) to express the
learning objectives in model-free RL for stochastic real-time
systems. In order to improve the efficiency of generating Clock
Constraint Specification Language (CCSL) specifications, Hu
et al. in [22] combined the merits of both RL and deductive
techniques in logical reasoning for efficient co-synthesis of
CCSL specifications. In our work, we employ RL to decide
the execution modes during runtime to avoid over-provision,
without violating the validated schedulability in offline.

VIII. CONCLUSION

In this work, we study how to selectively deploy fault-
tolerance techniques as different execution modes under
(m, k) constraints to reduce the number of expensive execution
eventually saving energy, while satisfying the schedulability.
Through formulating the mapping between states and selec-
tions for execution modes of jobs, we propose two different
adaptive approaches. When the error probability is known,
we provide a Markov chain based approach to optimize the
mapping strategy. When the error probability is unknown, an
RL-based agent is trained to aid the selection of the execution
mode for its next job. The evaluation results show that both
proposed approaches outperform the state-of-the-art in most
of the evaluated cases, especially when the error probability
is relatively low under the same (m, k) constraint.
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