
Graph-Based Optimizations for Multiprocessor
Nested Resource Sharing

Junjie Shi, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen
Department of Informatics, TU Dortmund University, Germany

Citation: 10.xxx.xxx.xxx

BIBTEX:
@inproceedings{DBLP:conf/rtcsa/ShiUBC21,

author = {Junjie Shi and
Niklas Ueter and
Georg von der Br{\"{u}}ggen and
Jian{-}Jia Chen},

title = {Graph-Based Optimizations for Multiprocessor Nested Resource Sharing},
booktitle = {27th {IEEE} International Conference on Embedded and Real-Time Computing

Systems and Applications, {RTCSA} 2021, Houston, TX, USA, August 18-20,
2021},

pages = {129--138},
publisher = {{IEEE}},
year = {2021},
url = {https://doi.org/10.1109/RTCSA52859.2021.00023},
doi = {10.1109/RTCSA52859.2021.00023},
timestamp = {Tue, 05 Oct 2021 08:59:33 +0200},
biburl = {https://dblp.org/rec/conf/rtcsa/ShiUBC21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}

}

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

10.xxx.xxx.xxx

Graph-Based Optimizations for Multiprocessor
Nested Resource Sharing

Junjie Shi, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen
Department of Informatics, TU Dortmund University, Germany

{junjie.shi, niklas.ueter, georg.von-der-brueggen, jian-jia.chen}@tu-dortmund.de

Abstract—Multiprocessor resource synchronization and lock-
ing protocols are of great importance to utilize the computation
power of multiprocessor real-time systems. Hence, in the past
decades a large number of protocols have been developed and
analyzed. The recently proposed dependency graph approach has
significantly improved the schedulability for frame-based and
periodic real-time task systems. However, the dependency graph
approach only supports non-nested resource access, i.e., each
critical section can only access one shared resource.

In this paper, we develop a dependency graph based protocol
that allows nested resource access, where a critical section
can access multiple shared resources at the same time. First,
constraint programming is applied to construct a dependency
graph that determines the execution order of critical sections.
Afterwards, a schedule is generated based on this order. To show
the feasibility of our proposed protocol, we provide extensive
numerical evaluations under different configurations. The evalu-
ation results show that our approach has very good performance
with respect to schedulability for frame-based and periodic real-
time task systems, whereas the existing results applicable for
sporadic task systems have worse performance under such a
limited setting.

I. INTRODUCTION

In concurrent real-time systems, mutually exclusive (mutex)
accesses to shared resources, e.g., shared memory, external
devices, and shared data, prevent data corruptions and race
conditions. This means that when a task is accessing a mutex
shared resource, no other tasks can access the shared resource
at the same time. Code segments that access shared resource(s)
are called critical sections. Semaphores and mutex locks are
widely used to ensure mutual exclusion when accessing critical
sections. Such a mutually exclusive resource access can result
in priority inversion where a higher-priority task has to wait
for a resource that is held by a lower-priority task.

To avoid priority inversion as much as possible and hence
improve the schedulability of the system, resource synchro-
nization and locking protocols have been developed and ana-
lyzed since the 1990s. In uni-processor systems, the Priority
Inheritance Protocol (PIP) [36], the Priority Ceiling Protocol
(PCP) [36], and the Stack Resource Policy (SRP) [4] have
been widely accepted and used. For multiprocessor systems,
multiple protocols like the Multiprocessor PCP (MPCP) [33],
the Distributed PCP (DPCP) [34], the Multiprocessor SRP
(MSRP) [18], the Multiprocessor Resource Sharing Protocol
(MrsP) [10], and the Flexible Multiprocessor Locking Protocol
(FMLP) [6] have been proposed.

The Dependency Graph Approach (DGA) that was recently
proposed by Chen et al. [13] provides a promising new

direction, since the DGA has shown significant schedulabil-
ity improvement compared to existing protocols. The DGA
mechanism has two steps:

1) A dependency graph (DG) is constructed to determine the
execution order of critical sections for a shared resource.

2) A schedule is generated by applying multiprocessor
scheduling algorithms, respecting the execution order
given by the DG(s).

The original approach [13] can only be applied to a restric-
tive setting, namely frame-based task systems with only one
critical section per task, but has been extend to periodic task
systems [37] and to multiple critical sections per task when
each critical section accesses only one shared resource [12].

However, the analysis and discussion focused on non-nested
resource sharing, i.e., each critical section can only access one
shared resource. When nested resource sharing is allowed, two
fundamental problems are considered.

First, deadlocks must be prevented. A deadlock is a situation
where (in the simplest case) the execution of two tasks τi
and τj is postponed indefinitely, because τi holds a mutually
exclusive resource 1 and waits a mutually exclusive resource 2
held by τj , while τj in turn is waiting to get access to resource
1. These two conditions, called hold-and-wait and circular
waiting, are essential for a deadlock to happen. One trivial
approach to break the hold-and-wait condition is to use a
coarse-grained group lock, i.e., each critical section has to lock
all the requested resources before its execution starts. However,
this approach introduces significant unnecessary blocking time
which results in reduced system performance.

Second, transitive blocking chains should be broken. When
nested resource sharing is allowed, these transitive blocking
chains can result in unnecessary blocking time for tasks even
though no conflict resources are requested among them. For
example, consider that task τ1 requests resource 1 and 2, task
τ2 requests resource 2 and 3, and task τ3 requests resource 3
and 4. Although τ1 and τ3 can be executed in parallel (by
only considering the resource access condition), τ3 can be
potentially blocked by τ1 if it is blocked by τ2 (due to resource
3), and τ2 is blocked by τ1 (due to resource 1).
Contribution: Taking the aforementioned two problems into
consideration, in this paper, we study nested resource accesses
for both frame-based and periodic real-time task systems
with synchronous releases under the DGA to overcome the
limitation of existing DGA mechanisms. Our contributions are:

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

• We propose a graph based approach to synchronize
(multiple) nested resource accesses per task for frame-
based real-time task systems in Section III by reducing
the dependency graph construction to constraint program-
ming. An illustrative example is provided to demonstrate
the detailed work flow of our approach.

• We detail properties of our approach in Section IV
to explain how the two fundamental problems, namely
deadlocks and transitive blocking chains, are solved.

• Two extensions of our method are explained and dis-
cussed, 1) from a special nested locking pattern (i.e., lock
all at once) to normal locking pattern (i.e., lock only when
needed) in Section V; 2) from frame-based task systems
to periodic task systems in Section VI and discuss the
incurred complexity of our approach.

• We provide exhaustive numerical evaluations in Sec-
tion VII, demonstrating the performance of the proposed
approach. We evaluate a range of system configurations
that are still solvable by our approach, i.e., we only con-
sider relatively small periods. For the class of frame-based
and periodic task systems, our approach outperforms the
state-of-the-art significantly in most evaluated settings. In
addition, the advantages and limitations of our approach
comparing with the state-of-the-art are discussed.

We note that the DGA is limited to periodic task systems with
sequential and segmented accesses to critical and non-critical
sections, while the methods in [31] and [24] are applicable
for sporadic task systems and not limited to sequential access
patterns to be defined in Section II.

II. SYSTEM MODEL

We consider scheduling of a set of n periodic real-time tasks
T = {τ1, . . . , τn} on M identical (homogeneous) processors
P = {P1, P2, . . . , PM}. The system has Z shared resources
Z = {z1, z2, . . . , zZ}. All tasks release an infinite number of
task instances, called jobs, strictly periodically and the first
job of all tasks is released at time 0. Each task is described
by the tuple τi = (Θi, Ci, Di, Ti), where:

• Θi = {θi,1, θi,2, . . . , θi,ηi} denotes the totally-ordered set
of computation segments with the constraint that if θi,j is
a non-critical section then θi,j−1 and θi,j+1 (if they exist)
must be critical sections. The total-order implies prece-
dence constraints between these computation segments,
enforcing sequential execution.

• Each computation segment θi,j is defined by its worst-
case execution time (WCET) ci,j and its resource access
sequence σi,j .

• Ci denotes the total WCET of τi, i.e., Ci =
∑ηi
j=1 ci,j .

• Ti is the inter-arrival time (period) of task τi, i.e., if a τi
releases a job at time t, then the next job of τi is released
exactly at t+ Ti.

• Di is the relative deadline of τi, i.e., a job of τi released at
time t must finish its execution no later than its absolute
deadline t + Di. We consider constrained-deadline task
systems, i.e., Di ≤ Ti for every task τi ∈ T.

A frame-based task system is a special case of periodic task
systems, where all tasks are released simultaneously and have
the same period. That the original DGA approach [13] was
extended to periodic task systems [37] suggest that a good
solution of nested resource synchronization for frame-based
real-time task systems can be a cornerstone for real-time tasks
in a periodic setting. For the rest of this paper, we discuss the
methodology for frame-based task systems and the extension
to periodic tasks is presented in Section VI.

Definition 1. Resource Access Sequence: The j-th resource
access sequence of task τi (related to computation seg-
ment θi,j) is a finite sequence of tuples σi,j = a1, a2, . . . , a`,
where each ai ∈ (R+,P(Z)) and P(Z) denotes the power
set of Z. The first element in each access ai, i.e., a0

i , denotes
the execution duration while holding these resources and the
second element, i.e., a1

i , denotes the set of locked resources.

If resource zj is used in ak but not in ak+1 then zj is
unlocked after ak finished. If zj is used in ak and in ak+1

then the lock for zj remains. If resource zj is not used in ak
but in ak+1 then zj is locked after ak finished.

Definition 2. Computation Segment: The j-th computation
segment of a task τi is defined by θi,j = (ci,j , σi,j), where
ci,j =

∑
ak∈σi,j

a0
k and denotes the overall execution time of

the resource access sequence σi,j . If ∪ak∈σi,j
a1
k = ∅ then the

computation segment is a non-critical section and a critical
section otherwise.

For example, the computation segment (4, (4, {∅})) denotes
a non-critical section with 4 units of execution time.

We consider two distinct locking strategies for nested re-
source requests, namely, nested locking and all-at-once lock-
ing. In nested locking, resources may be requested when a
critical section already holds resource(s).

Example 1. If the j-th resource access sequence of τi is
described by σi,j = ((1, {z1}), (2, {z1, z2}), (1, {z1})), it first
locks z1 for the entire duration (1+2+1), and z2 is locked after
1 time unit and released 2 time units later.

Definition 3. All-at-once Locking: A critical section is said to
be locked all-at-once if that critical section can only be entered
after all the requested mutex locks are granted simultaneously
(all-at-once) successfully; otherwise, a job is blocked until the
resource access is granted. At the end of a critical section, all
of its locked mutex locks are unlocked. Formally any resource
access sequence σi,j is said to be locked all-at-once if σi,j =
(
∑
ak∈σi,j

a0
k,∪ak∈σi,j

a1
k).

Please note, that nested locking can be transferred to a
all-at-once locking. For instance, when applying the all-at-
once locking strategy to Example 1, the notation becomes
σi,j = (4, {z1, z2}), which denotes that the j-th resource ac-
cess sequence of τi locks z1 and z2 all-at-once and holds them
for the entire duration of 4 time units.

2

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

III. GRAPH BASED APPROACH

This section presents the proposed graph-based approach
for frame-based real-time task systems, where each task can
have (multiple) critical sections that request nested resources.
Firstly, the two consecutive steps of our approach are ex-
plained. Afterwards, an illustrative example is given to demon-
strate the workflow in detail.

A. Step I: Dependency Graph Construction

We construct a directed acyclic graph (DAG) G = (V,E).
For each computation segment θi,j of all tasks τi in T a vertex
is created and, to ensure the sequential execution of tasks, θi,j
is a predecessor of θi,j+1 in G for j = 1, 2, . . . , ηi − 1, i.e.,
∀τi, j ∈ {1, 2, . . . , ηi − 1} : (θi,j , θi,j+1) ∈ E.

Let the set of all computation segments that are critical sec-
tions guarded by a mutex for resource zk be denoted by Θ(k).
For each zk ∈ Z, the sub-graph of the computation segments in
Θ(k) can be constructed as a directed chain, representing the
execution order of these computation segments with respect to
the corresponding shared resource. Since we consider nested
resources, each critical section may request multiple resources.
Hence, each critical section may have multiple predecessors,
depending on the number of resources it requests.

The construction of a dependency graph for nested resource
sharing can be formulated as a constraint programming. We
represent each shared resource in this system by a particular
machine, i.e., mk, and each task τi is assigned to a dedicated
machine, i.e., mZ+i. Thus, in total Z+n machines are created:
• Machine mk, where k ∈ {1, 2, . . . , Z} exclusively ex-

ecutes critical sections guarded by mutex lock k, i.e.,
only if the critical section θi,j requests resource zk it
is executed on machine mk.

• Machine mZ+i is only used to execute non-critical sec-
tions θi,j of τi.

We note that the machines are purely conceptual with the
intention to generate an execution order irrespective of the
actual number of processors in our studied problem.

The operation of each computation segment θi,j is expressed
as a processing on the corresponding machine for the duration
of the segment’s execution time. To be precise, each task τi
is assigned to the machine mZ+i for the execution of its
non-critical section. Once a task τi has to access a shared
resource, the execution of its critical section will be migrated
to the assigned machine for the shared resource. Moreover, the
following four constraints have to be satisfied by any feasible
solution:

Constraint 1 (No-overlap Constraint). Any two tasks (or
segments) cannot be executed on a machine at the same time.
That is, for any machine at any time point, there is at most
one task (or segment) executed on that machine, i.e.,

∀mk∈Z, i 6= g : θi,j .start ≥ θg,`.finish or
θg,`.start ≥ θi,j .finish

(1)

Constraint 2 (Precedence Constraint). For any two compu-
tation segments with precedence constraints, e.g., θi,j ≺ θg,`,

the starting time of θg,` is no earlier than the finishing time
of θi,j if θi,j ≺ θg,`, i.e.,

∀mk∈Z′ : θg,`.start ≥ θi,j .finish if θi,j ≺ θg,` (2)

and

∀mk∈Z′ : θg,`.start ≥ 0 if θk,` has no predecessor (3)

where Z′ is the conflict nested resource set.

Constraint 3 (Non-preemption Constraint). The execution of
computation segments on the machines is non-preemptive in
order to enforce exclusive execution of the critical sections and
to respect the sequential execution order of the non-critical
sections of task τi on machine mZ+i. That is, if a computation
segment θi,j with WCET Ci,j is scheduled at time t0, the
finishing time of θi,j has to be t0 +Ci,j . Then the time interval
[t0, t0 +Ci,j] is appended to the corresponding machine, i.e.,

∀mk∈Z : θi,j .finish = θi,j .start+ Cmk
i,j (4)

where Cmk
i,j is the execution time of θi,j on machine mk (which

is not defined directly in θi,j , but can be calculated by using
the information in σi,j).

Constraint 4 (All-at-once Constraint). All resources that are
requested within a critical section must be assigned to their
corresponding machines at the same time, execute for the same
amount of time, and finish at the same time. This means that
for the construction of the dependency graph a nested locking
scheme is transferred into all-at-once locking. That is, the time
interval [t0, t0 +Ci,j] of θi,j is appended to all the machines
representing for these resources that the segment requests, i.e.,

∀mk∈Z′ : if θi,j .start = t0, then θi,j .finish = t0 + Ci,j (5)

where the Z′ is the set of resources that θi,j requests. This
constraint is similar to gang scheduling [32], i.e., multiple
processors are requested simultaneously for a single task.

Thereby, the dependency graph construction problem is for-
mulated as a constraint programming problem by generating a
feasible schedule for a frame-based task set on Z+n machines
with respect to Constraint 1 to Constraints 4. The optimization
objective is to minimize the makespan for the generated
schedule, i.e., the latest finishing time of any job on any
machine. This is formulated to minimize maxi,j θi,j .finish.
Since the generated schedule is non-preemptive, the compu-
tation segments on each machine are executed sequentially.
The initial dependency graph G, which is given by the tasks
internal precedence constraints, is refined by the execution
order of the critical sections given by the order of computation
segments on the respective machines.

B. Step II: Dependency Graph Scheduling

In the second step, the dependency graph G is scheduled
on M processors using either global or partitioned and ei-
ther preemptive or non-preemptive scheduling. Namely, LIST-
EDF [37] or its partitioned extension (P-EDF) [38] can be
applied. We assume that all tasks release task instances, called

3

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

jobs, strictly periodically, i.e., if a job of τi is released at time
t0 the subsequent job is released exactly at time t0 +Ti. Note
that the description in this subsection allows general periodic
tasks which all release a job at time 0 and that frame-based
tasks are a special case where all tasks have the same period.

Each job consists of a set of sub-jobs, which are instances of
corresponding computation segments. For both LIST-EDF and
P-EDF, the deadlines for all sub-jobs are modified according
to the generated dependency graph, i.e., the deadline of one
sub-job is the minimum of all the successors’ latest release
times where the latest release time of a sub-job is defined by
its deadline minus its WCET.

For all-at-once locking, the executions of the critical sec-
tions that access at least one identical resource are mutually
exclusive. This means that if two computation segments have
a (partial) overlap for the resources they request, i.e., at
least one shared resource is requested by both of them,
their critical sections on the same shared resource(s) must
be executed one after another. Two critical sections from
two tasks can be (partially) executed at the same time on
different processors, if they do not request the same resource(s)
during the overlapped execution. Meanwhile, for a nested
locking strategy, a critical section can start its execution
once it has locked all the currently requested resource(s),
e.g., for a critical section with the resource access sequence
σi,j = ((1, {z1}), (2, {z1, z2}), (1, {z1})), the execution of the
first part that only requests resource z1 can be started once
resource z1 is locked, rather than waiting for both resource
z1 and z2 to be locked. Please note, if resource z2 is not
available when the first time units of execution for resource z1

has finished, the critical section will suspend itself and wait
for the release of resource z2. However during this waiting
time, no other critical section is able to access resource z1,
since it is still locked by τi.

In addition, we enforce that for each job all computation
segments execute for the duration of their WCET. That is,
although a segment can have a shorter real execution time than
its WCET, it has to spin at the corresponding processor until
the time reaches to WCET. Therefore, the generated schedule
for one frame/hyper-period is static and repeated periodically,
which avoids the multiprocessor timing anomalies described
by Graham [20], and simulating a LIST-EDF or P-EDF
schedule over one frame/hyper-period, checking whether any
deadline is missed, is an exact schedulability test.

C. An Illustrative Examples

Fig. 1 exemplifies our approach for a frame-based task set
with three tasks and four shared resources, where all tasks have
the same period of 30 time units. Each task consists of five
segments, three non-critical sections (circles in Fig. 1 (a)) and
two critical sections (rectangles). Each critical section requests
two shared resources at the same time, i.e., with the all-at-once
locking strategy. The execution of each of the critical sections
is protected by the corresponding mutex locks.

The computation segments within one task have to be
executed sequentially according to the predefined order (black

non-critical section mutex lock z1|z2|z3|z4

1 2 2 2 4τ1

2 2 1 5 1τ2

4 3 4 3 6τ3

(a) A dependency graph of a task set with four binary semaphores.

Machine1
(z1)

Machine2
(z2)

Machine3
(z3)

Machine4
(z4)

Machine5
(τ1)

Machine6
(τ2)

Machine7
(τ3)

0 2 4 6 8 10 12 14 16 18 20

m1&m2 m2&m3

m1&m3 m2&m4

m1&m4 m3&m4

τ1

τ1

τ3

τ3

τ1

τ1

τ2

τ2 τ3

τ3

τ2

τ2

(b) The optimized schedule with 7 machines (denoted as m1 −m7).

P1

P2

0 2 4 6 8 10 12 14 16 18 20

θ1,1 θ1,2 θ1,3 θ1,4 θ2,1 θ2,2 θ2,3 θ2,4θ1,5 θ1,5

θ3,1 θ3,2 θ3,3 θ3,4 θ3,5 θ2,5

(c) Schedule the dependency graph on 2 processors using LIST-EDF.

Fig. 1. An example of the dependency graph based nested resource synchro-
nization protocol.

solid arrows in Fig. 1 (a)). The numbers in the circles and
rectangles denote the execution times of the corresponding
computation segments.

To construct a dependency graph for the task set, we apply
constraint programming as described in III-A, with 7 = 4 + 3
exclusively assigned machines: machine 1 to machine 4 are
executing the critical sections of the four shared resources,
and machine 5 to machine 7 are for the non-critical sections
of tasks τ1 to τ3. Hence, once a task needs to access the
shared resource, the execution is migrated to the corresponding
machines, e.g., to machine 1 for resource z1. Since all-at-
once locking is applied, each critical section requests two
shared resources at the same time. That is, a critical section
is executed on multiple machines (representing the shared
resources) at the same time and without any overlap with the
execution of other critical sections using the same machine.

Fig.1 (b) shows an optimized schedule for the given task set.
We note that the schedule in Fig. 1 (b) is only used to generate
the dependency graph. The execution order for critical sections
of tasks τ1, τ2, and τ3 on machine 1 to 4 determines the
precedence constraints in the generated dependency graph with
respect to all the critical sections in Fig. 1 (a), where the
precedence constraints are represented by dashed red arrows
for mutex lock z1, dotted blue arrows for mutex lock z2,

4

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

densely dashed and dotted orange arrows for mutex lock z3,
and the solid green arrows for mutex lock z4.

The concrete schedule on two processors for LIST-EDF [37]
is shown in Fig. 1 (c).

IV. PROPERTIES OF OUR APPROACH

In this section, we prove properties of our graph based
approach to schedule task sets with nested resource-sharing.
Specifically, we prove that our approach is deadlock-free, free
of transitive blocking, and has bounded approximation factors.

A. Deadlock-Free

Whenever nested resource-requests are considered, the pos-
sibility of deadlocks is a major concern. A simple way to avoid
deadlocks is to specify an order for all available resources,
and to require that nested locks are acquired according to this
determined order and therefore avoid circular waiting, but it is
not obvious how to determine this access order. Alternatively,
dynamic group locks (DGLs) [44], where a super set of the
actual requested resources by a critical section are requested
simultaneously, break the hold-and-wait condition. However,
the proposed DGA is by design deadlock free and avoids
transitive blocking as shown in this subsection.

We first introduce the required notation. We use

pre(vi) : {vj ∈ V |(vj , vi) ∈ E} and vj ≺ vi if vj ∈ pre(vi)
suc(vi) : {vj ∈ V |(vi, vj) ∈ E} and vj � vi if vj ∈ suc(vi)
to denote precedence constraints and paths in a given DAG.

Definition 4. Path: A path ∆ in a directed-acyclic graph G
is any sequence of sub-jobs vi1 ≺ vi2 ≺ . . . ≺ vik for vij ∈ V
such that each sub-job in the sequence is an immediate
successor of the previous sub-job in terms of precedence
constraints and pre(vi1) = ∅ and suc(vik) = ∅.

Based on the definition of a path we can describe the longest
path in a DAG called critical path more formally stated in the
following definition.

Definition 5. Length: Then the length of a path is given
by `en(∆) :=

∑
vi∈∆ `en(vi) where the length of a sub-job

denotes its execution time. Subsequently, the length of DAG G
is given by `en(G) := max{`en(∆) | ∆ is a path in G}.
Definition 6. Volume: The volume of the DAG G is
given by the graph’s cumulative execution time, that is,
vol(G) :=

∑
vi∈V `en(vi).

First, we show that the dependency graph G constructed in
Section III-A has no cycles.

Theorem 1. The generated dependency graph G that respects
the all-at-once locking constraint for nested resources in
critical sections from Section III-A is a directed acyclic graph.

Proof. Before the optimization by the constraint program-
ming, each task τi is given by a chain that is composed of
the computation segments θi,1 ≺ θi,2 ≺ . . . ≺ θi,ηi and
hence does not contain any cycles. Let any two critical sections

of different tasks, e.g., θi,j and θg,`, have conflicting nested
resource requests, i.e., a subset of resources Z′ ∈ P(Z) is
requested in both critical sections. By assuming any generated
feasible graph G must respect the constraints 1− 4, if any re-
source of θi,j is granted, then all resources in Z′ are granted to
that critical section as well. By the non-preemption constraint
(Constraint 3) the resources are held until the completion
of that critical section. In consequence, for any two critical
sections that have conflicting nested resource requests, either
θi,j ≺ θg,` or θg,` ≺ θi,j must hold. Since the internal
order inside a task is respected by the generation as well, the
generated dependency graph does not contain any cycles.

Theorem 2. Any schedule on M processors that respects
the precedence constraints of the dependency graph G as
described in Section III-A is deadlock-free even if resources in
critical sections are locked as soon as they are required, i.e.,
when not enforcing all-at-once locking at run-time.

Proof. We disprove the possibility of circular waiting in any
schedule that respects the precedence constraints in G by
contradiction. Let S be a schedule that respects the precedence
constraints in G and at let τi and τj be in the state of
circular waiting at some point in time. This implies that task τi
holds at least one resource z and waits for at least one other
resource z′ which is held by task τj , which in return waits for
resource z (held by task τi). However, this means that there
exist critical sections, e.g., θj,k and θi,l, that are in conflict.
By Theorem 1, we know that the set of conflicting critical
sections is ordered, i.e., θi,l ≺ θj,k or θj,k ≺ θi,l. Therefore if
S respects the precedence constraints then any resource from
the critical section θj,k could not have been scheduled before
all resources used in θi,j have finished execution. That is, the
circular waiting implies a violation of constraints given by G,
which contradicts the assumption.

B. No Transitive-Blocking

In addition to being deadlock-free, the proposed approach
also avoids transitive blocking.

Theorem 3. Any schedule on M processors that respects the
precedence constraints of the dependency graph G with nested
resources sharing as described in Section III-A breaks the
transitive blocking chain.

Proof. Since the makespan minimization of the constraint
program only generates precedence constraints for conflicting
critical sections, computation segments that do not conflict
can be executed in-parallel by a schedule that respects the
precedence constraints.

C. Approximation Factor

In this section we prove that our algorithm has a bounded
approximation factor for any variant of list-scheduling when
a dependency graph with a bounded approximation factor α
compared to an optimal dependency graph is given. We
formally define a dependency graph with approximation factor
α as follows.

5

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

Definition 7. A dependency graph G is an α-approximation
of a dependency graph G′ if for some α ≥ 1 the following
constraints are satisfied:
• vol(G) = vol(G′)
• `en(G) = α · `en(G′)

The optimization quality is determined related to an optimal
dependency graph, which is a dependency graph with mini-
mum length.

Theorem 4. LIST-EDF of an α-approximated optimal depen-
dency graph G∗ is an (1+(1− 1

M)·α) approximation algorithm
for frame-based task sets that use all-at-once locking to access
critical sections with nested resources.

Proof. Let G be the dependency graph that α-approximates
an optimal dependency graph G∗. By the property of list
scheduling, the makespan L(G) on M processors is at most

L(G) ≤ vol(G)

M
+ (1− 1

M
) · α · `en(G∗) (6)

By the fact that an optimal makespan can be no shorter than the
length of the longest path and the perfectly distributed work-
load, we know that L(G∗) ≥ max{vol(G∗)/M, `en(G∗)}. In
conclusion,

L(G) ≤ L(G∗) · (1 + (1− 1

M
) · α)

Corollary 1. The Dependency Graph Approach provides an
(1 + α)-approximation for frame-based task sets that use
all-at-once locking to access critical sections with nested
resources.

V. EXTENSION TO NORMAL LOCKING PATTERNS

In this section, we extend the dependency graph approach
to nested resource sharing with normal locking patterns, where
each critical section can request each resource at most once.

Definition 8. Normal Locking Pattern: A critical section is
said to lock nested resources with a normal locking pattern,
if the critical section requests a resource only when it is
needed. Hence, not all resources are necessarily locked when
the execution of the critical section starts.

It is well known that the normal locking pattern can
potentially lead to a deadlock, once two tasks request two
shared resources in reversed order, since then both the hold-
and-wait as well as the circular waiting condition are fulfilled.
To prevent this, a new constraint is designed to replace the
Constraint 4 in Section III-A:

Constraint 5 (Pattern-respect Constraint). For any compu-
tation segment (representing for critical section) with nor-
mal locking pattern, the locking pattern has to be re-
spected. For a computation segment θi,j = (ci,j , σi,j), where
σi,j = a1, a2, . . . a`, we have to determine stating times and
finishing times for all tuples. We explain this explicitly for
the first and second tuple. The starting time on machines in

mutex lock z1|z2|z3

Machine1
(z1)

Machine2
(z2)

Machine3
(z3)

0 2 4 6 8 10 12 14 16 18 20

θ1

θ1

θ1

θ2

θ2

θ3

θ3

Fig. 2. An example of the dependency graph that with normal locking pattern.

the first tuple is θi,j .start = t0 ∀mk∈a11 ; the starting time
of θi,j on machines that are in the second tuple but not in
the first tuple is θi,j .start = t0 + a0

1 ∀mk∈(a12−(a11∩a12)); and
the finishing time of θi,j on machines that are occupied in
the first tuple but not occupied any more in second tuple is
θi,j .finish = t0 + a0

1 ∀mk∈(a11−(a11∩a12)). Such a calculation
is applied for all the tuples in σi,j .

Example 2. A computation segment given by
θi,j = (4, ((1, {1}), (2, {1, 2}), (1, {2}))), the pattern is
respected if θi,j is scheduled on machine m1 at time t0
(by locking of resource 1) and scheduled on machine m2

(by locking resource 2) at time t0 + 1. Combined with the
Non-preemption constraint, θi,j has to finish its execution at
time t0 + 3 on machine m1 (by releasing resource 1), at time
t0 + 4 on machine m2 (by releasing resource 2).

Theorem 5. The generated dependency graph G for nested
resources with the normal locking pattern in critical sections
that respects Constraints 1, 2, 3, and 5 is a DAG.

Proof. For each task, the computation segments are still
chained, i.e, θi,1 ≺ θi,2 ≺ . . . ≺ θi,ηi , and hence the graph
does not contain any cycles. Let any two critical sections
of different tasks, e.g., θi,j and θg,`, have conflicting nested
resource requests. That is, a subset of resources Z′ ∈ P(Z) is
requested in both critical sections. On any two machines, e.g.,
ma and mb, that are requested by θi,j or θg,` simultaneously,
the execution time (occupation time) of θi,j on two machines
has an overlap, i.e., (θma

i,j .finish−θma
i,j .start)∩(θmb

i,j .finish−
θmb
i,j .start) 6= ∅ (the same for θg,`), since otherwise it is not

a nested resource access. The overlap on both machines for
each computation segment can be treated as an all-at-once
lock. Therefore the execution order of these two segments on
both machines are unified. Combined with the non-overlap
constraint and non-preemption constraint, the extra execution
of each computation segment on both machines follows the
same order as the overlapped parts. Therefore, no cycle is
included during the generation of graph(s).

Example 3. Consider the following task set with 3 shared
resources and 3 computation segments:
θ1 = (12, ((2, {1, 2}), (6, {2}), (3, {2, 3}), (1, {3}))),
θ2 = (6, ((2, {1}), (4, {1, 2}))), and
θ3 = (6, ((2, {3}), (3, {1, 3}), (1, {1}))).
A feasible schedule with respect to the constraints 1, 2, 3, and

6

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

5 is shown in Fig. 2. Due to Constraint 5, although machine
m1 is already free at time 2, θ2 starts its execution at time 9,
in order to start its execution on machine m2 at time 11 (since
θ2 on machine m2 has to start its execution 2 time units after
it starts the execution on machine m1).

Please note, the optimal schedule in Fig. 2 is that θ2 is
schedule on the dashed slots on machine m1 and m3. Although
θ1 requested 3 resources, it does not request resource 1 and 3
at the same time. Therefore, θ1 is not considered as accessing
nested resource 1 and 3. Hence θ3 has no nested conflict
with θ1, and its executions on machine m1 and m3 do not
necessarily follow the same precedence constraints with regard
to the whole computation segment.

VI. EXTENSION TO PERIODIC TASK SYSTEMS

A similar treatment as presented in [37] can be applied
to extend our approach from frame-based task systems to
periodic task systems. First, a job-level dependency graph is
constructed after unrolling all jobs of all tasks that are released
in one hyper-period (where the hyper-period is the lowest
common multiple (LCM) of all the periods in a task set). The
precedence constraints are generated for each job by applying
the method described in Section III-A. Afterwards, a feasible
schedule for the generated job-level dependency graph needs
to satisfy all precedence constraints. Since all jobs of each task
must execute in sequence to fulfill their constrained deadline,
only one machine for each task is needed. In comparison
to the approach for frame-based task systems, two additional
modifications are needed for periodic task systems:

1) For the `-th job fo τi we set its release time to (`−1) ·Ti
and its absolute deadline to (`− 1) · Ti +Di.

2) In periodic task systems, minimizing the makespan is not
a useful objective since there is no connection between a
job’s deadline and the makespan. Instead, the objective of
the constraint programming is to minimize the maximum
lateness over all jobs, where the lateness of a job is its
finishing time minus its deadline.

The above extension can be applied to any periodic real-time
task system, however the space cost for storing all unrolled
jobs and the computational costs for examining all unrolled
jobs in a hyper-period limit the practical applicability of this
approach.

VII. EVALUATION

We numerically evaluated the performance of the proposed
approach for a wide range of different configurations. The
hardware platform used in our experiments is a cache- coher-
ent SMP, consisting of two 64-bit AMD EPYC 7742 64-Core
Processors running at 1.5 GHz, with 256 GB of main memory.

A. Evaluation Setup

We conducted evaluations for M = 4, 8, and 16 processors.
Based on the value of M , we generate randomized task sets
with 10 × M tasks each. The utilization of each task τi is
denoted as Ui = Ci

Ti
, hence the execution time for each task

is Ci = Ui × Ti. We generated synthetic task sets with total
utilization level, i.e.,

∑
τi∈T Ui, from 0 to 100%×M in steps

of 5% ×M by applying the RandomFixedSum method [15],
enforcing that Ui ≤ 0.5 for each task τi. The number of shared
resources (binary semaphores) Z was either 4, 8, or 16.

The task sets that we generated are either frame-based or
periodic. For the frame-based task sets, all the tasks share the
same period and relative deadline, i.e., ∀τi : Ti = Di = 1. For
the periodic task sets, the task periods Ti are selected randomly
from a set of semi-harmonic periods, i.e., Ti ∈ {1, 2, 5, 10},
which is a subset of the periods used in automotive sys-
tems [21], [25], [35], [39], [41]. We used a small range of
periods to generate reasonable task sets with high utilization
of the critical sections. These are otherwise by default not
schedulable, since critical sections would be longer than the
smallest period. Other configurations that related to nested
resource accesses are as follows:

• The nested depth d is in [2, 4], i.e., each critical section
can access at most 2 or 4 resources at the same time.
Each task τi contains at most 5 critical sections.

• The nested probability q, i.e., the percentage of nested
resource accesses over all critical sections in a task set is
chosen from {10%, 20%, 50%, 80%}.

• The total length of the critical sections is a frac-
tion of the total execution time Ci of task τi, de-
pended on H ∈ {[0.5%− 1%], [1%− 5%], [5%− 10%],
[10%− 40%], [40%− 50%]}. The total length of the
critical sections and non-critical sections are split into
dedicated segments by applying UUniFast [15] separately.

In many traditional real-time applications, the utilization
of nested resource accesses are relative low, i.e., less than
10%. However, when GPUs are included as accelerators
(for example in machine learning applications with real-time
constraints like autonomous driving systems), the utilization
of nested resource accesses become relative high. Therefore,
a range of [40%− 50%] is added in our settings, and the gap,
i.e., [10%− 40%], is filled as well.

100 randomized tasks sets for each of the 21 utilization
steps were generated for each of the 360 configurations (i.e.,
all possible combinations of the M , Z, d, q, and H values)
for frame-based and periodic task systems.

For our graph-based approach, the dependency graph is gen-
erated by applying the method presented in Section III. Google
OR-Tools [1] is utilized to solve the constraint programming
problem. We name the considered algorithms as follows:

1) LIST-EDF/P-EDF: To schedule the generated graph, we
used the LIST-EDF [37] or partitioned EDF (P-EDF),
which is a partitioned extension of LIST-EDF and a
worst-fit partitioning algorithm w.r.t. task’s utilization
Ui is applied [38]. Both methods modify the deadlines
according to the rule introduced by Baker et al. [3].

2) P/NP: preemptive or non-preemptive for critical sections.

In addition, the state-of-the-art methods are evaluated,
namely the Concurrency Group Locking Protocol (CGLP) [31]

7

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

and the Uniform Contention-sensitive Real-time Nested Lock-
ing Protocol (C-RNLP) [24].
• CGLP-G: CGLP [31] where concurrency groups are

assigned by a greedy algorithm.
• CGLP-N: CGLP [31] where concurrency groups are

assigned by minimizing the number of groups.
• UC-RNLP: C-RNLP [24], which grants resources ac-

cesses to sets of requests, and the sets are determined
dynamically during the run time.

• GC-RNLP: General C-RNLP [24], that grants resources
accesses contention-sensitively on a per-request basis.

Please note, although the aforementioned methods support
concurrent read resource accesses as well, only mutually
exclusive write resource accesses are evaluated.

B. Evaluation Results for Frame-Based Task Systems

Only a subset of the results is presented here, as the other
results show similar trends. The evaluation results in Fig. 3
show that our graph based approach outperforms the state-
of-the-art significantly for frame-based task sets. The required
time to solve the constraint programming to generate the DAG
(step 1 of our approach) highly depends on the configuration.
More precisely, it took 0.5, 5.8, 1.3, 2.2, 1.6, and 1420 CPU
hours respectively to solve the constraint programming for the
configurations shown in sub-figures of Fig. 3.

The existing methods (denoted by brown and orange lines)
can only handle the situations where the utilization of critical
sections with nested resource requests is extremely low, i.e.,
[0.5%−1%] in Fig. 3 (c) and (d). When the utilization of crit-
ical sections increases (Fig. 3 (b), and (e)), their performance
(w.r.t the schedulability) degrades a lot and they do not work
at all when the utilization of critical section is [40% − 50%]
(Fig. 3 (f)). The results also show that when the number
of processors and available shared resources increase at the
same time (Fig. 3 (a), and (b)), the performance of existing
methods degrades while our new methods can still work well.
In addition, when increasing only the nested depth (Fig. 3 (c),
and (d)) or when increasing both nested depth and possibility
at the same time (Fig. 3 (b), and (e)) without changing other
configurations does not obviously affect the performance of
these methods. Furthermore, when the utilization of nested
critical sections is extremely high (Fig. 3 (f)), the performance
of both methods scheduled by P-EDF degrades as well.
Contrarily, since the execution order for all critical sections
has been optimized offline by minimizing the makespan, our
approach with LIST-EDF works quiet well even when a high
utilization of critical sections is considered.

C. Evaluation Results for Periodic Task Systems

A subset of the evaluation results for periodic task systems
is shown in Fig. 4. The constraint programming in step 1
of our approach took 1.3, 7, 2.5, 110, 5.3, and 3.3 CPU
hours for the configurations in these sub-figures of Fig. 4
respectively. Our graph based approach still outperforms the
state-of-the-art methods in all the evaluated configurations.
The results show that when the utilization of critical sections

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100
(a) M=4, Z=4, d=2, q=10%, H=[1%-5%]

LIST-EDF-P

LIST-EDF-NP

P-EDF-P

P-EDF-NP

CGLP-G

CGLP-N

UC-RNLP

GC-RNLP

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100
(b) M=8, Z=8, d=2, q=10%, H=[1%-5%]

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100
(c) M=8, Z=8, d=2, q=10%, H=[0.5%-1%]

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100
(d) M=8, Z=8, d=4, q=10%, H=[0.5%-1%]

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100
(e) M=8, Z=8, d=4, q=50%, H=[1%-5%]

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100
(f) M=8, Z=16, d=4, q=20%, H=[40%-50%]

Fig. 3. Schedulability of different approaches for frame-based task sets.

is increased (Fig. 4 (a) to (b)), the performance of existing
methods decreases a lot, while the performance of our new
proposed approach has not been affected. The increasing of
both the number of processor and of available shared resources
does not affect the performance of our methods but slightly
degrades the performance of existing methods (Fig. 4 (a) to
(c)). All existing methods cannot handle the situation when
the utilization of critical sections is extremely high, i.e., up
to [40% − 50%] in Fig. 4 (d), while our newly proposed
methods still provides a reasonable acceptance ratio. Fig. 4 (e)
and (f) show that increasing the number of shared resources
without modifying other configuration does not affect the
performance of all the evaluated methods significantly. In
addition, the performance of preemptive and non-preemptive
scheduling algorithms trends to be similar, since the optimized
dependency graph and the pre-calculated deadline for each
computational segment reduced the potential preemption due
to earlier deadlines.

D. Summary

The evaluation results show that our proposed approach is
highly effective for frame-based and periodic real-time tasks.
However, our approach is limited to periodic task systems with
sequential and segmented accesses to critical and non-critical
sections, while the methods in [31] and [24] are applicable
for sporadic task systems and not limited to sequential access
patterns as defined in Section II. Therefore, the schedulability
tests for existing methods are pessimistic for both frame based

8

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=4, Z=4, d=2, q=10%, H=[0.5%-1%]

LIST-EDF-P

LIST-EDF-NP

P-EDF-P

P-EDF-NP

CGLP-G

CGLP-N

UC-RNLP

GC-RNLP

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=4, Z=4, d=2, q=10%, H=[1%-5%]

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
(c) M=8, Z=8, d=2, q=10%, H=[0.5%-1%]

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
(d) M=8, Z=8, d=4, q=10%, H=[40%-50%]

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
(e) M=8, Z=4, d=2, q=50%, H=[1%-5%]

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
(f) M=8, Z=16, d=2, q=50%, H=[1%-5%]

Fig. 4. Schedulability of different approaches for periodic task sets.

and periodic task sets, which explains the performance of the
state-of-the-art methods in our evaluation.

Our extension for periodic task systems requires to unroll
all jobs that are released within the hyper-period, which
results in high space demand. Additionally, the constraint
programming is used to construct the dependency graph(s)
based on all unrolled jobs, which is time consuming and limits
the scalability and flexibility of our proposed approach. The
methods in [31] and [24] do not have such limitations, and
are more applicable in more general systems. When the task
set has sporadic activation patterns, branches or with a more
general system model, then our approach cannot be utilized.

However, our approach shows significant performance im-
provements for periodic task sets with segmented execution
and sequential resource access patterns as studied in this paper.
Note that the recent empirical study by Akesson et al. [2]
shows that

While periodic activation is the most common at
82%, over 60% of systems included aperiodic ac-
tivations [2].

Therefore, having good solutions for periodic activations is
useful for industrial practice. Hence, in the future, finding
more efficient DAG generation strategies and adding aperiodic
activations together with periodic tasks will further improve
the practicability of our approach.

VIII. RELATED WORK

In multiprocessor real-time systems, three scheduling
paradigms are widely adopted, i.e., global, partitioned, and

semi-partitioned scheduling. Under global scheduling, tasks
are dynamically dispatched among all the available processors,
where tasks are allowed to migrate among processors freely.
Under partitioned scheduling, each task is assigned on a
dedicated processor and migration is not allowed, i.e., all jobs
of a task must be executed on the same processor. Under
semi-partitioned scheduling, each task is split into several
computation segments, and each computation segment is parti-
tioned statically on a processor. To prevent race condition and
reduce priority inversion, a large number of multiprocessor
resource synchronization and locking protocols have been
developed and analyzed in the past decades. Many of them are
extensions of the well known uni-processor protocols, e.g., the
Priority Inheritance Protocol (PIP) [36], the Priority Ceiling
Protocol (PCP) [36], and the Stack Resource Policy (SRP) [4].
A comprehensive survey of multiprocessor real-time locking
protocols can be found in [7].

Rajkummar et al. [34] proposed Distributed-PCP (DPCP),
where each resource is assigned on a processor statically,
called the resources synchronization processor. A task has
to be migrated to the dedicated synchronization processor
for the execution of critical section, and critical sections are
executed on the a synchronization processor by following the
uni-processor PCP. DPCP applies semi-partitioned schedul-
ing. The extension Multiprocessor PCP (MPCP) [33] allows
tasks to execute their critical section locally. In order to
minimize the usage of stack memory in real-time systems,
Gai et al. [18] proposed Multiprocessor SRP. Both MPCP
and MSRP apply partitioned scheduling. Block et al. [6]
introduced Flexible Multiprocessor Locking Protocol (FMLP),
where resources are divided into two groups, i.e., long and
short. For short resources, critical sections are executed in
a non-preemptable manner and tasks are spinning on their
processors while waiting for resources. For long resources,
tasks suspend themselves into a FIFO queue while waiting.
FMLP is also the first protocol that supports both global
and partitioned scheduling. Easwaran and Brandenburg [14]
introduced Parallel PCP (P-PCP), considering global fixed
priority preemptive multiprocessor systems. Brandenburg and
Anderson [8] proposed O(m) Locking Protocol (OMLP),
which ensures O(m) maximum pi-blocking for any task set
and supports both global and partitioned scheduling. Burns et
al. [10] proposed the Multiprocessor resource sharing Protocol
(MrsP), that allows tasks help other tasks during spinning
cycles, and (semi-)partitioned scheduling is applied.

Since the performance of these protocols highly depends
on how the tasks are partitioned, several partitioning algo-
rithms were developed, e.g., by Lakshmanan et al. [26] and
Nemati et al. [28] for MPCP, by Wieder and Brandenburg [45]
for MSRP, by Hsiu et al. [22], Huang et. al [23], and von der
Brüggen et al. [40] for DPCP.

More recently, Chen et al. [13] introduced the Dependency
Graph Approach (DGA), where dependency graphs are con-
structed in the first step and scheduled on multiprocessors
either partitioned or globally in the second step. DGA was
further extended to periodic task systems by Shi et al. [37],

9

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

and partitioning algorithm was developed by Shi et. al [38].
However, only a few of these protocols support nested

resource sharing in a fine-grained manner1. The first protocol
that supports nested resource sharing is DPCP, since uni-
processor PCP is applied on synchronization processors. Once
nested resources are assigned on the same processor, the
nested resource sharing is supported by uni-processor PCP
by default. Chen et al. [11] developed MDPCP for periodic
task systems by carefully defining the inter-processor ceilings.
Besides, the Multiprocessor BandWidth Inheritance protocol
(M-BWI) [16], [17] and MrsP [10], [19] allow nested resource
accesses without deadlocks if all the resources or mutex locks
are accessed according to a specified total order. The family
of Real-time Nested Locking Protocols (RNLP) [43], [42],
[24], [29], [30] support nested resource sharing with different
variants by considering: 1) different waiting mechanisms, i.e.,
suspension or spinning, 2) different progress mechanisms,
i.e., priority boosting [27], [8], priority inheritance [36], and
priority donation [9], and 3) how pi-blocking is analyzed.
However most of them do not handle the transitive blocking
chain problem. That is, the traditional first in first out (FIFO)
resource accessing order can result in a single request blocking
a chain of requests even though some of them have no
conflict of requested resources. Only C-RNLP [24] breaks the
transitive blocking chains for nested write requests by applying
a cutting ahead mechanism, where the lengths of critical
sections are taken into consideration for lock the and unlock
logic. Dynamic group locks (DGLs), where all resources in
the corresponding group that the nested request belongs to
are requested simultaneously when starting a critical section,
also breaks the hold-and-wait condition [44]. Moreover, a fine-
grained blocking bound for nested non-preemptive FIFO spin
locks under P-FP scheduling is presented in [5]. The analysis
is based on a graph abstraction that reflects all possible
resource conflicts and transitive delays. As the state-of-the-
art, the newly proposed Concurrency Group Locking Protocol
(CGLP) by Nemitz et al. [31] supports lock nesting using
group locking. In addition, concurrency groups are utilized
to break transitive blocking, where a concurrency group is a
group of lock requests that can safely execute together.

IX. CONCLUSION

We propose a graph based approach to synchronize nested
resource requests on multiprocessor real-time systems. We
show the feasibility as well as that our approach is deadlock
free, transitive blocking free, and has bounded approximation
factors. The evaluation results in Sec. VII show that our
approach significantly improves the schedulability for both
frame-based and periodic task systems with the relatively high
space cost and computational cost, compared to the state-of-
the art, in all of the evaluated configurations.

1Nested resource sharing can be supported by using a coarse-grained group
lock for all of these protocols.

ACKNOWLEDGMENT

This paper is supported by DFG, as part of the Collaborative
Research Center SFB876, project A1 and A3 (http://sfb876.tu-
dortmund.de/).

REFERENCES

[1] Google OR-Tools. https://developers.google.com/optimization/. visit on
15.11.2020.

[2] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. An
empirical survey-based study into industry practice in real-time systems.
In 2020 IEEE Real-Time Systems Symposium (Proceedings), 2020.

[3] K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan.
Preemptive scheduling of a single machine to minimize maximum
cost subject to release dates and precedence constraints. Operations
Research, 31(2):381–386, 1983.

[4] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, (1):67–99, 1991.

[5] A. Biondi, B. B. Brandenburg, and A. Wieder. A blocking bound for
nested FIFO spin locks. In 2016 IEEE Real-Time Systems Symposium,
RTSS 2016, Porto, Portugal, November 29 - December 2, 2016, pages
291–302. IEEE Computer Society, 2016.

[6] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In RTCSA, 2007.

[7] B. B. Brandenburg. Multiprocessor real-time locking protocols: A
systematic review. CoRR, abs/1909.09600, 2019.

[8] B. B. Brandenburg and J. H. Anderson. Optimality results for multi-
processor real-time locking. In Real-Time Systems Symposium (RTSS),
pages 49–60, 2010.

[9] B. B. Brandenburg and J. H. Anderson. Real-time resource-sharing
under clustered scheduling: mutex, reader-writer, and k-exclusion locks.
In EMSOFT, pages 69–78. ACM, 2011.

[10] A. Burns and A. J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol - MrsP. In ECRTS, pages 282–291, 2013.

[11] C. Chen, S. K. Tripathi, and A. Blackmore. A resource synchronization
protocol for multiprocessor real-time systems. In ICPP (3), pages 159–
162. CRC Press, 1994.

[12] J.-J. Chen, J. Shi, G. von der Brüggen, and N. Ueter. Scheduling of
real-time tasks with multiple critical sections in multiprocessor systems.
IEEE Transactions on Computers, (01):1–1, 2020.

[13] J.-J. Chen, G. von der Bruggen, J. Shi, and N. Ueter. Dependency
graph approach for multiprocessor real-time synchronization. In IEEE
Real-Time Systems Symposium, RTSS, pages 434–446, 2018.

[14] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority
preemptive multiprocessor scheduling. In Real-Time Systems Symposium
(RTSS), pages 377–386, 2009.

[15] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In WATERS, pages 6–11, 2010.

[16] D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor bandwidth
inheritance protocol. In ECRTS, pages 90–99, 2010.

[17] D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and implementation of
the multiprocessor bandwidth inheritance protocol. Real-Time Systems,
48(6):789–825, 2012.

[18] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
Real-Time Systems Symposium (RTSS), pages 73–83, 2001.

[19] J. Garrido, S. Zhao, A. Burns, and A. Wellings. Supporting nested
resources in mrsp. In Ada-Europe International Conference on Reliable
Software Technologies, pages 73–86. Springer, 2017.

[20] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal of Applied Mathematics, 17(2):416–429, 1969.

[21] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. Commu-
nication centric design in complex automotive embedded systems. In
29th Euromicro Conference on Real-Time Systems, ECRTS, 2017.

[22] P.-C. Hsiu, D.-N. Lee, and T.-W. Kuo. Task synchronization and
allocation for many-core real-time systems. In International Conference
on Embedded Software, (EMSOFT), pages 79–88, 2011.

[23] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented partitioned
scheduling in multiprocessor systems: How to partition and how to
share? In Real-Time Systems Symposium (RTSS), pages 111–122, 2016.

[24] C. E. Jarrett, B. C. Ward, and J. H. Anderson. A contention-sensitive
fine-grained locking protocol for multiprocessor real-time systems. In
J. Forget, editor, Proceedings of the 23rd RTNS. ACM, 2015.

10

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

[25] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmark for free. In 6th International Workshop WATERS, 2015.

[26] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors. In Real-
Time Systems Symposium (RTSS), pages 469–478, 2009.

[27] K. Lakshmanan, D. De Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors. In RTSS,
pages 469–478, 2009.

[28] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time systems
on multiprocessors with shared resources. In Principles of Distributed
Systems - International Conference, OPODIS, pages 253–269, 2010.

[29] C. E. Nemitz, T. Amert, and J. H. Anderson. Using lock servers to
scale real-time locking protocols: Chasing ever-increasing core counts
(artifact). Dagstuhl Artifacts Ser., 4(2):02:1–02:3, 2018.

[30] C. E. Nemitz, T. Amert, and J. H. Anderson. Real-time multiprocessor
locks with nesting: optimizing the common case. Real Time Syst.,
55(2):296–348, 2019.

[31] C. E. Nemitz, T. Amert, M. Goyal, and J. H. Anderson. Concurrency
groups: a new way to look at real-time multiprocessor lock nesting. In
J. Ermont, Y. Song, and C. Gill, editors, Proceedings of the 27th RTNS,
pages 187–197. ACM, 2019.

[32] J. K. Ousterhout et al. Scheduling techniques for concurrent systems.
In ICDCS, volume 82, pages 22–30, 1982.

[33] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In Proceedings.,10th International Conference on
Distributed Computing Systems, pages 116 – 123, 1990.

[34] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proceedings of the 9th IEEE Real-
Time Systems Symposium (RTSS ’88), pages 259–269, 1988.

[35] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha,
and J. Mottok. Optimizing the task allocation step for multi-core
processors within AUTOSAR. In 2013 International Conference on
Applied Electronics, pages 1–6, Sept 2013.

[36] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Trans. Computers,
39(9):1175–1185, 1990.

[37] J. Shi, N. Ueter, G. von der Brüggen, and J.-J. Chen. Multiprocessor
synchronization of periodic real-time tasks using dependency graphs. In
Proceedings of the RTAS, pages 279–292, 2019.

[38] J. Shi, N. Ueter, G. von der Brüggen, and J.-J. Chen. Partitioned
scheduling for dependency graphs in multiprocessor real-time systems.
In Proceedings of the 25th RTCSA, 2019.

[39] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein. System-level
timing feasibility test for cyber-physical automotive systems. In SIES,
pages 1–10, May 2016.

[40] G. von der Brüggen, J.-J. Chen, W.-H. Huang, and M. Yang. Release
enforcement in resource-oriented partitioned scheduling for multipro-
cessor systems. In Proceedings of the 25th International Conference on
Real-Time Networks and Systems, RTNS, pages 287–296, 2017.

[41] G. von der Brüggen, N. Ueter, J.-J. Chen, and M. Freier. Parametric
utilization bounds for implicit-deadline periodic tasks in automotive
systems. In Proceedings of the 25th RTNS, pages 108–117, 2017.

[42] B. C. Ward and J. H. Anderson. Multi-resource real-time reader/writer
locks for multiprocessors. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium.

[43] B. C. Ward and J. H. Anderson. Supporting nested locking in multipro-
cessor real-time systems. In ECRTS, pages 223–232, 2012.

[44] B. C. Ward and J. H. Anderson. Fine-grained multiprocessor real-time
locking with improved blocking. In M. Auguin, R. de Simone, R. I.
Davis, and E. Grolleau, editors, 21st RTNS, pages 67–76. ACM, 2013.

[45] A. Wieder and B. B. Brandenburg. Efficient partitioning of sporadic
real-time tasks with shared resources and spin locks. In International
Symposium on Industrial Embedded Systems, (SIES), pages 49–58, 2013.

11

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.x
xx

.x
xx

.x
xx

