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Abstract—In soft real-time systems, tasks may occasionally
miss their deadlines. This possibility has triggered research on
probabilistic timing analysis for the execution time of a single
program and probabilistic response time analysis of concurrently
executed tasks. Under fixed-priority preemptive uniprocessor
scheduling, it was shown that the classical critical instant theorem
(for deriving the worst-case schedulability or response time) by
Liu and Layland (in JACM 1973) can be applied to analyze the
worst-case deadline failure probability (WCDFP) and the worst-
case response time exceedance probability (WCRTEP).

In this work, we present a counterexample for this result,
showing that the WCDFP and WCRTEP derived by the classical
critical instant theorem is unsound. We further provide two sound
methods: one is to account for one additional carry-in job of a
higher-priority task and another is to sample and inflate the
execution time of certain jobs without adding one additional
carry-in job. We show that these two methods do not dominate
each other and, in the evaluation, apply them to two well-known
approaches based on direct convolution and Chernoff bounds.

Index Terms—Real-Time Systems, Deadline Failure Probabil-
ity, Critical Instant, Probabilistic Response Time Analysis

I. INTRODUCTION

A classical, hard real-time analysis aims to determine
whether tasks fulfill their timing constraints under all circum-
stances. The seminal work by Liu and Layland [22] provides
fundamental knowledge to ensure worst-case timeliness when
scheduling periodic real-time tasks on a uniprocessor system.
A periodic task τi is an infinite sequence of task instances,
called jobs, where two consecutive jobs of a task are released
with a period Ti (i.e., the time interval length between the
release time of two consecutive jobs is always Ti), all jobs
of a task have the same relative deadline Di = Ti (i.e., the
absolute deadline of a job arriving at time t is t + Di), and
each job has the same worst-case execution time (WCET) Ci.

One important observation by Liu and Layland [22] for
(task-level) fixed-priority scheduling is the critical instant
theorem: “A critical instant for any task occurs whenever the
task is requested simultaneously with requests for all higher
priority tasks”. As this statement was incomplete, it was noted
in the review paper by Sha et al. [33] that: “A critical instant
for a task is a release time for which the response time is
maximized (or exceeds the deadline, in the case where the
system is overloaded enough that response times grow without
bound)”. As the critical instant only explains the beginning of
the job releases but not the complete time interval of interest,
Liu and Layland also defines the critical time zone for a task,

which is the time interval between a critical instant and the
end of the response to the corresponding request of the task.

The critical instant (and the critical time zone) theorem
is further extended to cope with the sporadic real-time task
model [29], in which two consecutive jobs of a task are sepa-
rated by a specified minimum inter-arrival time. As reported in
an empirical study [1] for industrial real-time systems, periodic
and sporadic task activations (with minimum inter-arrival time
constraints) are widely used in industry practice; specifically,
in 82% and 47%, respectively, of the investigated systems.

With the critical instant theorem, the worst-case response
time analysis and the feasibility of the fixed-priority schedule
can be validated by simulating the worst-case job release
pattern while utilizing the worst-case execution time. Alter-
natively, the time demand analysis (TDA) [18], [20] can be
utilized by applying a fixed-point iteration test.

The critical-instant theorem has been widely used in re-
search results. Some of the extensions of the critical instant
theorem are correct (e.g., the level-i busy window concept
in [21]) and some are unfortunately incorrect (e.g., the exten-
sions to self-suspending tasks in [19], [28]).

While the critical instant is usually applied to ensure time-
liness in a worst-case scenario (i.e., meeting the deadline
under all circumstances), many embedded real-time systems
can still function well even with occasional (bounded) deadline
misses. Hence, providing quantification of deadline misses is
of importance in practice. Specifically, safety standards such
as IEC-61508 [16] and ISO-26262 [17] specify a (very) low
failure probability but not necessarily a failure probability of
zero. In contrast to the large body of research results regarding
hard real-time systems, formal arguments and proofs for
properties related to soft real-time systems with probabilistic,
statistical, or deterministic guarantees remain an open research
area even for simple settings.

In this regard, probabilistic timing analysis has been ex-
plored in the literature. For a probabilistic analysis, instead of
having a scalar worst-case execution time Ci of a task τi, the
execution time of a job of τi is specified by a random variable,
describing the impact of hardware effects (e.g. caches, branch
prediction, pipelines, etc.) as well as different input values
and paths taken in the software on the execution time. More
variances and information can be found in the survey by Davis
and Cucu-Grosjean [12].

The usage of the critical instant theorem for probabilistic
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timing analysis can be traced back to Tia et al. [34] in 1995 for
a probabilistic time-demand analysis (PTDA). They assumed
that the analyzed task set is released at the critical instant,
which leads to “an upper bound of the processor-time demand
of j-th job of τi and all higher priority tasks only when the
deadline and maximum computation time of every task are
less than its period” [34]. In 1999, Gardner and Liu noted
that the PTDA is only valid if the worst-case utilization of the
task set is not more than 1, since the worst-case pattern of
releases might not follow the critical instant (the concept was
called an in-phase busy interval). They explored this aspect
by a stochastic time-demand analysis (STDA) and simulated
different phases. However, they did not find any cases where
the probability that jobs miss their deadlines was higher for
random phasing than for the simultaneous release under the
critical instant.

In 2002, Diaz et al. [13] noted that the worst-case scenario
for a job in the first busy period following synchronous release
(i.e., the classical critical instant theorem for periodic tasks) in
PTDA [34] and SDTA [15] may lead to an underestimation of
the response time distributions when the worst-case utilization
of the task set exceeds 1. The main issue is the backlog at the
end of each hyperperiod (i.e., the least common multiple of
the periods of the periodic tasks). The analysis by Diaz et
al. [13], refined later by Lopéz et al. [23] in 2008, considers
the scenario when backlog may exist.

One way to avoid having backlog is to restart the system
when there is a deadline miss or abort the job which misses
its deadline after its deadline. Under this assumption, in 2013,
Maxim and Cucu-Grosjean [25] presented a probabilistic re-
sponse time analysis, proved the critical instant theorem from
the probabilistic perspectives, and further extended the critical
instant theorem to deal with tasks with inter-arrival times and
relative deadlines also described by random variables.

Since then, the critical instant theorem under the proba-
bilistic setup by Maxim and Cucu-Grosjean [25] has been
widely used in the literature [26], [31], [32]. Due to an
essential complication in probabilistic response-time analysis
(i.e., convolution over multiple random variables), several
techniques have been developed to tackle issues of intractabil-
ity through various means, e.g., down-sampling [24], [25],
[27], [30], concentration inequalities [8], [9], [35], task-level
convolution [35], and Monte-Carlo simulation [6].
Our Contributions: This paper revisits the critical instant for
the probabilistic timing analysis of sporadic real-time task sets,
formally defined as the worst-case response time exceedance
probability (WCRTEP) in Definition 2 and the worst-case
deadline failure probability (WCDFP) in Definition 4. Our
contributions are as follows:

• We present a counterexample in Section III, demonstrat-
ing that calculating the WCRTEP and WCDFP based on
the critical instant theorem for fixed-priority scheduling
can be optimistic even without backlog. Therefore, the
critical instant theorem is unsound in the probabilistic
setting, even when jobs that miss their deadline are
aborted or when the system is restarted after a deadline

miss. We also explain why the proof of the critical instant
theorem for a static worst-case response time cannot be
applied under the probabilistic setting.

• We propose two methods to derive the WCRTEP and
WCDFP for sporadic real-time task systems with prob-
abilistic execution times in Section IV. One method is
to account for one additional carry-in job of a higher-
priority task, whilst another is to inflate the execution
of certain higher-priority jobs with a sampling process.
We further provide examples to illustrate that these two
methods do not dominate each other.

• In Section V, we discuss the impact of the unsound
critical instant theorem for the probabilistic setting in the
literature and provide suggestions on how these results
may be revised.

• With numerical simulations, we compare the WCDFP
derived from the proposed methods, realized by the direct
convolution approach and the Chernoff bound approach,
and evaluate their effectiveness under different experi-
mental settings in Section VI.

II. SYSTEM MODEL AND NOTATION

We consider a set of n independent sporadic real-time tasks
T = {τ1, . . . , τn} in a uniprocessor system. Each task τi ∈ T
is modeled by a tuple (Ci, Di, Ti), where Di is the relative
deadline of τi and Ti is its minimum inter-arrival time. Each
task releases an infinite number of successive task instances,
called jobs, and τi,j denotes the j-th job of task τi. A job
released at time t must finish not later than t+Di, and the next
job can only be released at or after t+Ti. We consider implicit-
deadline task sets, i.e., Di = Ti ∀τi ∈ T, and constrained-
deadline task sets, i.e., Di ≤ Ti ∀τi ∈ T.
Ci is a random variable to describe the possible execution

time of task τi, following a discrete distribution with h distinct
but finite values, i.e., h ≥ 1. The execution times of the jobs
τi,j , j ∈ N={1, 2, 3, . . .} are described by Ci,j , j ∈ N which
are independent copies of Ci. We assume that each job is
executed with exactly one of these h distinct time units, and the
sum of their probabilities is 100%. We denote by P(A = x) the
probability that a random variable A is equal to x. For instance,
P(Ci,j = 5) stands for the probability that the execution time
of j-th job of task τi is equal to 5. In addition, we assume
that the jobs’ execution times are independent and identically
distributed (iid) from each other (i.e., their joint probability
is equal to the product of their probabilities); an assumption
common in the literature, see, e.g., [8], [9], [12], [25], [35].

We assume a preemptive fixed-priority scheduling policy,
where each task has a unique fixed priority. That is, the jobs
of task τi have the priority specified to task τi. At a given
time t, for any two jobs of two distinct tasks τi and τk that are
eligible to execute, the execution of τi precedes the execution
of τk if i < k. We denote by hp(τi) the set of tasks with
higher priority than τi. Moreover, we assume that once a job
misses its deadline, it is immediately aborted.

Let Rk,j be the response time distribution for the j-th job
of τk. If a deadline is missed, then under that sample the
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response time distribution is Rk,j = ∞ as the job never
finishes. We are interested in the worst-case behavior of the
probabilistic response time and deadline failure probability. As
it may seem at the first glance strange to combine the worst-
case phrase with the probabilistic argument, the following
definitions provide concrete statements:

Definition 1 (Job-Level Response Time Exceedance Probabil-
ity). The response time exceedance probability of job τk,j is
the probability that the response time of the j-th job of task
τk is greater than t:

P(Rk,j > t) (1)

Definition 2 (Worst-Case Response Time Exceedance Proba-
bility). The worst-case response time exceedance probability
(WCRTEP) of task τk is an upper bound on the probability
that the response time of a job of τk is greater than t, i.e.,

sup
j∈N

{P(Rk,j > t)}, (2)

where sup indicates the supremum within set theory.

We are often not interested in the complete response time
distribution but in the probability that the response time
exceeds the relative deadline. That is, we are interested in
the probability that a job misses its deadline.

Definition 3 (Job-Level Probability of Deadline Misses). The
deadline failure probability (DFP) of job τk,j is the probability
that the j-th job of task τk misses its relative deadline Dk:

P(Rk,j > Dk) (3)

Definition 4 (Worst-Case Deadline Failure Probability). The
worst-case deadline failure probability (WCDFP) of task τk is
an upper bound on the probability that a job of τk misses its
relative deadline Dk:

sup
j∈N

{P(Rk,j > Dk)} (4)

We note that this WCDFP definition is identical to the one
by Davis and Cucu-Grosjean in their survey paper [12]. In
contrast, they used the term probabilistic worst-case response
time (pWCRT) to denote the WCRTEP defined here.

III. COUNTEREXAMPLE FOR THE CRITICAL INSTANT

In this section, we provide a counterexample to demonstrate
that calculating the WCDFP or WCRTEP based on the critical
instant theorem for fixed-priority scheduling is too optimistic
even without backlog. Towards this, we first review the critical
instant theorem and its proof when the objective is an upper
bound on the worst-case response time. Then, we present
the counterexample and explain why the proof of the critical
instant theorem cannot be applied when the objective is the
WCRTEP or WCDFP.

A. Critical Instant for Worst-Case Response Time

The critical instant theorem [22] has been widely adopted as
a backbone in worst-case response time analyses for periodic
and sporadic real-time tasks. For completeness, we give a short
summary and explain the correctness proof when determining
the worst-case response time for periodic or sporadic tasks.

Definition 5 (Critical Instant, reworded from [22], [29]).
Given a sporadic real-time task system, the critical instant
of a task τk under uniprocessor preemptive fixed-priority
scheduling occurs at the release of a job of τk when

1) every higher-priority task in hp(τk) releases a job si-
multaneously with the job of τk,

2) all subsequent jobs of the higher-priority tasks are re-
leased as early as possible by respecting their minimum
inter-arrival times, i.e., periodically, and

3) every job is executed with its worst-case execution time.

Definition 6. (Critical Time Zone, reworded from [22]) With
Definition 5, the critical time zone of task τk is the time
interval between a critical instant and the finishing time of
the job of τk released at the critical instant.

Theorem 7 (Worst-Case Response Time under the Critical In-
stant). Under uniprocessor fixed-priority preemptive schedul-
ing, if the interval length of the critical time zone of task τk is
no more than Tk, then the response time of this job of τk (i.e.,
the length of the critical time zone) is the worst-case response
time of τk; otherwise, the worst-case response time of τk is
greater than Tk.

Although the statement is correct, the original proof of
the critical instant theorem by Liu and Layland [22] was
incomplete. Several patches are available, e.g., [2]. Here, we
sketch the proof as it is used later to explain why the critical
instant cannot be extended to derive WCDFP and WCRTEP.

Proof. Suppose that σ is the fixed-priority preemptive sched-
ule of a set of jobs generated by the set T of sporadic tasks.
In the schedule σ, if there is a job of task τk whose response
time is greater than Tk, let job τk,ℓ be the first job of them.
Otherwise, let τk,ℓ be any arbitrary job of τk. We denote the
release time of job τk,ℓ as rk,ℓ and the finishing time of τk,ℓ
as fk,ℓ.

[Interval Extension]: Let t0 be the earliest instant prior
to rk,ℓ, i.e., t0 ≤ rk,ℓ, such that the processor only executes
jobs generated by the higher-priority tasks in hp(τk) from t0
to rk,ℓ in the schedule σ. We now remove all jobs released
before t0. Let σ′ be the resulting fixed-priority schedule of the
remaining jobs. As the removal of such jobs has no impact on
the schedule σ between t0 and fk,ℓ, the two schedules σ and
σ′ are identical from t0 to fk,ℓ.

[Release Time Modification]: According to the above
definition, task τk is not executed from t0 to rk,ℓ. Moving
the release time of τk,ℓ to t0 does not change the schedule σ′

but the response time of τk,ℓ is increased by rk,ℓ − t0 ≥ 0.
[Simultaneous Release and Periodic Interference]: Since

there is no job released prior to t0 in the schedule σ′, in order

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:



τ1
τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6 τ1,7

τ2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ2,1 τ2,2 τ2,3 τ2,4 τ2,5 τ2,6

Fig. 1: Release pattern of the counterexample task set, where both tasks release synchronously at time 0.

to achieve the maximum interference, the jobs of τi ∈ hp(τk)
should be released as early as possible, starting from t0. This
implies that the first job of τi ∈ hp(τk) should be released
at time t0, followed by subsequent jobs released periodically.
Furthermore, every job runs for its worst-case execution time.
That is, the critical instant in Definition 5 is at time t0. Let
σ′′ be the resulting schedule and let f ′′

k,ℓ be the finishing time
of τk,ℓ in the schedule σ′′. It can be proven that f ′′

k,ℓ ≥ fk,ℓ.
[Worst-Case Response Time]: Therefore, the response

time of the job τk,ℓ becomes f ′′
k,ℓ − t0 ≥ fk,ℓ − rk,ℓ. This

leads to the conclusion stated in Theorem 7.

B. Critical Instant for WCDFP/WCRTEP & Counterexample
By following the critical instant theorem, Theorem 1

from [25] claims that the worst-case response time distribution
of any job of a task occurs for the first job if the task set
follows synchronous release. In the following, we provide a
concrete counterexample to invalidate this statement. Note that
implicit deadlines are assumed in [25]. For completeness, we
first show their original theorem here:

Theorem 8 (From [25, Theorem 1]). We consider a task
system of n tasks with τi described by probabilistic Ci and
Ti, ∀i ∈ {1, 2, . . . , n}. The set is ordered according to the
priorities of the tasks and the system is scheduled preemptively
on a single processor. The response time distribution Ri,1

of the first job of task τi is greater than the response time
distribution Ri,j of any j-th job of task τi, ∀i ∈ {1, 2, . . . , n}.

It is assumed in [25] that all tasks are synchronous, i.e.,
every task releases its first job at time 0, following the critical
instant theorem. That is, it is claimed that the WCRTEP is
observed for j = 1 since P(Ri,1 > t) ≥ P(Ri,j > t) for all
t ∈ R. Similarly, Theorem 1 from [8] states that the WCDFP
of task τk can be derived under the critical instant.

Theorem 9 (Reworded from [8, Theorem 1]). Suppose that
St is the sum of the execution times of one job of τk and

⌈
t
Ti

⌉

jobs of each higher priority task τi ∈ hp(τk), i.e.,

St := Ck,1 +
∑

τi∈hp(τk)

⌈
t
Ti

⌉

∑

q=1

Ci,q. (5)

If the time-demand analysis (TDA) succeeds using the worst-
case execution time of each task, then the probability of
deadline misses of task τk is 0. Otherwise, the probability
of deadline misses of task τk is upper bounded by

inf
0<t≤Dk

P(St ≥ t), (6)

τ2,1
C1,1 = 1

90%

C1,1 = 2.5

10%

0 2 4 6

τ1,1

deadline satisfied

τ2,1

0 2 4 6

τ1,1

deadline miss at time 4.4

τ2,1

τ2,1 blocked by τ1,2

Fig. 2: State space for job τ2,1. Note that, since job τ2,1 misses
its deadline at 4.4, it is aborted in the schedule below.

where inf indicates the infimum within set theory.

The statements in Theorem 8 and Theorem 9 are seemingly
correct by simply applying the sketched proof of Theorem 7
considering probabilistic execution time. However, the analysis
in the critical time zone does not consider the execution time
distribution because only the worst-case execution time is
needed for analyzing the worst-case response time.

The key issue is whether the interval extension from rk,ℓ to
t0 in the proof of Theorem 7 may change the response time
distribution of τk,ℓ. Considering the execution time distribution
of the higher-priority jobs, the interval extension from rk,ℓ
to t0 is not deterministic and is related to the probability of
the execution times of the higher-priority tasks. Therefore,
ignoring the probability of the feasibility of the interval
extension may result in incorrect quantification of response
time distribution.

This observation leads to the following counterexample:

Counterexample 10. Consider the periodic task set with two
tasks τ1 and τ2, simultaneously released at time 0:

• T1 = 4, P(C1,j = 1) = 0.9, P(C1,j = 2.5) = 0.1
• T2 = 4.4, P(C1,j = 3) = 1.0

for all j ∈ N. The release pattern of that task set is presented
in Figure 1. In the following, we show that the probability
P(R2,6 > t) is higher than the probability P(R2,1 > t), for
some t with 0 < t ≤ T2. That is, the first job of task τ2 does
not always have a greater response time distribution than the
other jobs of τ2. Consider t = 4.4.

For job τ2,1 (as shown in Figure 2): If τ1,1 has an execution
time of 1, then τ2,1 finishes at time 1 + 3 = 4. If τ1,1 has an
execution time of 2.5, then τ2,1 does not finish its execution
at time 4.4. Therefore, we obtain

P(R2,1 > 4.4) = P(C1,1 = 2.5) = 0.1 (7)
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τ2,6
C1,6 = 2.5

10%

C1,6 = 1

90%

C1,7 = 1

90%

C1,7 = 2.5

10%

C1,7 = 1

90%

C1,7 = 2.5

10%

22 24 26 28

carry-in from τ1,6

τ1,7

deadline miss at time 26.4

τ2,6

22 24 26 28

carry-in from τ1,6

τ1,7

deadline miss at time 26.4

τ2,6

22 24 26 28

τ1,7

deadline satisfied

τ2,6

22 24 26 28

deadline miss at time 26.4

τ2,6 τ1,7

Fig. 3: State space for job τ2,6: For 3 out of 4 possible schedules in the time interval [22, 26.4] job τ2,6 misses its deadline.

For job τ2,6 (as shown in Figure 3): If τ1,6 has an execution
time of 1, it contributes no interference to τ2,6. In this case, the
response time of τ2,6 is only larger than 4.4 if τ1,7 executes
for 2.5 time units. If τ1,6 has an execution time of 2.5, then it
contributes 0.5 time units as additional interference for τ2,6.
In this case, the response time for τ2,6 is larger than 4.4 if
τ1,7 executes for 1 time unit or for 2.5 time units. Hence,
R2,6 > 4.4 if either τ1,6 or τ1,7 or both have an execution
time of 2.5. Therefore, the probability that the response time
of τ2,6 is larger than 4.4 is:

P(R2,6 > 4.4) (8)
= P(C1,6 = 2.5) + P(C1,6 = 1) · P(C1,7 = 2.5) (9)
= 0.1 + 0.9 · 0.1 = 0.19 (10)

We get P(R2,1 > 4.4) = 0.1 < 0.19 = P(R2,6 > 4.4),
which contradicts Theorem 8. The counterexample invalidates
Theorem 9 as well if we assume that τ2 has an implicit
deadline (i.e., Di = Ti = 4.4), since according to the coun-
terexample τ2,6 has a larger DFP than τ2,1 which contradicts
that the WCDFP can be observed for the first job of τ2.
Consequence: With probabilistic execution times, the syn-
chronous release of all tasks does not necessarily generate
the maximum interference and is thus not always a critical
instant. Therefore, Theorem 8 (i.e., Theorem 1 from [25]) and
Theorem 9 (i.e., Theorem 1 from [8]) may result in an unsound
WCDFP, as well as unsound WCRTEP.

C. Detailing the Misconception

The proof in [8] follows a similar proof structure as in
the worst-case analysis presented in the proof of Theorem 7,
whereas the proof in [25] directly refers to the classical critical
instant theorem. Essentially, to prove that the worst case is
to synchronously release one job from every higher-priority
task together with the job of task τk under analysis, interval
extension is needed. However, as demonstrated in Figure 3, the
extension from rk,ℓ (namely, 22) to t0 (namely, 20) is also a
probabilistic distribution function, depending on the execution
time of the higher-priority jobs. It is therefore unsound to
simply extend the interval of interest without considering the
change of the probabilistic distribution in this regard.

IV. SAFE BOUNDS FOR WCDFP AND WCRTEP
In this section, we provide two methods to derive a sound

WCDFP and WCRTEP. We focus on WCRTEP in our pre-
sentation, as WCDFP is a special form of it. The first method

in Section IV-A is based on the inclusion of one additional
job of a higher-priority task in the analysis window, typically
called carry-in. This method has been widely used when the
critical instant theorem does not work, e.g., for multiprocessor
global scheduling [3] and self-suspending task systems [7].
The second method in Section IV-B inflates the execution
time of the jobs of higher priority tasks to account for the
uncertainty of the analysis interval extension under different
samples. We demonstrate that these two methods do not
dominate each other by providing two concrete task sets, one
where carry-in is better and one where inflation is better.

A. Method 1: Carry-in

It is sufficient to consider one additional job of each higher-
priority task τi ∈ hp(τk) (in addition to the critical instant)
for the WCRTEP analysis of task τk.

Theorem 11. Consider a system of constrained-deadline
sporadic real-time tasks T where a job is directly aborted
when missing its deadline. The WCRTEP of task τk ∈ T for a
response time target Rk with 0 < Rk ≤ Tk under uniprocessor
preemptive fixed-priority scheduling is upper bounded by

inf
0<t≤Rk

P(St > t), (11)

where St is a random variable which provides the sum of
the execution times of one job of τk and

⌈
t+Di

Ti

⌉
jobs of a

higher-priority task τi for each task τi in hp(τk), i.e.,

St := Ck,1 +
∑

τi∈hp(τk)

⌈
t+Di
Ti

⌉

∑

q=1

Ci,q. (12)

Proof. By Definition 2, the WCRTEP for Rk is given by
supj∈N{P(Rk,j > Rk)}. In the following we show that
P(Rk,j > Rk) ≤ inf0<t≤Rk

P(St > t) for all τk,j , j ∈ N and
for all possible release patterns. To achieve this, we consider
one arbitrary job τk,ℓ of τk and one arbitrary but fixed release
pattern, and show that P(Rk,ℓ > Rk) ≤ inf0<t≤Rk

P(St > t)
under this release pattern.

[Equivalent Formulation]: For each higher priority task τi
in hp(τk) we define by Xi(a, b) the amount of time that τi is
executed on the processor in the interval [a, b). The following
equivalence holds: Rk,ℓ > Rk if and only if Rk,ℓ > t for all
t ∈ (0, Rk]. Hence, P(Rk,ℓ > Rk) = inf0<t≤Rk

P(Rk,ℓ > t).
If the job τk,ℓ is not finished by time rk,ℓ + t, then from rk,ℓ
to rk,ℓ+ t the processor either executes τk,ℓ or higher-priority

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:



jobs of the tasks in hp(τk) due to preemptive fixed-priority
scheduling. Therefore, we know that Rk,ℓ > t if and only
if τk,ℓ cannot be executed for Ck,ℓ time units in the interval
[rk,ℓ, rk,ℓ + t), i.e., Ck,ℓ +

∑
τi∈hp(τk)

Xi(rk,ℓ, rk,ℓ + t) > t.
We conclude the equivalent formulation for P(Rk,ℓ > Rk):

P(Rk,ℓ > Rk) (13)

= inf
0<t≤Rk

P(Ck,ℓ +
∑

τi∈hp(τk)

Xi(rk,ℓ, rk,ℓ + t) > t) (14)

[Quantification of Interference]: In this paragraph, we
provide an upper bound on the interference Xi(rk,ℓ, rk,ℓ + t).
Any job of τi that is released before rk,ℓ−Di is either aborted
or finished at time rk,ℓ. Therefore, only jobs of τi that are
released in [rk,ℓ−Di, rk,ℓ+t) can be executed in [rk,ℓ, rk,ℓ+t).
The number of jobs of a sporadic task τi released inside an
interval of length t+Di is at most

⌈
t+Di

Ti

⌉
. Therefore, at most⌈

t+Di

Ti

⌉
many jobs of τi can be executed in [rk,ℓ, rk,ℓ + t).

Let τi,ji be the first job of τi released at or after rk,ℓ −Di.1

Then only the jobs τi,ji , . . . , τi,ji−1+
⌈

t+Di
Ti

⌉ of τi can be

executed in [rk,ℓ, rk,ℓ + t). This means that

Xi(rk,ℓ, rk,ℓ + t) ≤
ji−1+

⌈
t+Di
Ti

⌉

∑

q=ji

Ci,q. (15)

We conclude that P(Rk,ℓ > Rk) is upper bounded by

inf
0<t≤Rk

P


Ck,ℓ +

∑

τi∈hp(τk)

ji−1+
⌈

t+Di
Ti

⌉

∑

q=ji

Ci,q > t


 . (16)

[Exploit iid]: Since the random variable Ck,ℓ has the
same probability distribution as Ck,1, we can replace Ck,ℓ by
Ck,1 in Equation (16). Moreover, Ci,ji , . . . , Ci,ji−1+

⌈
t+Di
Ti

⌉

(Ci,1, . . . , Ci,
⌈

t+Di
Ti

⌉, respectively) are iid with the same

probability distribution as Ci. Therefore,
∑ji−1+

⌈
t+Di
Ti

⌉

q=ji
Ci,q

and
∑

⌈
t+Di
Ti

⌉

q=1 Ci,q have the same probability distribu-
tion for all τi ∈ hp(τk). Hence, the random variables

Ck,ℓ +
∑

τi∈hp(τk)

∑ji−1+
⌈

t+Di
Ti

⌉

q=ji
Ci,q and St = Ck,1 +

∑
τi∈hp(τk)

∑
⌈

t+Di
Ti

⌉

q=1 Ci,q have the same probability distri-

bution, and P(Ck,ℓ +
∑

τi∈hp(τk)

∑ji−1+
⌈

t+Di
Ti

⌉

q=ji
Ci,q > t)

coincides with P(St > t). We apply this to Equation (16):

P(Rk,ℓ > Rk) ≤ inf
0<t≤Rk

P(St > t) (17)

[Closing remarks]: We have shown that Equation (17)
holds for an arbitrary release pattern and therefore it holds for
all possible release patterns. We can apply supℓ∈N to obtain
the statement from the theorem.

1Please note that ji is only dependent on the release pattern and not on the
probabilistic behavior.

Corollary 12. Under the same setup as in Theorem 11,
the WCDFP of task τk under uniprocessor preemptive fixed-
priority scheduling is at most

inf
0<t≤Dk

P(St > t). (18)

B. Method 2: Inflation

The second method in this section quantifies the interference
of the higher-priority tasks by considering only

⌈
t
Ti

⌉
jobs of

task τi. However, the counterexample in Section III shows that
including

⌈
t
Ti

⌉
random variables of Ci is unsound and that

some additional jobs have to be considered. Our method con-
quers this issue by considering the inflation of the execution
time of some jobs in the random variables to ensure that the
WCRTEP or the WCDFP is correctly bounded.

The idea behind inflation is as follows: Suppose that we
have to consider λt

i jobs of τi in the analysis window (to be
defined later). We randomly sample λt

i random variables of
Ci but only the largest

⌈
t
Ti

⌉
of them are considered in the

response time analysis. More formally,

Definition 13. For any positive integers a and b with a ≤ b,
a-job execution time inflation of τi out of b jobs is a sam-
pling process which first samples b random variables of the
execution time of task τi and then selects the a largest values
among the samples as the inflated execution time. We denote
by SAI(τi, a, b) (named after sample and inflate) the random
variable which provides the sum of the a selected samples.
The random variable can be formulated as:

SAI(τi, a, b) = max

{∑

c∈S

c

∣∣∣∣∣S ⊆ {Ci,1, . . . , Ci,b} , |S| = a

}

(19)

The following theorem shows that it is sound to sample⌈
t+

∑
τξ∈hp(τk)\hp(τi)

Dξ

Ti

⌉
jobs and inflate

⌈
t
Ti

⌉
jobs of a

higher-priority task τi when analyzing the WCRTEP of τk.

Theorem 14. Consider a system of constrained-deadline spo-
radic real-time tasks where a job is directly aborted when
missing its deadline. The WCRTEP of task τk for a response
time 0 < Rk ≤ Tk under uniprocessor preemptive fixed-
priority scheduling is at most

inf
0<t≤Rk

P
(
Ck +

∑

τi∈hp(τk)

SAI

(
τi,

⌈
t

Ti

⌉
, λt

i

)
> t

)
, (20)

where λt
i is

⌈
t+

∑
τξ∈hp(τk)\hp(τi)

Dξ

Ti

⌉
.

Proof. The proof of this theorem is very similar to the proof
of Theorem 11 by further exploiting the concept of Interval
Extension and Release Time Modification used in the proof
of the critical instant theorem in Theorem 7. Under the prob-
abilistic setting, after the interval extension and release time
modification, we show how to safely quantify the interference
by using the concept of sample and inflate.
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τ1

η1
τ2

η2
τ3

r3,1 = η3
0 2 4 6 8 10 12 14

τ1

η1
τ2

η2
τ3

r3,1 = η3

0 2 4 6 8 10 12 14

Fig. 4: Interval extension in the proof of Theorem 14 for two
different execution scenarios (left: C1,1 = 1, right: C1,1 = 3).
We observe that the changes in the random variable η1 are
dependent on the sample under analysis.

By Definition 2, the WCRTEP for Rk is given by
supj∈N{P(Rk,j > Rk)}. In the following we show that
P(Rk,j > Rk) is upper bounded by (20) for all τk,j , j ∈ N and
for all possible release patterns. To achieve this, we consider
one arbitrary job τk,ℓ of τk and one arbitrary but fixed release
pattern, and show that P(Rk,ℓ > Rk) is upper bounded by (20)
under that release pattern.

[Equivalent Formulation]: As in the proof of Theorem 11,
the probability for Rk,ℓ > Rk is equivalently formulated by

P(Rk,ℓ > Rk)

= inf
0<t≤Rk

P
(
Ck,ℓ +

∑

τi∈hp(τk)

Xi(rk,ℓ, rk,ℓ + t) > t
)
,

(21)
where Xi(a, b) is the amount of execution time of jobs of τi
in the interval [a, b).

[Interval Extension]: Similar to the proof of the worst-case
response time in Theorem 7, we extend the analysis interval
to the left side, i.e., we define η1 such that all jobs released
before η1 are not relevant for the analysis. We construct the
time points η1, . . . , ηk in an iterative manner, starting from
i = k−1, k−2, . . . , 1. Let ηk be rk,ℓ. After ηi+1 is determined,
we define ηi as follows:

ηi := min(ηi+1, ri,ϕi
), (22)

where τi,ϕi
the first job of τi that is executed after ηi+1, i.e.,

ϕi := min {j ∈ N | τi,j executed after ηi+1} . (23)

In Figure 4 the interval extension is presented for a task
set with three tasks. Note that η1, η2, . . . , ηk−1 are random
variables that depend on the execution behavior. With this
definition of η1, . . . , ηk the following properties hold:
P1 During [η1, ηi) the processor is busy executing jobs of

hp(τi). (That is because if ηi−1 < ηi, then the processor
executes jobs of hp(τi) during [ηi−1, ηi).)

P2 None of the jobs of τi ∈ hp(τk) released before ηi is exe-
cuted after ηi. (If ηi = ηi+1 then there are by construction
no jobs of τi released before ηi+1 and executed after ηi+1.
If ηi = ri,ϕi , then under the constrained deadline setup
all previous jobs of τi have their deadline at ηi or earlier.
Hence, they must be finished or aborted by ηi.)

P3 ηi +Di > ηi+1 due to the assumption in the system that
a job is aborted after its deadline miss.

Please note that none of the jobs of τi ∈ hp(τk) released
before ηi is executed after η1. (Otherwise, they have to finish
by ηi because of Property P2. However, the jobs of τi cannot
be executed in [η1, ηi) because of Property P1.) Therefore,
jobs released before η1 are not relevant for the analysis.

[Release Time Modification]: In the following we move
the release of τk,ℓ to η1 for the analysis, i.e., we show that

∑

τi∈hp(τk)

Xi(rk,ℓ, rk,ℓ + t) ≤
∑

τi∈hp(τk)

Xi(η1, η1 + t). (24)

According to Property P1, during [η1, rk,ℓ) = [η1, ηk) the
processor is busy executing jobs of tasks of hp(τk). Therefore,∑

τi∈hp(τk)
Xi(η1, ηk) = ηk − η1 holds. Moreover, ηk − η1 ≥∑

τi∈hp(τk)
Xi(η1 + t, ηk + t) since the processor can only

execute jobs for at most ηk − η1 time units in the interval
[η1 + t, ηk + t). Hence,

∑

τi∈hp(τk)

Xi(η1, ηk) = ηk − η1 ≥
∑

τi∈hp(τk)

Xi(η1 + t, ηk + t)

(25)
holds. Since by Equation (25)

∑
τi∈hp(τk)

Xi(η1, ηk) −∑
τi∈hp(τk)

Xi(η1 + t, ηk + t) ≥ 0, we obtain the following:

∑

τi∈hp(τk)

Xi(rk,ℓ, rk,ℓ + t) =
∑

τi∈hp(τk)

Xi(ηk, ηk + t) (26)

≤




∑
τi∈hp(τk)

Xi(ηk, ηk + t) +
∑

τi∈hp(τk)

Xi(η1, ηk)

− ∑
τi∈hp(τk)

Xi(η1 + t, ηk + t)


 (27)

=
∑

τi∈hp(τk)

Xi(ηk, ηk + t) +Xi(η1, ηk)−Xi(η1 + t, ηk + t)

(28)

=
∑

τi∈hp(τk)

Xi(η1, ηk + t)−Xi(η1 + t, ηk + t) (29)

=
∑

τi∈hp(τk)

Xi(η1, η1 + t) (30)

Note that the conversion from (28) to (29) and from (29) to
(30) are both due to the fact that Xi(a, b)+Xi(b, c) = Xi(a, c)
for all real numbers a ≤ b ≤ c. This proves Equation (24).

[Quantification of Interference]: In the following we
quantify the interference from higher priority task τi ∈ hp(τk),
which is Xi(η1, η1 + t). For all τi ∈ hp(τk), during [η1, ηi)
only jobs of hp(τi) are executed by Property P1. Therefore,
Xi(η1, ηi) = 0 and

Xi(η1, η1 + t) ≤ Xi(η1, ηi + t) = Xi(ηi, ηi + t). (31)

By Property P2 only those jobs of τi that are released in
[ηi, ηi + t) can be executed in [ηi, ηi + t). These are at most⌈

t
Ti

⌉
jobs. However, since ηi is a random variable dependent
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on the execution behavior, it is not clear which jobs have to
be included in the analysis.2

In the following we derive a set Ji of all jobs that may
be released in [ηi, ηi + t) under any execution behavior, i.e.,
the set is only dependent on the release pattern. By Prop-
erty P3, ηi is lower bounded by rk,ℓ −

∑
τξ∈hp(τk)\hp(τi) Dξ.

Hence, the interval [ηi, ηi + t) is a subset of the interval
[rk,ℓ−

∑
τξ∈hp(τk)\hp(τi) Dξ, rk,ℓ+t). Let τi,ji be the first job

of τi that is released at or after rk,ℓ −
∑

τξ∈hp(τk)\hp(τi) Dξ.
Please note that ji is only dependent on the release pattern
and independent from the execution behavior. Since at most

λt
i =

⌈
t+

∑
τξ∈hp(τk)\hp(τi)

Dξ

Ti

⌉
jobs of τi are released in

[rk,ℓ −
∑

τξ∈hp(τk)\hp(τi) Dξ, rk,ℓ + t), only the jobs

Ji =
{
τi,ji,...,τi,ji−1+λt

i

}
(32)

can be released in [rk,ℓ − ∑
τξ∈hp(τk)\hp(τi) Dξ, rk,ℓ + t).

Hence, only jobs of Ji may be released in [ηi, ηi + t).
As discussed earlier, by Property P2 only jobs of τi that are

released in [ηi, ηi + t) can be executed in [ηi, ηi + t), i.e., at
most

⌈
t
Ti

⌉
jobs. Hence, only the execution time of

⌈
t
Ti

⌉
jobs

in Ji has to be considered for the interference. We conclude

Xi(ηi, ηi + t) ≤ MAXt
i (33)

where MAXt
i is the random variable that returns the sum of

the
⌈

t
Ti

⌉
maximal execution times of the jobs in Ji. After the

quantification step, we obtain that

P(Rk,ℓ > Rk) ≤ inf
0<t≤Rk

P
(
Ck,ℓ +

∑

τi∈hp(τk)

MAXt
i

)
, (34)

which is a combination of Equations (21), (24), (31) and (33).
[Exploit iid]: Since the random variable Ck,ℓ has the

same probability distribution as Ck,1, we can replace Ck,ℓ

by Ck,1 in Equation (34). Moreover, Ci,ji , . . . , Ci,ji−1+λt
i

(Ci,1, . . . , Ci,λt
i
, respectively) are iid with the same probability

distribution as Ci. Therefore, MAXt
i and SAI(τi,

⌈
t
Ti

⌉
, λt

i)

have the same probability distribution for all τi ∈
hp(τk). We conclude that Ck,ℓ +

∑
τi∈hp(τk)

MAXt
i and

Ck,1 +
∑

τi∈hp(τk)
SAI(τi,

⌈
t
Ti

⌉
, λt

i) have the same probabil-
ity distribution, and therefore P(Ck,ℓ+

∑
τi∈hp(τk)

MAXt
i ) =

P(Ck,1+
∑

τi∈hp(τk)
SAI(τi,

⌈
t
Ti

⌉
, λt

i)) holds. Applying this
to Equation (34) yields

P(Rk,ℓ > Rk)

≤ inf
0<t≤Rk

P
(
Ck +

∑

τi∈hp(τk)

SAI

(
τi,

⌈
t

Ti

⌉
, λt

i

)
> t

)
.

(35)
[Closing remarks]: We have shown that Equation (35)

holds for an arbitrary release pattern and therefore it holds for

2Please note that in the proof of Theorem 11 the jobs in the analysis,
i.e., τi,ji , . . . , τi,ji−1+

⌈
t+Di
Ti

⌉, can be determined directly from the release

pattern. In this proof, the release time modification, i.e., moving the analysis
interval to ηi, is dependent on the execution behavior.

all possible release patterns. We can apply supℓ∈N to obtain
the statement from the theorem.

Corollary 15. Under the same setup of Theorem 14, the
WCDFP of task τk under uniprocessor preemptive fixed-
priority scheduling is at most

inf
0<t≤Dk

P
(
Ck +

∑

τi∈hp(τk)

SAI

(
τi,

⌈
t

Ti

⌉
, λt

i

)
> t

)
. (36)

C. Carry-In versus Inflation

We provide two examples showing that the carry-in and the
inflation method do not dominate each other.

Case 1 – inflation outperforms carry-in: We re-examine
the counterexample in Section III. In particular, we consider
the task set T = {τ1, τ2} with two tasks described by:

• T1 = D1 = 4, P(C1 = 1) = 0.9, P(C1 = 2.5) = 0.1
• T2 = D2 = 4.4, P(C2 = 3) = 1.0

Task τk := τ2 is under analysis. It is shown in Counterexam-
ple 10 that the WCDFP for τ2 is at least 0.19.

First, we compute an upper bound on the WCDFP by
applying the carry-in method. By Corollary 12, the WCDFP
of τ2 is upper bounded by

inf
0<t≤D2

P(St > t), (37)

where St is the sum of the execution time of one job of
τ2 and

⌈
t+D1

T1

⌉
jobs of the higher priority task τ1. For all

t ∈ (0, D2] = (0, 4.4], we have
⌈
t+D1

T1

⌉
=

⌈
t+4
4

⌉
≥ 2. Since

the execution time of every job of τ2 is 3 and the execution
time of jobs of τ1 is at least 1, we obtain St ≥ 5 > t for
all t ∈ (0, D2]. Hence, inf0<t≤D2

P(St > t) = 1.0 and the
carry-in method states that the WCDFP of τ2 is at most 1.0.

In this case, the inflation method provides a tighter result.
By Corollary 15, the WCDFP of τ2 is upper bounded by

inf
0<t≤D2

P
(
C2 + SAI(τ1,

⌈
t

T1

⌉
, λt

1) > t

)
, (38)

where λt
1 =

⌈
t+D1

T1

⌉
. The values of

⌈
t
T1

⌉
and λt

1 are
dependent on t as follows:

⌈
t

T1

⌉
=

{
1 t ∈ (0, 4]

2 t ∈ (4, 4.4]
λt
1 =

{
2 t ∈ (0, 4]

3 t ∈ (4, 4.4]
(39)

i.e., checking Equation (38) for t = 4 and t = 4.4 is sufficient.
For t = 4, the random variable SAI

(
τ1,

⌈
t
T1

⌉
, λt

1

)
is

SAI(τ1, 1, 2) which returns 1 if both sampled jobs have
execution of 1, i.e., with probability 0.9 · 0.9 = 0.81, and
2.5 with probability 1 − 0.81 = 0.19. If SAI(τ1, 1, 2)
returns 1, then C2 + SAI(τ1, 1, 2) returns 4 which is
≤ t = 4. If SAI(τ1, 1, 2) returns 2.5, then C2 +
SAI(τ1, 1, 2) returns 5.5 which is > t = 4. Hence, the prob-
ability P(C2 + SAI(τ1,

⌈
t
T1

⌉
, λt

1) > t) for t = 4 is 0.19.

For t = 4.4, SAI(τ1,
⌈

t
T1

⌉
, λt

1) is SAI(τ1, 2, 3) which
returns at least 2. Therefore, C2 + SAI(τ1, 1, 2) returns at
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τ1 τ1,1 τ1,2

τ2 τ2,1 τ2,2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ3,1

Fig. 5: Exemplary release pattern of the task set where the
carry-in method outperforms the inflation method. Release
times of the jobs are as follows: r1,1 = 8, r1,2 = 10, r2,1 = 0,
r2,2 = 10, and r3,1 = 9.3.

least 5 which is > t = 4.4 in all cases. Thus, the probability
P(C2 + SAI(τ1,

⌈
t
T1

⌉
, λt

1) > t) for t = 4.4 is 1.0.
The WCDFP from the inflation method is at most 0.19,

which is the lower bound from the counterexample, i.e., the
inflation method is exact for this example.

In fact, with the following theorem, Theorem 14 is always
better than Theorem 11 when considering only two tasks.

Theorem 16. When there are only two tasks in T,

P
(
C2,1 + SAI

(
τ1,

⌈
t

T1

⌉
,

⌈
t+D1

T1

⌉)
> t

)
≤ P (St > t)

(40)
for all t with 0 < t ≤ D2. That is, Theorem 14 dominates
Theorem 11 when there are only two tasks in T.

Proof. By definition, since λt
1 =

⌈
t+D1

T1

⌉
≥

⌈
t
T1

⌉
, we have

P
(
C2,1 + SAI

(
τ1,

⌈
t

T1

⌉
,

⌈
t+D1

T1

⌉)
> t

)

≤ P
(
C2,1 + SAI

(
τ1,

⌈
t+D1

T1

⌉
,

⌈
t+D1

T1

⌉)
> t

)

= P
(
C2,1 +

⌈
t+D1
T1

⌉

∑

q=1

C1,q > t
)
= P(St > t),

which leads to the condition in Equation (40).

Case 2 – carry-in outperforms inflation: We consider the
scenario with 3 tasks T = {τ1, τ2, τ3} described by:

• T1 = D1 = 2, P(C1 = 0.2) = 0.9, P(C1 = 2) = 0.1
• T2 = D2 = 10, P(C2 = 0.2) = 0.9, P(C2 = 10) = 0.1
• T3 = D3 = 2, P(C3 = 1) = 1.0

Task τk := τ3 is under analysis. For a WCDFP lower bound
we consider the release pattern shown in Figure 5. Under this
release pattern, job τ3,1 has a deadline miss if and only if at
least one of the jobs τ1,1, τ1,2, τ2,1, and τ2,2 executes with
the worst-case execution time. The WCDFP of τ3 is therefore
lower bounded by 1− 0.9 · 0.9 · 0.9 · 0.9 = 0.3439.

First, we compute an upper bound on the WCDFP by
applying the carry-in method. By Corollary 12, the WCDFP of
τ3 is upper bounded by inf0<t≤D3 P(St > t), where St is the
sum of the execution time of one job of τ3,

⌈
t+D2

T2

⌉
jobs of the

higher priority task τ2, and
⌈
t+D1

T1

⌉
jobs of the higher priority

task τ1. For all t ∈ (0, D3] = (0, 2],
⌈
t+D2

T2

⌉
=

⌈
t+10
10

⌉
= 2

and
⌈
t+D1

T1

⌉
=

⌈
t+2
2

⌉
= 2. Therefore, St returns the sum of

C3, two samples of C2, and two samples of C1. We only get
St ≤ 2 if both jobs of C2 and both jobs of C1 execute the
smaller execution time. This case occurs with probability 0.94.
Hence, inf0<t≤D3

P(St > t) = 1− 0.94, i.e., the upper bound
on the WCDFP of τ3 obtained by the carry-in method is exact.

Second, for the inflation method, by Corollary 15 the
WCDFP of τ3 is upper bounded by

inf
0<t≤D3

P


 C3,1 + SAI

(
τ2,

⌈
t
T2

⌉
, λt

2

)

+SAI
(
τ1,

⌈
t
T1

⌉
, λt

1

)
> t


 , (41)

where

λt
i =

⌈
t+

∑
τξ∈hp(τk)\hp(τi) Dξ

Ti

⌉
for i = 1, 2.

For all t ∈ (0, D3] = (0, 2], we have
⌈

t
T2

⌉
=

⌈
t
10

⌉
= 1,⌈

t
T1

⌉
=

⌈
t
2

⌉
= 1, and

λt
2 =

⌈
t+D2

T2

⌉
=

⌈
t+ 10

10

⌉
= 2,

λt
1 =

⌈
t+D2 +D1

T1

⌉
=

⌈
t+ 10 + 2

2

⌉
= 7.

Therefore, the probability from Equation (41) can be for-
mulated as P(C3,1 + SAI(τ2, 1, 2) + SAI(τ1, 1, 7) > 2). The
random variable SAI(τ2, 1, 2) returns the maximum of 2 sam-
ples of C2, and the random variable SAI(τ1, 1, 7) returns the
maximum of 7 samples of C1. Therefore, SAI(τ2, 1, 2) is 0.2
if both samples of C2 are 0.2, i.e., with probability 0.92, and
2 otherwise. Moreover, SAI(τ1, 1, 7) is 0.2 if all 7 samples of
C1 are 0.2, i.e., with probability 0.97, and 10 otherwise. The
random variable C3,1 + SAI(τ2, 1, 2) + SAI(τ1, 1, 7) is ≤ 2,
if and only if SAI(τ2, 1, 2) = 0.2 and SAI(τ1, 1, 7) = 0.2,
i.e., with probability 0.99. Hence, the WCDFP of τ3 is upper
bounded by P(C3,1 + SAI(τ2, 1, 2) + SAI(τ1, 1, 7) > 2) =
1− 0.99 which is around 0.61. For this case, the upper bound
on the WCDFP obtained by the inflation method is almost
twice as large as the WCDFP obtained by the carry-in method.

D. SAI for Bernoulli Distributed Execution Time

In the following, we formulate a closed form for
SAI(τi, a, b) for natural number a ≤ b if the execution time
of τi is Bernoulli distributed, i.e.,

Ci =

{
c1 with probability p

c2 with probability 1− p
(42)

for real values c1 > c2. Please note that any execution
time distribution can be over-approximated by a Bernoulli
distributed random variable. In such a case, the closed form
for SAI is an over-approximation as well and can still be
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utilized for the computation of the inflation-based method in
Section IV-B.

Since Ci follows a Bernoulli distribution, the sequence
of b samples of Ci is binomial distributed, i.e., for all
ξ ∈ {0, . . . , b} the probability that exactly ξ of the b samples
of Ci are c1 is

(
b
ξ

)
pξ(1 − p)b−ξ. Hence, SAI follows the

probability distribution given by:

SAI(τi, a, b)

=





0 · c1 + a · c2 with prob.
(
b
0

)
p0(1− p)b

1 · c1 + (a− 1) · c2 with prob.
(
b
1

)
p1(1− p)b−1

...
(a− 1) · c1 + 1 · c2 with prob.

(
b

a−1

)
pa−1(1− p)b−a+1

a · c1 + 0 · c2 with the remaining prob.
(43)

V. INFLUENCE ON RELATED WORK

Probabilistic response time analysis suffers from high com-
putational complexity, as it is comprised of two inherently
difficult problems:

1) How to efficiently bound the Response Time Exceedance
Probability (RTEP) or the Deadline Failure Probability
(DFP) of a specific job for a given release pattern
(since a direct calculation via job-level convolution is
intractable as time and space complexity are exponential
with respect to the number of jobs in the pattern).

2) How to safely reduce the number of jobs/release patterns
that must be considered in the analysis, as otherwise
at least all jobs in the hyperperiod must be considered
(see [36] for more detailed discussions).

Therefore, for an efficient probabilistic response time or dead-
line failure probability analysis, solutions for both problems
must be provided.

The results by Maxim and Cucu-Grosjean [25] and Chen
and Chen [8] both provide two main contributions, one with
respect to each of the problems: (1) a technique to efficiently
bound the RTEP (DFP, respectively) for a job under analysis
considering a specific release pattern, and (2) a specific
release pattern based on the critical instant that is claimed
to provide the worst-case among all jobs of a specific task
under static-priority scheduling (i.e., to calculate the WCRTEP
or the WCDFP). Although their concluded critical instant is
unsound, the efficient calculations for a specific release pattern
remains correct in both cases. Hence, results that directly
build on the proposed unsound critical instant are affected,
while their contributions to solutions for improving tractability
remain unaffected. In the remainder of this section, we discuss
the effect (or lack thereof) for relevant publications in the
literature.

A. Direct Adoption of the Unsound Critical Instant

While the number of considered release patterns must be
reduced to allow efficient computation, the derived analysis
might become unsound, since the response time distribution

under the unsound critical instant is not necessarily the max-
imum.

For sensor networks, a series of results by Ren et al.
analyzes the response time distribution, and Theorem 3.1
from [31] as well as Theorem 1 from [32] are affected. Their
analysis assumes that the unsound critical instant from [25]
is the worst-case scenario for bounding the probability of
response time. They derived a simulation-based analysis and
resolved the intractability issue by abstracting it as an addi-
tional probabilistic function. However, the abstraction (e.g.,
Def 4.3 and 4.4 in [31]) still relies on the assumption of the
unsound critical instant to limit the state space.

For mixed criticality systems [4], Maxim et al. [26] adapted
the probabilistic response time analysis derived in [25] as a
backbone (i.e., Equations (4)-(6) in [25]) to build up several
analyses for tasks with different criticality in different types
of scheduling schemes. The influence of the unsound critical
instant propagates by the direct adaption without further mod-
ifications. Therefore, the corresponding probabilistic response
time analysis and the schedulability test in [26] are unsound.

The unsound critical instant was adopted by Chen et al. [10]
to efficiently calculate the deadline miss rate, assuming that a
job is never aborted after any deadline miss. Their approach
partitions the schedule into busy intervals and analyzes the
probabilities of individual cases. They utilized the unsound
critical instant as their analysis backbone, and, therefore,
concluded an unsound worst-case miss rate analysis. Our
analyses in this paper can unfortunately not be adopted to
fix their approach, as we assume that jobs are aborted right
after missing their deadlines, whilst their problem definition
disallows such a treatment.

B. Techniques for Efficient Calculation

When considering a specific job under a given release
pattern, a direct computation through naı̈ve convolution is
intractable. The reason is that the time and space complexity
is exponential in the number of jobs released in the considered
interval, which can easily be hundreds or thousands of jobs
for practical systems. Hence, several distinct approaches have
been proposed to mitigate or even avoid the issues (by trading
faster calculation for pessimism), e.g., down-sampling ap-
proaches [24], [25], [27], [30], concentration inequalities [8],
[9], [35], task-level convolution [35], and the Monte Carlo
response time analysis [6].

When calculating the probabilistic response time of a spe-
cific job using convolution with down-sampling [25], [27], [30]
or the Monte Carlo response time analysis [6] the unsound
critical instant is merely adopted as a specific evaluation sce-
nario. Although the considered scenario is not the worst-case
scenario, the technical contribution hence remains unaffected.

A similar misconception can be found in Theorem 9 (i.e.,
Theorem 1 from [8]), where the accumulated workload of
higher-priority tasks also overlooks potential carry-in jobs.
The analytical upper bounds by Chen and Chen [8], von der
Brüggen et al. [35], and Chen et al. [9] as well as the task-
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level convolution by von der Brüggen et al. [35] utilize the
same concept of accumulated workload.

The efficient calculation techniques discussed in this sub-
section can still directly be applied to upper-bound the prob-
abilistic response time distribution (for [6], [25], [30]) or the
WCRTEP (for [8], [9], [35]) by replacing the adoption of the
unsound critical instant theorem in these results with the sound
analyses in Theorem 11 or Theorem 14 provided in this work.

VI. EVALUATION

In this section, we show the results for our experimental
evaluation of the effectiveness of the two bounds proposed in
Section IV. The focus of our evaluation was to compare the
derived WCDFP based on the two over-approximations, i.e.,
Corollary 12 and 15, and to determine the difference to the
refuted analysis, considering synthesized task sets.

We generated implicit-deadline task sets, where the uti-
lization values of the individual tasks were determined
by using the UUniFast method [5] for a given utilization
Usum =

∑
τi∈T Ui and a given number of tasks. We followed

the suggestion from Emberson et al. [14] to generate the
periods of those tasks according to a log-uniform distribution.

Similar to the evaluation in [35], we considered tasks with
two distinct execution times and corresponding probabilities
in the evaluation: a normal execution {CN

i , PN
i } and an

abnormal execution {CA
i , PA

i }, where CN
i = Ui · Ti, CA

i =
1.83 · CN

i ∀τi ∈ T, PA
i = 0.025, and PN

i = 1 − PA
i .

For each configuration, we evaluated 100 task sets. For the
simplicity of presentation, we focus on the resulting WCDFP
of the lowest-priority task under the rate-monotonic scheduling
policy. The evaluations were deployed on a server equipped
with AMD EPYC 7742 running Linux. In the evaluations, we
implemented the proposed bounds, i.e., Corollary 12 and 15, in
two manners: 1) with direct convolution, i.e., Conv-CarryIn
and Conv-Inflation; 2) with the Chernoff Bound approach [9],
i.e., CB-CarryIn and CB-Inflation. We also implemented
both refuted analyses in Theorem 8 and Theorem 9, with direct
convolution as Conv-Refuted and the Chernoff bound as CB-
Refuted, respectively.

A. Results for Direct Convolution

Figure 6 and Figure 7 show the results of Conv-Refuted,
Conv-CarryIn and Conv-Inflation for Usum = 80% and
Usum = 60%. As the derived WCDFP from Conv-CarryIn
or Conv-Inflation is a sound upper bound, a smaller value
means a tighter bound, i.e., the lower the better. We evaluated
the impact of the task period range, drawing periods from
[1,10] (in Figure 6) and [1, 100] (in Figure 7). Due to the
high complexity of direct convolution, for each utilization
Usum, we considered 5 tasks in T. In general, Conv-Refuted
derives lower WCDFP than the two sound bounds, and Conv-
Inflation outperforms Conv-CarryIn. When Usum = 80%,
Conv-CarryIn always returned a WCDFP of 1. Although
Conv-CarryIn and Conv-Inflation do not dominate each
other, as discussed in Section IV, we did not observe any
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Fig. 6: The WCDFP (displayed in log-scale) for 5 tasks with
varying total utilization, determined by direct convolution. The
task periods were randomly drawn from [1, 10].
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Fig. 7: The WCDFP (displayed in log-scale) for 5 tasks with
varying total utilization, determined by direct convolution. The
task periods were randomly drawn from [1, 100].

case in our evaluation where Conv-CarryIn could outperform
Conv-Inflation.

B. Results for the Chernoff Bound Approach

The Chernoff bound approach is the state-of-the-art in terms
of approximation quality among the analytical approaches [8],
[9], [35]. While it offers no quantitative guarantee for its
approximation loss, empirical results in [9] showed that the
loss compared to the task-level convolution approach can be
reasonably small (under the unsound critical instant theorem).

First, we show the results of Conv-Refuted, Conv-CarryIn,
Conv-Inflation, CB-Refuted, CB-CarryIn, and CB-Inflation
in Figure 8 for Usum = 60% and 5 tasks in T. Overall, CB-
CarryIn performs worse than Conv-CarryIn, whereas CB-
Inflation performs much worse than Conv-Inflation. During
the evaluation, we observed arbitrary disturbances even if the
optimized version of the Chernoff bound approach [9] was
applied. In general, the derived WCDFP under the Chernoff
bound was much higher than under the direct convolution.

We further show the derived WCDFP when Usum = 45%
and the numbers of tasks in T is changed. CB-Refuted is
omitted in the figures, as it is close to 0 most of the time
regardless of the number of tasks in this setup. Distinct from
the direct convolution, as shown in Figures 9 and 10, CB-
Inflation usually performs worse than CB-CarryIn, regard-
less of the period range. The same trend can be observed when
the number of tasks in T was increased up to 25, as shown in
Figure 11, where the derived WCDFP from CB-Inflation is
always 1. For 2 tasks in T, in a few cases CB-CarryIn derived
a higher WCDFP than CB-Inflation. The derived WCDFP of
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Fig. 8: The WCDFP (displayed in log-scale) for Usum = 60%
and 5 tasks, determined by direct convolution and the Chernoff
Bounds. The task periods were randomly drawn from [1, 100].
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Fig. 9: The WCDFP (displayed in log-scale) for Usum = 45%
and varying number of tasks, determined by the Chernoff
Bounds. The task periods were randomly drawn from [1, 10].

CB-Inflation is still (at least close to) 1 when the number of
tasks in T is more than 2.

C. Discussion

Overall, the WCDFP derived from both refuted analyses
differs largely from the WCDFP derived under the two sound
bounds provided in this work. Considering these results, we
suggest to first analyze with CB-CarryIn and if a sufficiently
low deadline miss probability cannot be guaranteed, Conv-
Inflation should be successively applied. Since both sound
bounds do not dominate each other, applying Conv-CarryIn
might still be able to reach a sound but lower WCDFP.

Since direct convolution suffers from a high runtime com-
plexity, methods with different tradeoffs between runtime and
precision, e.g., task-level convolution [35] and the Monte
Carlo response time analysis [6], should also be considered
if Chernoff Bounds cannot provide a sufficiently low bound.

VII. CONCLUSION

This paper revisits the critical instant for the worst-case
response time exceedance probability (WCRTEP) and the
worst-case deadline failure probability (WCDFP). A coun-
terexample is provided which shows that the existing critical
instant theorem for the WCRTEP [25] and the WCDFP [8]
is unsound. Two methods are proposed to safely bound the
WCRTEP and WCDFP: one is based on the carry-in approach,
and another is based on the sample and inflation approach. It
is shown that these two methods do not dominate each other.
Evaluation considering the direct convolution approach and the
Chernoff bound approach [9] shows that these two approaches
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Fig. 10: The WCDFP (displayed in log-scale) for Usum =
45% and varying number of tasks, determined by the Chernoff
Bounds. The task periods were randomly drawn from [1, 100].
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(b) 25 tasks in T

Fig. 11: The WCDFP (displayed in log-scale) for Usum =
45% and varying number of tasks, determined by the Chernoff
Bounds. The task periods were randomly drawn from [1, 100].

have different performance in terms of WCDFP, and that the
WCDFP from the refuted analyses differs significantly from
the results for the two sound methods.

This paper focuses on the scenario that the execution time
of a task is a random variable, assuming that the inter-
arrival time of a task is not a random variable. The results
presented in [25] also consider that both the execution time
of a job and the inter-arrival time of two consecutive jobs
are random variables. The counterexample in this paper also
invalidates the applicability of the unsound critical instant
theorem for WCRTEP and WCDFP for this scenario, since
periodic releases can be described as a degenerated random
variable (i.e., the inter-arrival time is exactly the period with
probability 100%). However, if the inter-arrival time of two
consecutive jobs is a random variable but the execution time
of a job is not a random variable, as studied in [11], our
counterexample in this paper does not invalidate the critical
instant theorem for such a scenario. Please note that the
proposed methods are not proven to handle scenarios where
the inter-arrival time of two consecutive jobs is also a random
variable. Whether they can be extended or modified to such a
scenario should be further explored.

The results presented in this paper are only valid for
constrained-deadline task systems based on the assumptions
that a) the jobs’ execution times are independent and iden-
tically distributed (iid) from each other, and b) a job is
immediately aborted once it misses its deadline. These are
important properties required to achieve sound analyses in
Theorems 11 and 14. Deviations from the above conditions
are interesting open problems, which may require non-trivial
revisions of our analyses or completely new analytical flows.
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