
Timing Analysis of Asynchronized Distributed
Cause-Effect Chains

Mario Günzel, Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, Marco
Dürr and Jian-Jia Chen

TU Dortmund, Department of Computer Science, Dortmund, Germany

https://ls12-www.cs.tu-dortmund.de/

Citation: 10.1109/RTAS52030.2021.00012

BIBTEX:
@inproceedings{guenzel21rtas,

author={Mario {G\"unzel} and Kuan-Hsun {Chen} and Niklas Ueter and Georg {von der Br\"uggen} and
Marco {D\"urr} and Jian-Jia Chen},
booktitle={IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)},
title={Timing Analysis of Asynchronized Distributed Cause-Effect Chains},
year={2021},
volume={},
number={},
pages={},
doi={}

}

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ls12-www.cs.tu-dortmund.de/
10.1109/RTAS52030.2021.00012

Timing Analysis of Asynchronized Distributed
Cause-Effect Chains

Mario Günzel, Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen,
Marco Dürr and Jian-Jia Chen
Department of Computer Science
Technical University of Dortmund

Dortmund, Germany
{mario.guenzel, kuan-hsun.chen, niklas.ueter, georg.von-der-brueggen, marco.duerr, jian-jia.chen}@tu-dortmund.de

Abstract—Real-time systems require the formal guarantee of
timing-constraints, not only for the individual tasks but also for
the data-propagation paths. A cause-effect chain describes the
data flow among multiple tasks, e.g., from sensors to actuators,
independent from the priority order of the tasks. In this paper, we
provide an end-to-end timing-analysis for cause-effect chains on
asynchronized distributed systems with periodic task activations,
considering the maximum reaction time (duration of data pro-
cessing) and the maximum data age (worst-case data freshness).
On one local electronic control unit (ECU), we present how to
compute the exact local (worst-case) end-to-end latencies when
the execution time of the periodic tasks is fixed. We further extend
our analysis to globally asynchronized systems by combining
the local results. Throughout synthesized data based on an
automotive benchmark as well as on randomized parameters,
we show that our analytical results improve the state-of-the-art
for periodic task activations.

Index Terms—Real-Time Systems; Embedded Control Sys-
tems; Cause-effect Chains; End-to-end Timing Analysis; Dis-
tributed Systems;

I. INTRODUCTION

In industrial systems with real-time constrains, timeliness is
required to ensure the correct functionality of software opera-
tions. Specifically, timing properties like end-to-end latencies
are used to validate safety-critical tasks that have to perform
a desired controlling behavior within a certain time interval,
e.g., the interaction of electronic control units (ECUs) in a car.

A cause-effect chain describes a sequence of tasks that are
necessary to complete a specific functionality, e.g., the first
task reads the sensor value, the second task processes the
sensor value, and the third task produces an output based on
the sensor’s reading. The time interval from a cause to an
effect must be determined to validate the timing requirements
of the procedure, a so-called end-to-end timing analysis.

Most approaches in the literature that validate timing re-
quirements of cause-effect chains can in be classified into two
categories: active approaches [8], [15], [22], which control
the release of jobs in the subsequent tasks in the chain to
ensure that the data is correctly written and read, and passive
approaches [2], [3], [5], [9], [10], [12], [14], [17], [21], [23],
that discuss how the data should be properly produced and
consumed among the job of the recurrent tasks in the cause-
effect chain. The approaches proposed in this work can be
classified as passive approaches.

When analyzing cause-effect chains, two types of end-to-
end latencies have been primarily considered in the literature:
The maximum reaction time denotes the length of the longest
time interval starting from the occurrence of an external cause
to the earliest time where this external cause is fully processed,
i.e., the maximum button to action delay. The maximum data
age denotes the length of the longest time interval starting
with sampling a value to the last point in time where an
actuation is based on this sampled value. We note that the
maximum reaction time includes the time between sampling
and the previous sampling, since the external cause may occur
right after the previous sampling. The maximum reaction time
(data age, respectively) of a schedule can be determined by
computing the maximum length of immediate forward (back-
ward, respectively) job chains as defined in [10]. However, this
definition of maximum reaction time and maximum data age
is limited to a certain sporadic task model, where each task
has minimum and maximum inter-arrival time. In this work
we provide a definition without bounding it to any specific
task model. Moreover, in the literature [9], [10], [17] there is
the (implicit) assumption to measure maximum reaction time
and data age only when all tasks are already in the system,
i.e., when all tasks have released their first job. We refine this
assumption which enables a compositional property: Instead
of computing maximum reaction time (data age) of a cause
effect chain E we can decompose E into smaller segments
and analyze each of them separately.

We present an exact end-to-end analysis for single ECUs,
in which predefined periodic tasks are scheduled under a fixed
priority preemptive policy. Subsequently, we utilize the com-
positional property to extend the analysis to the interconnected
ECU scenario, in which multiple single ECUs are connected
by an inter-communication infrastructure, e.g., controller area
network (CAN) [7] or FlexRay [13]. For the interconnected
scenario we assume partitioned scheduling, i.e., there are
individual periodic task sets for each ECU. Whereas tasks on
a single ECU are scheduled using one synchronized clock, the
clocks among different ECUs are usually not synchronized. In
this paper such globally asynchronized locally synchronized
(GALS) systems are examined. We note that although the
notion of ECUs is adopted from automotive systems, our work
can be abstracted to similar settings.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

To analyze the maximum reaction time and maximum data
age, the following results are provided in the literature:
• An upper bound for the maximum reaction time of cause-

effect chains for periodic task sets on GALS systems by
Davare et al. [9].

• Two upper bounds, one for maximum reaction time and
one for maximum data age of cause-effect chains for
sporadic task sets on GALS systems by Dürr et al. [10].

• An upper bound for the maximum reaction time of
cause-effect chains for periodic task sets on globally
synchronized systems provided by Kloda et al. [17].

Since Dürr et al. [10] show that the maximum data age is
less than or equal to the maximum reaction time, the upper
bounds provided by Davare et al. [9] and Kloda et al. [17]
also hold for the maximum data age. However, the analysis
by Kloda et al. [17] is formulated only for synchronous task
releases, i.e., the first job of each task is released at time 0,
and assumes that the worst-case response time of each task
is known beforehand. Moreover, the paper from Schlatow et
al. [23] focuses on the analysis of maximum data age of
harmonic task systems. The analysis for non-harmonic cases is
in fact more pessimistic than Davare’s analysis, i.e., Eq. (36)
in [23] plus the worst-case response times of the tasks in the
chain is dominated by the analysis in [9].

It is worth noting that Dürr et al. [10] showed that their
proposed end-to-end timing analyses under the sporadic task
model dominate the upper bound proposed by Davare et al. [9]
analytically, which is used in several known analyses [2]–[4].
In this work, we leverage on their analytical upper bounds as a
backbone and improve it when the actual-case execution time
of a periodic task is fixed.
Contributions: We examine maximum reaction time and
maximum data age of cause effect chains for asynchronous
periodic task sets on globally asynchronized locally synchro-
nized (GALS) distributed systems. Our contributions are:
• In Section IV we provide precise definitions of maximum

reaction time and maximum data age. The underlying
model only assumes recurrently released jobs with certain
read- and write-operations. Hence, the definition is valid
for all well-known task models, e.g., periodic or sporadic
tasks, and communication models, e.g., implicit commu-
nication or logical execution time (LET). It covers the
single ECU as well as the interconnected ECU scenario.

• In Section V-B we provide a method to determine exact
maximum reaction time and maximum data age in the
single ECU scenario with periodic task sets under pre-
emptive fixed priority scheduling if the execution time
for each job is fixed. In particular we show that in this
case it is sufficient to evaluate only the job chains released
in a bounded time window.

• In Section V-C we extend the exact local analysis to the
interconnected ECU scenario and present a method to
bound the time for communication between ECUs in a
globally asynchronized distributed system.

• We evaluate our proposed analysis for the single and
interconnected ECU case in Section VII by comparing it

0 2 4 6 8 10 12 14 16

τ1
τ1(1) τ1(2) τ1(3) τ1(4)

re re re rewe we we we

τ2

t
τ2(1) τ1(2)

re rewe we

Figure 1: Read and write events under implicit communication.

with results from the literature, showing that our method
outperforms state-of-the-art analyses for both maximum
reaction time and maximum data age.

II. SYSTEM MODEL

This section introduces definitions and notation for the task
model, the communication model, cause-effect chains, and job
chains utilized in this work.

A. Jobs and Tasks

For a general definition of maximum reaction time and
maximum data age we rely on a very basic model of jobs
and tasks. If the electronic control units (ECUs) are not
synchronized, i.e., their clocks are not aligned, then we take
their clock shifts into account to compare the time of events on
the ECUs on a global level. First, we introduce jobs, schedules,
and tasks. We assume that there is no parallel execution of
jobs on one ECU, i.e., an ECU is equivalent to the classical
uniprocessor system.

A job J is an instance of a program, which produces an
output based on its input. It is released at time rJ and has to
be executed for a certain amount of time cJ ≥ 0 to finish.

A schedule S specifies the execution behavior of jobs on
the ECUs. If J is scheduled by S, the start time (or start) of J
is denoted sSJ and the finishing time (or finish) of J is fSJ . For
the sake of readability, we omit the index S for all definitions
if the choice of a schedule is clear in the context.

The aggregation of all jobs which are instances of the same
program is called a task, denoted by τ . We assume that each
task is assigned to one ECU, i.e., all jobs of one task are
scheduled on the same ECU, and that the jobs aggregated to
one task τ are countable. In this work we denote the set of
all tasks as T and the jobs of τ as (τ(m))m∈N, with 0 6∈ N.
Furthermore, we assume that the task set T is finite.

Whereas the general definitions from Section IV are valid
for all kinds of task models, e.g., periodic or sporadic, the
analysis in Section V is limited to periodic tasks. A periodic
task is described by the tuple τ = (Cτ , Tτ , φτ) ∈ R3, where
Cτ≥ 0 is the worst-case execution time (WCET) of the tasks,
i.e., the longest runtime of a task without preemption or
interrupt, Tτ > 0 the period, and φτ ≥ 0 the phase of the task.
The first job is released at time φτ . Afterwards, τ recurrently
releases a job every Tτ time units. More specifically, we have
rτ(m) = φτ + (m− 1) ·Tτ and cτ(m) ∈ [0, Cτ] for all m ∈ N.
The utilization of a task τ is defined by Uτ := Cτ

Tτ
. We assume

that the total utilization UT :=
∑
τ∈T Uτ of a task set T on

a single ECU is at most 1. The hyperperiod of a task set T

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

is H = lcm({Tτ | τ ∈ T}), i.e., the least common multiple of
all periods in the system. The existence of such hyperperiod
is required for our analysis in Section V.

B. Communication Model

To ensure communication between different jobs, they re-
ceive (read) their input from a shared resource and hand over
(write) their output to a shared resource. We denote the first
read-event of a job J in the schedule S by reSJ , and we
denote the last write-event of J in S by weSJ . We consider
two common communication policies. One is called implicit
communication, where the read- and write-events are aligned
with the start and finish of the jobs, i.e., reSJ = sSJ and
weSJ = fSJ , as depicted in Figure 1. The other one is based on
the concept of logical execution time (LET) [16]. To utilize
LET, each task τ is equipped with a relative deadline Dτ .
Each job J released by a task τ has an absolute deadline
dJ = rJ + Dτ and the read- and write-events of J are
set to its release time and deadline, i.e., reSJ = rJ and
weSJ = dJ . Although LET is originally limited to single ECU,
Ernst el al. [11] provide a generalization to the interconnected
ECU setup. If we utilize LET in the following, we consider
only feasible schedules, in which each job finishes before its
deadline, i.e., fSJ ≤ dJ for all jobs J in S. We assume that
the following (not very restrictive) requirements are met:
• The read- and write-events are ordered in the sense

that reτ(m) < reτ(m+1), weτ(m) < weτ(m+1) and
reτ(m) ≤ weτ(m) for all m ∈ N.

• The sets {reτ(m) | m ∈ N} and {weτ(m) | m ∈ N} have
no accumulation point, i.e., in each bounded time interval
there are only finitely many read- and write-events.

We note that the above properties are fulfilled, if we consider
the standard task models with periodic or sporadic tasks
together with LET or implicit job communication.

Standard applications are composed of multiple ECUs.
We model the communication infrastructure between different
ECUs by additional communication tasks τ c. Those are usual
tasks in the sense of Section II-A where each job has the
purpose of transferring data between ECUs. More specifically,
jobs released by communications tasks read data from a shared
resource of one ECU and write is to a shared resource of
another ECU. Most communication tasks are modeled to be
executed on additional communication ECUs, such that they
do not impair job execution on the remaining ECUs.

C. Cause-Effect Chains

To serve a certain purpose, data has to be processed
by different programs successively. A cause-effect chain
E = (τ1 → · · · → τk) describes the path of data through dif-
ferent programs by a finite sequence of tasks τi ∈ T. For exam-
ple, if task τ1 uses data provided by τ3, then E = (τ3 → τ1).
We note that if the tasks in the system are prioritized, e.g., for
the use of some scheduling algorithm, the cause-effect chain
does not necessarily follow this order.

We denote by |E| the number of tasks in E, where
|E| ≥ 1. The function E() returns for m ∈ {1, . . . , |E|}

the m-th task of the cause-effect chain E. For example, let
E = (τ4 → τ5 → τ1), then |E| = 3, E(1) = τ4, E(2) = τ5
and E(3) = τ1. We note that cause-effect chains are inspired
by event-chains of the AUTOSAR Timing Extensions [1],
which represent chains of more general functional dependency.

To obtain data for the first task in a cause-effect chain,
data may need to be sampled. In this work we assume an
implicit sampling rate, where the sampling for a cause-effect
chain E happens at the read-event of each job of E(1).
Nevertheless, we can easily model any kind of sampling by
adding a sampling task τsample to the system, where each
job τsample(1), τsample(2), . . . reads and writes data at a
time where the sampling happens. Please note that the read-
and write-events of the jobs of τsample need to fulfill the
properties from the previous subsection and that the additional
task should not affect the schedule S , e.g., by assigning it to
an additional ECU or by giving it a WCET of 0.

We consider two types of cause-effect chains. Local cause-
effect chains only contain tasks on a single ECU (with
synchronized clock). The tasks of interconnected cause-effect
chains are spread among multiple ECUs. These ECUs may
either be synchronized or asynchronized, i.e., they have syn-
chronized or asynchronized clocks. We note that the definitions
in Section IV are valid for all kinds of cause-effect chains. The
distinction is only necessary for the analysis in Section V.

D. Job Chains

The concept of job chains is essential to determine max-
imum reaction time and maximum data age. We adapt the
definition from [10] to our model with read- and write-events.
Let E and S be a cause-effect chain and a schedule for T.

Definition 1 (Job chain). A job chain of E for S is a sequence
jcE,S = (J1, . . . , J|E|) of data dependent jobs of tasks in T
with the following properties:
• The entry Ji is a job of E(i) for all i ∈ {1, . . . , |E|}.
• Data is read by Ji+1 after it is written by Ji in the sched-

ule S, i.e., weJi ≤ reJi+1
for all i ∈ {1, . . . , |E| − 1}.

Similar to [10], we consider two types of job chains, namely
forward and backward job chains.

Definition 2 (Immediate forward job chain). An immediate
forward job chain is a job chain jcE,S = (J1, . . . , J|E|)
where for all i ∈ {1, 2, . . . , |E| − 1} the read-event of the
job Ji+1 is the earliest after the write-event of the job Ji, i.e.,
Ji+1 = arg minJ∈E(i+1),reJ≥weJi reJ .

Definition 3 (Immediate backward job chain). An immediate
backward job chain is a job chain jcE,S = (J1, . . . , J|E|)
where for all i ∈ {|E|, |E| − 1, . . . , 2} the write-event of the
job Ji−1 is the last before the read-event of the job Ji, i.e.,
Ji−1 = arg maxJ∈E(i−1),weJ≤reJi weJ .

If we consider the schedule from Figure 1 with E = (τ1 →
τ2), then (τ1(1), τ2(1)) and (τ1(2), τ2(2)), (τ1(3), τ2(2))
are immediate forward job chains, and (τ1(1), τ2(1)) and
(τ1(3), τ2(2)) are immediate backward job chains.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

External
activity

Sampling
of data

Read-event and
write-event of a

job of E(1)

Read-event and
write-event of a
job of E(|E|)

Processed Actuation

Figure 2: Chain of events to trace one data stream of E.

III. PROBLEM DEFINITION

In this paper we analyze maximum reaction time and
maximum data age of distributed cause-effect chains E on
globally asynchronized locally synchronized (GALS) systems.
We assume that to each electronic control unit (ECU) the
associated task set is known beforehand and that further
communication tasks between the ECUs are given.
• Input: Some (interconnected) cause-effect chain E.
• Output: An upper bound on the maximum reaction

time and the maximum data age of E that is ob-
tained by introducing fixed execution time on each (non-
communication) ECU.

To solve this problem, we 1) provide an exact bound for the
local case in Section V-B and 2) extend the analysis to several
ECUs in Section V-C. Please note that although we need to
introduce fixed execution time into the system to perform
the analysis, as a result the estimation becomes tighter as
discussed in Section V-A and demonstrated in Section VII.

IV. MAXIMUM REACTION TIME AND DATA AGE

This paper presents an end-to-end timing analysis based
on cause-effect chains, i.e., the time interval between the
occurrence of a cause (external activity or sampling a sensor
value) and a recognizable effect (finish processing the data or
movement of an actuator) is determined. End-to-end timing is
important to guarantee the correct functionality of safety crit-
ical tasks within a given time frame. For control engineering
the maximum reaction time (How long does it take until an
external cause is processed?) and the maximum data age (How
old is the data used in an actuation?) of a cause-effect chain
are of special interest.

A. Augmented Job Chains

Let E and S be a cause-effect chain and a schedule for the
task set T. Data movement through the schedule S following
the dependencies of E can be captured by a sequence of
events from an external activity to actuation as summarized in
Figure 2: The (change of) data is provoked by some external
activity and is fed into the system by sampling. By our
assumption in Section II-C, the sampling coincides with the
read-event of a job of the first task E(1). After the first job in
the sequence of events finishes execution, it writes the data to
a shared resource. Afterwards, the second job reads the data
from that shared resource, processes it, and writes it again to
a shared resource for the next task. When the last job in the
sequence writes to a shared resource, the data is completely
processed by the system. After that, an actuation can happen
based on that data.

Maximum data age and reaction time are defined in [10]
by using backward and forward job chains. In fact, job chains

describe only the data stream from sampling until the data is
processed. In this paper we cover the whole data stream by
adding events for external activity and actuation. We call such
extended job chains augmented job chains.

Definition 4 (Augmented job chain). An augmented job chain
of E for S is a sequence cE,S = (z, J1, . . . , J|E|, z′), where
(J1, . . . , J|E|) is a job chain, and z ≤ reJ1 and z′ ≥ weJ|E|
are time instants of an external activity and an actuation.

We denote by cE,S(k) the k-th entry of the augmented
job chain cE,S , i.e., cE,S(1) = z, cE,S(|E| + 2) = z′ and
cE,S(k) = Jk−1 for 2 ≤ k ≤ |E| + 1. To describe the time
from external activity to actuation for one data stream, we
define the length `(cE,S) of an augmented job chain cE,S as

`(cE,S) := cE,S(|E|+ 2)− cE,S(1) = z′ − z. (1)

In the following we omit the indices S and E of job chains
if they are clear in the context.

Maximum reaction time measures timing from external
activity to the instant where data is completely processed
by the system. We omit time between processed-event and
actuation, by only considering augmented job chains where the
actuation is the time of the processed-event, i.e., z′ = weJ|E| .
The longest time from external activity to sampling occurs,
if the external activity takes place directly after the previous
sampling event. Hence, we construct immediate forward aug-
mented job chains, to measure maximum reaction time, in the
following way:

Definition 5 (Immediate forward augmented job chain). An
immediate forward augmented job chain ~cE,Sm is the unique
augmented job chain (z, J1, . . . , J|E|, z′), such that:

• The external activity happens directly after the m-th
sampling, i.e., z = reE(1)(m).

• The sampling happens at the next read-event of E(1),
i.e., J1 = E(1)(m+ 1).

• The sequence (J1, . . . , JE) is an immediate forward job
chain for E in S.

• The actuation is set to the time where the data is pro-
cessed, i.e., z′ = weJ|E| .

For each m ∈ N there is an immediate forward augmented
job chain. Comparing them as in the next subsection directly
yields the definition of reaction time.

On the other hand, maximum data age measures time from
sampling of data to an actuation based on that sampling. The
actuation based on the data processed at a certain time happens
directly before the next processed-event in the worst case.

Definition 6 (Immediate backward augmented job chain). An
immediate backward augmented job chain ~cE,Sm is the unique
augmented job chain (z, J1, . . . , J|E|, z′), such that:

• The actuation happens directly before the m-th
processed-event, i.e., z′ = weE(|E|)(m).

• The processed-event happens at the previous write-event
of E(|E|), i.e., J|E| = E(|E|)(m− 1).

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

τ1 J1,1 J1,2 J1,3

τ2

t

J2,1 J2,2 J2,3 J2,4 J2,5

~c1

?

~c2

?

~c3 ~c4 ~c5

0 2 4 6 8 10 12 14

Figure 3: An example of backward augmented job chains
under implicit communication. The cause-effect chain under
analysis is E = (τ1 → τ2).

• The sequence (J1, . . . , JE) is an immediate backward job
chain for E in S.

• The external activity is set to the time where the data is
sampled, i.e., z = reJ1 .

Please note that not for all m ∈ N there is an imme-
diate backward augmented job chain. We call such chains
incomplete backward augmented job chains. The length of
incomplete augmented job chains is set to 0.
Example 7 (Backward augmented job chain determination).
Figure 3 shows a single ECU schedule with two periodic
tasks τ1 = (Cτ1 = 1, Tτ1 = 5, φτ1 = 1) and τ2 = (Cτ2 =
1, Tτ2 = 3, φτ2 = 0). We assume implicit job communication,
i.e., data is read at the start of each job and written at the
finishing time of each job. The determination of the direct
backward augmented job chain for ~c5 of cause-effect chain
E = (τ1 → τ2) starts with 5-th read event of the last task in
the cause-effect chain at time 13. The backward job chain
included in ~c5 is (J1,2, J2,4), and sampling is set to 6, which
is the read-event of J1,2. This leads to ~c5 = (6, J1,2, J2,4, 13).
Similar to the described procedure, ~c4 and ~c3 are determined.

A special case occurs if we consider ~c1 or ~c2. The immediate
backward augmented job chain ~c1 is incomplete, since there
is no write-event of a job of τ2 before weJ2,1 = 1. Moreover,
~c2 is also incomplete since there is no immediate backward

job chain with second entry J2,1.
We note that immediate forward augmented job chains

and immediate backward augmented job chains are already
uniquely determined by their corresponding job chain. The
auxiliary entries for external activity and actuation are included
for the simplicity of representation.

B. Definition of Maximum Reaction Time and Data Age

Let E and S be a cause-effect chain and a schedule with
task set T. With respect to Figure 2,
• reaction time measures the time from an external activity

until the data is processed, and
• data age measures the time from sampling of data to

actuation based on that data.
We note that our definition may differ from other definitions

in the literature, e.g., in [10] data age only covers the time until
the data is processed. Our definition of maximum data age is
necessary to obtain a compositional property in Section IV-C,

τ1 J1,1 J1,2

τ2

t

J2,1 J2,2 J2,3 J2,4 J2,5

0 2 4 6 8 10 12 14

Figure 4: Under implicit communication, the second task has
slightly shifted read-event.

i.e., that the maximum data age of a cause-effect chain E
is the sum of the maximum data age of the segments of E.
However, we discuss in Section VI how our analysis can be
applied to the definition provided in [10].

Similar to [10], we could define maximum reaction time
(data age) by taking the supremum of the length of all imme-
diate forward (backward) augmented job chains. However, due
to shifting of first read-event, e.g., induced by phase shifting,
the reaction time might become arbitrarily large:

Example 8. Consider a task set T = {τ1, τ2} with cause-
effect chain E = (τ1 → τ2) and reτ1(1) = 0, reτ2(1) = x. The
immediate forward job chain ~cE,S1 has a length of at least x.

A solution to avoid this counterintuitive behavior is to only
consider immediate forward (backward) augmented job chains
cE,S which start when all relevant tasks are in the system, i.e.,

cE,S(1) ≥ Re(E,S) := max
i=1,...,|E|

reSE(i)(1). (2)

This property is similar to the (implicit) assumption in [10]
to measure maximum reaction time and data age only when
all tasks are already in the system. However, this way a slight
shift of only one read-event might exclude many augmented
job chains from consideration:

Example 9. For the schedule from Figure 4, if the jobs adhere
implicit communication, the read-event of the first job of τ2 is
slightly shifted. With the approach from Eq. (2), for a cause-
effect chain E(τ1 → τ2) only augmented job chains c with
c(1) ≥ 12 would be considered, although ~c1, ~c2, ~c3, ~c4, and ~c5
would be reasonable to include.

To tackle this problem, we only consider augmented job
chains cE,S , if all tasks have their first read-event until the next
read-event of E(1) after cE,S(1). We define such augmented
job chains as valid:

Definition 10 (Valid). Let cE,S = (z, J1, . . . , J|E|, z′) be
some immediate forward or immediate backward augmented
job chain for the cause-effect chain E in the schedule S. Let
p ∈ N, such that z = reE(1)(p) holds. We call cE,S valid if
and only if reE(1)(p+1) > Re(E,S).

We are now prepared to define the maximum reaction time
and maximum data age.

Definition 11 (Maximum reaction time and data age). For a
cause-effect chain E with schedule S we define the schedule

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

specific maximum reaction time and maximum data age by

Reaction(E,S) := sup
{
`(~cE,Sm)

∣∣∣m ∈ N,~cE,Sm valid
}

(3)

DataAge(E,S) := sup
{
`(~cE,Sm)

∣∣∣m ∈ N, ~cE,Sm valid
}
, (4)

where the length ` of an event-chain is defined as in Eq. (1).

Please note that this definition holds for all different types
of task sets and communication policies since the critical part
is offloaded to the determination of the read- and write-events.

We also formulate a definition for maximum reaction time
and data age which is not bounded to a specific schedule. If
the procedure to pull job releases and execution times from a
task set is specified, e.g., the task sets are periodic or sporadic,
and if the scheduling algorithm is known beforehand, then this
characterizes all possible schedules. Additionally, if the read-
and write-events are uniquely determined by the schedule, e.g.,
by following implicit communication or LET, then we define
the overall maximum reaction time and maximum data age

Reaction(E) := sup
S

Reaction(E,S) (5)

DataAge(E) := sup
S

DataAge(E,S) (6)

by the supremum over all possible schedules S.
In their Theorem 6.2, Dürr et al. [10] prove that the data

age is bounded by the reaction time for their system model.
We note that even for this generalized definition,

DataAge(E,S) ≤ Reaction(E,S) (7)

holds: Let ~cE,Sm with m ∈ N be some valid immediate
backward augmented job chain. Furthermore, let p ∈ N such
that ~cE,Sm (1) coincides with the read-event of the p-th job of
task E(1), i.e., ~cE,Sm (1) = reE(1)(p). Similar to the proof of
Theorem 6.2 in [10] we show that

`(~cE,Sm) ≤ `(~cE,Sp), (8)

which is clearly upper bounded by the reaction time. Ap-
plying the supremum over all valid immediate backward job
chains concludes the result. We note that also DataAge(E) ≤
Reaction(E) since Eq. (7) holds for all possible schedules S.

C. Cutting of Augmented Job Chains

One essential ingredient to apply a local analysis to the
interconnected case in Section V-C is to cut the cause-effect
chain into smaller (local) parts. Our definition of maximum
reaction time and data age enables the possibility to deduce
upper bounds by determining maximum reaction time and data
age on the smaller segments. We prove in this section that this
compositional property holds, even without restricting to any
task or communication model and without introducing fixed
execution time.

Theorem 12 (Cutting). Let E = (τ1 → · · · → τ|E|) be
any cause-effect chain, and let k ∈ {1, . . . , |E| − 1} be some

E(1)
...

~cE1,S
q+1

E(k)

E(k)(q)

E(k + 1)
...

~cE2,S
m

E(|E|)

~cE,Sm

Figure 5: Cutting one immediate backward augmented job
chain ~cE,Sm into two as in the proof of Theorem 12 (Cutting).

integer. For the cause-effect chains E1 := (τ1 → · · · → τk)
and E2 := (τk+1 → · · · → τ|E|) holds that

Reaction(E,S) ≤ Reaction(E1,S) + Reaction(E2,S) (9)
DataAge(E,S) ≤ DataAge(E1,S) + DataAge(E2,S) (10)

for any schedule S.

The proof of the Cutting-Theorem relies on cutting imme-
diate forward (backward) augmented job chains into smaller
immediate forward (backward) augmented job chains, such
that their combined length is at least the length of the ini-
tial immediate forward (backward) augmented job chain. In
Figure 5 the procedure is presented for immediate backward
augmented job chains, assuming that jobs adhere implicit
communication. We see that `(~cE,Sm) ≤ `(~cE1,S

q+1) + `(~cE2,S
m).

The jobs in the sequence of ~cE,Sm , marked with the pattern, are
distributed among ~cE1,S

q+1 and ~cE2,S
m . Only events for external

event and actuation have to be determined properly.

Proof of Theorem 12 (Cutting): We first prove Eq. (10).
By definition, DataAge(E,S) is the supremum of the length
of all valid immediate backward augmented job chains. Let
~cE,Sm = (reJ1 , J1, . . . , J|E|, z′) with m ∈ N be some

valid immediate backward augmented job chain. Let fur-
ther q ∈ N such that Jk is the q-th write event of
task E(k), i.e., E(k)(q) = Jk. The scenario is depicted
in Figure 5. By definition of immediate backward aug-
mented job chains, the write-event of E(k)(q + 1) occurs
after the read-event of Jk+1, i.e., z̃′ := weE(k)(q+1) >

reJk+1
. Furthermore, (reJ1 , J1, . . . , Jk, z̃

′) = ~cE1,S
q+1 and

(reJk+1
, Jk+1, . . . , J|E|, z′) = ~cE2,S

m are immediate backward
augmented job chains. They are both valid since reJk+1

≥
reJ1 and since ~cE,Sm is valid. We obtain

`(~cE,Sm) = z′ − reJ1 ≤ z′ − reJk+1
+ z̃′ − reJ1

= `(~cE1,S
q+1)+`(~cE2,S

m) ≤ DataAge(E1,S)+DataAge(E2,S).

Applying the supremum yields the result from Eq. (10).
Analogously we prove (9). By definition Reaction(E,S) is

the supremum of the length of all valid immediate forward
augmented job chains. Let ~cE,Sm = (z, J1, . . . , J|E|, weJ|E|)
with m ∈ N be some valid immediate forward augmented

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

job chain. Let further p ∈ N such that Jk+1 is the p-th job
of E(k + 1), i.e., Jk+1 = E(k + 1)(p). By definition of
immediate forward augmented job chains, the read-event of
E(k + 1)(p − 1) occurs before the write event of Jk, i.e.,
z̃ := reE(k+1)(p−1) < weJk .

Since it is not clear directly, we shortly discuss the existence
of the job E(k+ 1)(p− 1). We know that E(k+ 1)(p) exists,
i.e., p ∈ N. It remains to show that p 6= 1. We know that
by definition of an immediate forward augmented job chain
reE(k+1)(p) ≥ reJ1 > Re(E,S) since ~cESm is valid. If p
would be 1, then Re(E,S) ≥ reE(k+1)(p) which contradicts
reE(k+1)(p) > Re(E,S). This proves the existence.

With the definition of z̃ from above, we define two imme-
diate forward augmented job chains (z, J1, . . . , Jk, weJk) =
~cE1,S
m and (z̃, Jk+1, . . . , J|E|, weJ|E|) = ~cE2,S

p−1 . The aug-
mented job chain ~cE1,S

m is valid since the start coincides
with the one of ~cE,Sm and since Re(E,S) ≥ Re(E1,S). The
augmented job chain ~cE2,S

p−1 is also valid since reE(k+1)(p) ≥
reJ1 > Re(E,S) ≥ Re(E2,S). Hence,

`(~cE,Sm) = weJ|E| − z ≤ weJ|E| − z̃ + weJk − z
= `(~cE1,S

m)+`(~cE2,S
p−1) ≤ Reaction(E1,S)+Reaction(E2,S).

Applying the supremum yields the result from Eq. (9).
Since Eq. (9) and (10) hold for all schedules S, the

Cutting-Theorem does also hold for the overall max-
imum reaction time and overall maximum data age,
i.e., Reaction(E) ≤ Reaction(E1) + Reaction(E2) and
DataAge(E) ≤ DataAge(E1) + DataAge(E2). This compo-
sitional property can deal with clock-shifts by cutting at those
positions where clock shifts occur.

V. ANALYSIS OF END-TO-END LATENCIES

In this section we assume that the tasks on each ECU are
scheduled according to preemptive fixed priority scheduling,
i.e., they have a fixed priority-ordering and at each time the
pending jobs of the task with the highest priority are executed.
Our objective is to determine maximum reaction time and
maximum data age of such systems.

Consider a schedule S of a task system T as above and
a cause-effect chain E of T. If the pattern of read- and
write-events in S repeats after a certain amount of time, it
suffices to analyze only a limited time window to compute
maximum reaction time and maximum data age. Depending
on the communication policy, there are different ways how to
achieve a recurrent pattern of read- and write-events.

For LET, the read- and write-events repeat each hyperpe-
riod after the maximal first read (which is at the maximal
phase Φ := maxτ φτ). Furthermore, all immediate forward
and immediate backward augmented job chains with external
activity at or after Φ are valid. In this case it suffices to find
all immediate backward and immediate forward augmented
job chains with event for external activity during [0,Φ + H)
and compute the maximum value among the length of all those
valid augmented job chains. Kordon and Tang [18] present a
way to compute maximum data age on single ECU systems
efficiently for LET, using this procedure as a backbone.

If we assume implicit communication, the read- and write-
events depend significantly on the execution time of the jobs
under analysis. Furthermore, the read- and write-events might
change when additional tasks are released. In this case we fix
the execution time of each job to the worst-case execution
time to obtain an recurrent schedule. This can be achieved by
spinning early completed jobs until their worst-case execution
time is reached. The remainder of this section shows that
these properties suffice to make maximum reaction time and
maximum data age computable. Although fixing the execution
time of each job seems to be a bad idea on first sight, this
actually improves the analysis as outlined in Section V-A. With
similar argumentation as provided here, any communication
policy which is only based on the start and finish of the jobs
can be handled. Please note that the existence of a small
hyperperiod is mandatory to compute data age and reaction
time in acceptable time. In the following we further investigate
how to compute maximum reaction time and data age for
implicit communication with fixed execution time.

A. Motivation for Fixed Execution Time

At first glance, fixing execution of jobs to their worst case
might seem to be a bad idea, since our intuition says that
this also increases end-to-end latencies of cause-effect chains
for those tasks. However, this is not always the case. In fact,
there are good reasons to forbid early completion of jobs as
depicted below, and the schedulability of the task set is not
affected. Therefore, provoking fixed execution time should be
considered as a system design decision.

The first reason is that there are indeed cases where
early completion increases end-to-end latencies. Consider for
example the periodic task set T = {τ1, τ2, τ3} with tasks
τ1 = (Cτ1 = 1, Tτ1 = 2, φτ1 = 0), τ2 = (Cτ2 = 2.5, Tτ2 =
6, φτ2 = 0) and τ3 = (Cτ3 = 0.5, Tτ3 = 6, φτ3 = 0), and the
cause-effect chain E = (τ1 → τ3). As depicted in Figure 6,
early completion of τ2 leads to a worse result. Both ~c1 and ~c2
in the left schedule have actuation at time 6. ~c2 is the longest
immediate forward augmented job chain. In the right schedule
the first read event of τ3 is shifted to the left and therefore ~c1
has actuation at time 12.

Secondly, by provoking fixed execution time for jobs in the
following sections, we create a tight (even exact in the single
ECU case) analysis and obtain superior latency guarantees,
even if the average end-to-end latency might increase. For
correct functionality of safety critical systems, e.g. in the
automotive domain, timing guarantees of end-to-end latencies
are much more important than the average behavior.

B. Local Analysis

In this section we assume that the cause-effect chain E
under analysis is local, i.e., it contains only tasks on one
(synchronized) ECU. Under the assumption that there is no
early completion, there is a unique schedule for any periodic
task set. We show that the schedule repeats after a certain
amount of time. Hence, under implicit communication also the
read- and write events repeat. The following considerations are

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

τ1

`(~c3)

τ2

0 2 4 6 8 10 12

τ3
t

(a) Every task executes its WCET.

τ1

`(~c1)

τ2

0 2 4 6 8 10 12

τ3
t

(b) Early completion of task τ2.

Figure 6: Two schedules of jobs released periodically by 3
tasks. For E = (τ1 → τ3), early completion of the first job of
τ2 leads to a larger immediate forward augmented job chain.

based on the work of Leung and Whitehead [20]. Their proofs
can not be used directly, since they create a new schedule (they
call it a partial schedule) and show that this one repeats. We
need to show that even the original schedule repeats.

Let S be the fixed-priority schedule of the task set
T = {τ1, . . . , τn} on one ECU where the execution of all jobs
is fixed to their worst-case. Without loss of generality, we
assume that the tasks’ indices are assigned according to their
priority, i.e., τi has a higher priority than τj if and only if
i < j. Furthermore, let Φ := maxτ∈T φτ be the maximal
phase of tasks in T. For a time instant t, we denote by S(t)
the tuple (s1,t, . . . , sn,t) where each si,t is the amount of time
that jobs of τi were executed since their last release. Similar
to the proof of [20, Lemma 3.3], we show the following.

Lemma 13. Let Φ be the maximal phase of the task set T and
H = lcm(Tτ1 , . . . , Tτn) the hyperperiod. Then for all t ≥ Φ
the relation S(t) ≥ S(t+H) (component-wise) holds.

Proof: We assume that there are some t ≥ Φ and
i ∈ {1, . . . , n} such that si,t < si,t+H . We show that in this
case infinitely many tasks τj have a time instant

tj ≥ φτj with sj,tj < sj,tj+H . (11)

This contradicts the fact that T is finite.
By assumption there is at least one task with the property

from Eq. (11). Assume there are only finitely many tasks with
this property and let τj be the one of them with the highest
priority. Since sj,tj < sj,tj+H , there exists some t′ ∈ [φτj , tj],
where τj is not executing at time t′ but at t′+H . Hence, there
is some higher priority task τj′ which executes during t′ but
not during t′ + H , i.e., sj′,t′ < sj′,t′+H = Cτj′ . Since τj′
executes during t′, we know that φτj′ ≤ t′. This contradicts
the assumption that τj is the highest priority task with the
property from Eq. (11).

Furthermore, similar to [20, Lemma 3.4] we use the pre-
ceding lemma to show that the schedule repeats after Φ+2H ,
i.e., the schedule in the interval [Φ + H,Φ + 2H) coincides
with the one in [Φ + 2H,Φ + 3H), [Φ + 3H,Φ + 4H), and so
on. We only utilize that the total utilization UT =

∑
τ∈T

Cτ
Tτ

.
of the system is at most 1, as assumed in Section II.

Lemma 14. When UT ≤ 1, then S(t) = S(t + H) holds for
all t ≥ Φ +H .

Proof: We assume that there is some t ≥ Φ + H with
S(t) 6= S(t+H). Then by Lemma 13 there is some index j
with sj,t > sj,t+H . There are two cases. Either, (a) the ECU
idles at some time instant t′ ∈ [t, t + H] or (b) the ECU is
busy during the interval [t, t+H].

For (a), by Lemma 13 S(t′) = (Cτ1 , . . . , Cτn) ≤ S(t′−H),
i.e., the ECU also idles at time t′ −H . Since the job releases
are the same, the schedule coincides in the intervals [t′−H, t]
and [t′, t+H]. Hence, S(t) = S(t+H).

For (b), since sj,t > sj,t+H and si,t ≥ si,t+H for all i
by Lemma 13, there is more remaining workload by jobs in
the ready queue at time t than at time t + H . We conclude
that there was more workload released during (t, t+H] than
could be executed by the ECU. Since the ECU did not idle
between t and t + H , this means that

∑n
i=1 Cτi

H
Tτi

> H ,

which contradicts
∑n
i=1

Cτi
Tτi
≤ 1.

Based on Lemma 14, the schedule repeats after Φ+2H . We
conclude that the length of any immediate forward (backward)
augmented job chain ~cE,Sp (~cE,Sm) with event for external
activity at time ~cE,Sp (1) ≥ Φ + 2H (~cE,Sm (1) ≥ Φ + 2H)
coincides with the length of the immediate forward (backward)
augmented job chain whose event for external activity occurs
one hyperperiod earlier. In particular, we have `(~cE,Sp) =

`(~cE,Sp′) with p′ := p− H
TE(1)

and `(~cE,Sm) = `(~cE,Sm′) with

m′ := m− H
TE(|E|)

. Furthermore, ~cE,Sp′ and ~cE,Sm′ are valid as
well since their event for external activity is at or after Φ+H .
We obtain that Reaction(E,S) and DataAge(E,S) can be
expressed by a maximum of finitely many values:

Reaction(E,S) = sup
{
`(~cE,Sm)

∣∣∣m ∈ N,~cE,Sm valid
}

= max

{
`(~cE,Sm)

∣∣∣∣
m ∈ N,~cE,Sm valid,
~cE,Sm (1) < Φ + 2H

} (12)

DataAge(E,S) = sup
{
`(~cE,Sm)

∣∣∣m ∈ N, ~cE,Sm valid
}

= max

{
`(~cE,Sm)

∣∣∣∣
m ∈ N, ~cE,Sm valid,
~cE,Sm (1) < Φ + 2H

} (13)

We conclude that under the assumption that there is no
early completion, reaction time and data age can be exactly
computed by simulating the schedule.
Algorithm (Compute reaction time):
• Simulate all immediate forward job chains whose event

for external activity occurs before Φ + 2H .
• Compute reaction time with the formula in (12).

Algorithm (Compute data age):
• Simulate all immediate backward job chains whose event

for external activity occurs before Φ + 2H .
• Compute data age with the formula in (13).

Complexity: In our analysis, there are two components, which
play decisive roles in time complexity. At first we have to
(a) create the schedule for the bounded time frame, and then
(b) create and compare job chains based on the schedule. We
examine the time complexity for a cause-effect chain E on an
ECU with task set T = {τ1, . . . , τn} with n tasks.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

Since the schedule repeats after Φ + 2H as previously
described in this chapter, it suffices to schedule only the jobs
in the interval [0,Φ+2H). Hence, the time complexity for the
first component (a) is O

(
Φ+2H
Tmin

· n
)

, where Tmin := min
τ∈T

Tτ

is the minimal period.
For each augmented job chain we have to determine |E| jobs

and the events for external activity and actuation. There is a
cost of query1 Q depending on the data structure for finding
the next job for the job chain. To compute the maximum
reaction time, we have to simulate and compare up to Φ+2H

TE(1)

immediate forward job chains, and for the maximum data
age up to Φ+2H

TE(|E|)
immediate backward job chains are under

analysis. Hence, the time complexity for component (b) can
be described by O

(
|E| ·Q · Φ+2H

TE(1)

)
for reaction time and

O
(
|E| ·Q · Φ+2H

TE(|E|)

)
for data age.

We note that the time complexity for the method by
Kloda et al. [17] coincides with the complexity of component
(b) for our reaction time computation, except that they have to
call a latency function for each job instead of determining the
job itself. The methods by Dürr et al. [10] and by Davare [9]
have complexity O(|E|). Since in [9], [10], [17] they assume
that the worst-case response times are known, i.e., computed
in advance, the time complexity for this computation should
also be taken into account.

C. Interconnected Analysis

In this subsection we analyze the timing behavior of cause-
effect chains that are distributed among several ECUs. If clock
shifts are known and all tasks (even communication tasks)
behave like periodic tasks, then the analysis from the preceding
subsection can be utilized. More specifically, we can either
use LET or force fixed execution time for all tasks to reduce
the computation of maximum reaction time and data age to a
computation of finitely many augmented job chains.

However, since global clock synchronization is often
avoided in distributed real-time systems to reduce failure
dependencies, the clock shifts between different ECUs are
unknown by the observer. Moreover, the implementation of
communication tasks varies depending on the underlying ar-
chitecture, i.e., these tasks may behave in a non-preemptive or
even non-periodic manner. This hinders exact determination
of data age and reaction time.

We discuss how to provide proper upper bounds on data
age and reaction time of interconnected cause-effect chains.
Our estimations utilize only knowledge about the worst-case
response time Rτc and maximum inter-arrival time Tmaxτc , i.e.,
maximum time between two recurrent job releases, of each
communication task τ c.

1The data structure can be designed such that Q = O(1). Let all jobs for
each task τ be stored in a list lτ , ordered by their release. If we want to find
the first job of τ starting after a time instant t and assume that all jobs finish
their execution before the subsequent job release, then only those jobs in the
list with index j between

⌈
t−φτ−Tτ

Tτ

⌉
and

⌊
t−φτ
Tτ

⌋
are candidates to be

checked, i.e., O(Tτ/Tτ) many jobs.

Let S be the schedule of the task set T and consider some
interconnected cause-effect chain IE of T. We separate IE
into local cause-effect chains E1, . . . , Ek with communication
tasks τ c1 , τ

c
2 , . . . , τ

c
k−1. More specifically, we have

IE = (E1 → τ c1 → E2 → τ c2 → · · · → τ ck−1 → Ek), (14)

where each Ei, i = 1, . . . , k only contains tasks of a single
ECU, namely ECU(Ei), and each τ ci , i = 1, . . . , k − 1
communicates from ECU(Ei) to ECU(Ei+1).

We utilize the Cutting-Theorem (Theorem 12) to
estimate reaction time and data age of IE by its local
components, i.e., Reaction(IE,S) ≤∑k

i=1 Reaction(Ei,S)+∑k−1
i=1 Reaction((τ ci),S) and DataAge(IE,S) ≤∑k
i=1 DataAge(Ei,S) +

∑k−1
i=1 DataAge((τ ci),S). Please

note that (τ ci), i = 1, . . . , k − 1 can be considered as a
cause-effect chain of just one task. We apply the bound from
Davare et al. [9] to estimate data age and reaction time of
(τ ci) by Tmaxτci

+Rτci under implicit communication.

Corollary 15. The maximum reaction time and data age
of the interconnected cause-effect chain IE under implicit
communication can be estimated by the timing behavior of
its local parts:

Reaction(IE,S) ≤
k∑

i=1

Reaction(Ei,S) +
k−1∑

i=1

(Tmaxτci
+Rτci)

(15)

DataAge(IE,S) ≤
k∑

i=1

DataAge(Ei,S) +

k−1∑

i=1

(Tmaxτci
+Rτci)

(16)

Proof: The result follows from the Cutting-Theorem
(Theorem 12) and together with the estimation by Davare et
al. [9] as discussed above.

We note that the values of Reaction(Ei,S) and
DataAge(Ei,S) can be computed as in Section V-B by
fixing the execution time on all ECUs of E1, . . . , Ek.

Under LET we obtain a similar result.

Corollary 16. The maximum reaction time and data age of
the interconnected cause-effect chain IE under LET can be
estimated by the timing behavior of its local parts:

Reaction(IE,S) ≤
k∑

i=1

Reaction(Ei,S) +
k−1∑

i=1

2Tmaxτci
(17)

DataAge(IE,S) ≤
k∑

i=1

DataAge(Ei,S) +

k−1∑

i=1

2Tmaxτci
(18)

Proof: This also follows from the Cutting-Theorem. We
use that DataAge((τ ci),S) ≤ Reaction((τ ci),S) ≤ 2Tmaxτci
under LET.

For Corollary 16 the values of Reaction(Ei,S) and
DataAge(Ei,S) can be computed by comparing valid aug-
mented job chains with event for external activity during
[0,Φ +H), as noted at the beginning of Section V.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

VI. ALTERNATIVE DATA AGE DEFINITION

The definition of maximum data age from Dürr et al. [10]
differs from our definition of maximum data age in the
following way: If we consider the chain of events as outlined in
Figure 2, their maximum data age includes only the time from
sampling until the processed-event and not until the actuation-
event. This does not mean that their estimation is more precise,
but that they bound a smaller time interval. For comparison
with the maximum data age from [10], we introduce the
definition of a maximum reduced data age DataAge*(E,S). It
follows Definition 6, except that we set the event for actuation
to the processed-event.

Definition 17 (Shortened immediate backward augmented
job chain). A reduced immediate backward augmented job
chain ~c∗E,Sm , m ∈ N is the unique augmented job chain
(z, J1, . . . , J|E|, z′) where

• the actuation is set to the time of the processed-event,
which happens at the m-th write-event of E(|E|), i.e.,
z′ = weJ|E| and J|E| = E(|E|)(m),

• the sequence (J1, . . . , JE) is an immediate backward job
chain for E in S, and

• the external activity is set to the time where the data is
sampled, i.e., z = reJ1 .

More specifically, the first |E|+1 entries of ~c∗E,Sm coincide
with those of ~cE,Sm+1 and z′ is set to weJ|E| .

We define ~c∗E,Sm to be valid if and only if ~cE,Sm+1 is valid
in the sense of Definition 10. The reduced data age is defined
similar to Definition 11:

Definition 18 (Maximum reduced data age). For a cause-
effect chain E with schedule S we define the schedule specific
maximum reduced data age by

DataAge*(E,S) := sup
{
`(~c∗E,Sm)

∣∣∣m ∈ N, ~c∗E,Sm valid
}
,

(19)
where ` is the length of an augmented job chain as defined
in Eq. (1). As before, the overall maximum reduced data
age is obtained by the supremum over all schedules, i.e.,
DataAge*(E) = supS DataAge*(E,S).

The Cutting-Theorem (Theorem 12) is transferred to re-
duced data age as follows. In the proof of the theorem we
cut off an immediate backward augmented job chain at the
beginning. This works independent from the choice of z′, i.e.,
we cut off an immediate backward augmented job chain also
from a reduced immediate backward augmented job chain. For
all cause-effect chains E = (E1 → E2) this leads to:

DataAge*(E,S) ≤ DataAge(E1,S) + DataAge*(E2,S)
(20)

The computation in the local case is similar to Section V-B.
With periodic job releases and fixed execution times, the
schedule repeats at Φ + 2H where Φ and H are maximal
phase and hyperperiod of tasks on that ECU. It suffices to

simulate all reduced immediate forward augmented job chains
whose external activity occurs before Φ + 2H and compute

DataAge*(E,S) = max

{
`(~c∗E,Sm)

∣∣∣∣∣
m ∈ N, ~c∗E,Sm valid,
~c∗E,Sm (1) < Φ + 2H

}
.

(21)
For the interconnected computation, we rely on the new

cutting theorem from Eq. (20) and obtain

DataAge*(IE,S) ≤
k−1∑

i=1

(DataAge(Ei,S) + Tmaxτci
+Rτci)

+ DataAge*(Ek,S),
(22)

as in Corollary 15 for any interconnected cause-effect chain
IE = (E1 → τ c1 → E2 → · · · → τ ck−1 → Ek). The local
values of maximum (reduced) data age from Eq. (22) are
computed by simulating all (reduced) immediate backward
augmented job chains in a bounded time frame and using
Eq. (13) and Eq. (21).

VII. EVALUATION

A relevant industrial use-case of the presented end-to-end
latency analyses is the timing verification of cause-effect
chains in the automotive domain. To assess the practical benefit
of our proposed analyses in this domain, we evaluate the
analyses using synthesized task sets and cause-effect chains
that adhere to the details described in Automotive Benchmarks
For Free [19]. Furthermore, we use task sets that are generated
using the UUnifast algorithm [6] to assess the performance for
general task parameters. We consider periodic task sets and
implicit job communication to apply our analysis results from
Section V and Section VI.
Intra-ECU setup: All tasks in each cause-effect chain are
mapped to one ECU and use the locally synchronized clock.
Inter-ECU setup: Tasks within a cause-effect chain are
mapped to different ECUs that are not synchronized. An
interconnect fabric is used for data communication across
different ECUs. The evaluation is released on Github [24].

In the following, we use the method by Davare et al. [9]
to normalize all other end-to-end bounds, since this method
yields the most pessimistic result. We define the latency
reduction G(m) of an analysis method m with respect to an
evaluated bound B(·), e.g., maximum reaction time, by

G(m) := (B(davare)−B(m))/B(davare) · 100 [%]. (23)

A. Task and Task Set Generation
In this evaluation, a task τi is described by the worst-

case execution time Ci, period Ti, phase φi, and priority πi.
Furthermore, Ui = Ci/Ti is the utilization of task τi.

Automotive benchmark [19]: Under the automotive bench-
mark, a task τi is generated as follows:

1) The period Ti in ms of a task τi is drawn from the set
T = {1, 2, 5, 10, 20, 50, 100, 200, 1000} according to the
related share2 of [19, Table III, IV and V].

2The sum of the probabilities in [19, Table III, IV and V] is only 85%.
The remaining 15% is reserved for angle-synchronous tasks that we do not
consider. Hence, all share values are divided by 0.85 in the generation process.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

= All values = Half of the values = Median

Dür Klo Our
0

20
40
60
80

100

La
te

nc
y

re
du

ct
io

n
[%

]

(a) Single ECU,
max. reaction time.

Dür Our
0

20
40
60
80

100

La
te

nc
y

re
du

ct
io

n
[%

]

(b) Interconn. ECU,
max. reaction time.

Dür Klo Our
0

20
40
60
80

100

La
te

nc
y

re
du

ct
io

n
[%

]

(c) Single ECU,
max. (reduced) data age.

Dür Our
0

20
40
60
80

100
La

te
nc

y
re

du
ct

io
n

[%
]

(d) Interconn. ECU,
max. (reduced) data age.

Figure 7: Reduction G [%] of the end-to-end latencies com-
pared to Davare’s method for the automotive benchmark.
Our method improves the state-of-the-art for all setups.

Dür Klo Our
0

20
40
60
80

100

La
te

nc
y

re
du

ct
io

n
[%

]

(a) Single ECU,
max. reaction time.

Dür Our
0

20
40
60
80

100

La
te

nc
y

re
du

ct
io

n
[%

]

(b) Interconn. ECU,
max. reaction time.

Dür Klo Our
0

20
40
60
80

100

La
te

nc
y

re
du

ct
io

n
[%

]

(c) Single ECU,
max. (reduced) data age.

Dür Our
0

20
40
60
80

100

La
te

nc
y

re
du

ct
io

n
[%

]

(d) Interconn. ECU,
max. (reduced) data age.

Figure 8: Reduction G [%] of the end-to-end latencies com-
pared to Davare’s method for the uniform benchmark. Again,
our method improves the state-of-the-art for all setups.

2) The average-case execution time (ACET) of a task is
generated based on a Weibull distribution that fulfills
the properties as given in [19, Table III, IV and V].

3) The worst-case execution time (WCET) for a task is de-
termined by drawing a WCET factor, equally distributed
from the interval [fmin, fmax], which is then multiplied
with the task’s ACET.

For the single ECU case, we generate 1000 automotive task
sets for each cumulative task set utilization of U = 50%,
60%, 70%, 80% and 90%. Since the tasks’ utilizations are de-
termined by the worst-case execution-time and the automotive
specific semi-harmonic periods, we used a fully-polynomial
approximation scheme to solve the subset-sum problem to

select a subset of tasks within a candidate task set such that
the cumulative utilization satisfies the above requirements. We
initially generate T a set of 1000 to 1500 tasks and then
select a subset T ′ of tasks using the subset-sum approximation
algorithm to reach the targeted utilization within 1 percentage
point error bounds, i.e., |(∑T ′ Ui)− U | ≤ 0.01. On average,
the generated task sets consist of 50 tasks.

Uniform task set generation [6]: For user-specified values
n ∈ N and 0 < U∗ ≤ 1, the UUniFast algorithm draws
utilizations (U1, U2, . . . , Un) from (0, 1]n uniform at random
under the constraint that

∑n
i=1 Ui = U∗. Due to the fact, that

the analyses are computationally tractable only for sufficiently
small hyperperiods, we draw semi-harmonic periods based on
the automotive benchmark. For each of the utilization values,
i.e., U∗ = 50%, 60%, 70%, 80%, and 90%, we generate
1000 task sets with 50 tasks each. Each task’s period is
drawn from the interval [1, 2000] according to a log-uniform
distribution and rounded to the next smallest period in the
set {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. Given the periods
and utilizations, the worst-case execution-time is set to Ui ·Ti.

To the best of our knowledge, there are no benchmarks
published that detail and reason how to experimentally set
up an asynchronous release of tasks, i.e., what a task’s phase
value should be. Furthermore, the analysis by Kloda et al. [17]
is formulated only for cause-effect chains with synchronous
tasks. Hence, we consider synchronous task sets (with φi = 0)
in this evaluation.

B. Communication Tasks

In order to evaluate interconnected cause-effect chains, we
assume a fixed-priority communication fabric. Specifically, we
draw the period of each message log-uniform at random from
the range 10 to 10 000 ms and truncate the result to the next
smallest integer to model the communication frequency. Fur-
thermore, we assume that the transmission time of a message,
i.e., execution time on the communication fabric, is a constant.
In our evaluations, we utilize the constant time from standard
2.0A CAN-Bus with 1 Mbps bandwidth, where transmitting 8
bytes of data (along with its 66 bits overhead due to its header
and tail) would need Ci = 130 ·10−3 ms. Given the set of all
messages and with random priority assignment, the worst-case
response time of each communication task is calculated using
time-demand analysis for non-preemptive tasks.

C. Cause-Effect Chain Generation

Intra-ECU cause-effect chain generation: Given a gen-
erated task set as described in Section VII-A, the set of
cause-effect chains is generated according to the description
in Section IV-E in [19]. Namely, a set of cause-effect chains
containing 30 to 60 cause-effect chains is generated from each
task set as depicted in the following steps:

1) The number of involved activation patterns
Pj ∈ {1, 2, 3}, i.e., the number of unique periods
of tasks in a generated cause-effect chain, is drawn
according to the distribution shown in Table VI in [19].

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

2) Pj unique periods are drawn from the task set from a
uniform distribution without replacement. More specifi-
cally, this step yields a set Tj of Pj distinct periods.

3) For each period in Tj we draw 2 to 5 tasks at ran-
dom (without replacement) according to the distribution
shown in Table VII in [19] from the tasks in the task
set with the respective period.

The resulting cause-effect chains consist of 2 to 15 tasks and
no task occurs multiple times in the cause-effect chain.

Inter-ECU cause-effect chain generation: We generate
10 000 interconnected cause-effect chains by selecting 5 cause-
effect chains of different task sets with the same utilization
and priority order under a uniform distribution. For each
selection, we create 20 communication tasks as described in
Section VII-B (one for each ECU pair). We choose 4 among
them to connect the 5 communication tasks.

D. Evaluation Results

In Figure 7 and 8 we show the evaluation results for the
automotive and uniform task generation. The boxplots display
the improvement of the methods by Dürr et al. [10] (Dür)
and Kloda et al. [17] (Klo), as well as of ours-local in
Section V-B and ours-distributed (Our) in Section V-C over
the method by Davare [9] by using the latency reduction G
from Eq. (23). Since our definition of maximum reduced data
age from Section VI coincides with the definition of data
age from Dürr and Kloda, we compare Our using maximum
reduced data age instead. The method by Schlatow et al. [23]
is omitted since it is dominated by Davare’s method for non-
harmonic task systems. In almost all cases, our methods clearly
outperform state-of-the-art analyses. Only for the estimation of
maximum reaction time in Figure 7a and 8a in the single ECU
scenario, our methods perform similar to Kloda. Especially for
the interconnected case, our methods improve the state-of-the-
art significantly.

E. Runtime Evaluation

In the following we study the control parameters that reg-
ulate the runtime of our analysis. More specifically, we show
that 1) the runtime of our single ECU algorithm is dependent
on the number of jobs to be scheduled in the simulation and 2)
the runtime can be controlled by bounding the hyperperiod of
the task sets under analysis. For the measurements, we use a
machine equipped with 2x AMD EPYC 7742 running Linux,
i.e., in total 256 threads with 2,25GHz and 256GB RAM.
Each measurement runs on one independent thread and covers
the time for simulation of the schedule and for deriving the
single ECU maximum reaction time. Both experiments rely
on uniform task generation [6] with synchronous tasks. The
total utilization is pulled uniformly from [50, 90] [%] and task
periods are pulled log-uniformly from the integers in [1, 20].
As a result, the hyperperiod of the task set is between 1 and
lcm(1, 2, . . . , 20) = 232, 792, 560. From each task set, we
choose 5 tasks at random without replacement and combine
them to a cause-effect chain.

0 20000 40000 60000 80000 100000
#Jobs

0
2
4
6
8

10
12

Ru
nt

im
e

[s
]

Figure 9: Dependency between number of jobs in the schedule
and runtime of our analysis.

10 20 30 40 50
#Tasks per set

0

5

10

15

20

25

30

Ru
nt

im
e

[s
]

Max. hyperperiod:
1000
2000
3000
4000

Figure 10: Maximal runtime measurements of our analysis for
different hyperperiod bounds.

For 1) we generate 10, 000 task sets with 5 to 20 tasks
each. The results are depicted in Figure 9 for task sets
where the number of scheduled jobs is below 100, 000. The
number of scheduled jobs is upper bounded by #jobs ≤∑#tasks
i=1

2·hyp
Ti
≤ 2·hyp

T1
·#tasks as explained in Section V-B.

For fixed number of tasks and range of periods, we can control
the number of scheduled jobs by constraining the hyperperiod.
For example, when the hyperperiod is 1, 000 and the number
of tasks is 20, then there are at most 40, 000 scheduled jobs.
The exact number of jobs may be lower since big hyperperiods
require bigger periods Ti.

In 2), for a given number of tasks per set, we create
1, 000 task sets with hyperperiod in the range from 0 to
1, 000, 1, 000 to 2, 000, 2, 000 to 3, 000, and 3, 000 to 4, 000,
each. The maximal runtimes sorted by hyperperiod bounds are
depicted in Figure 10. We see that with a low hyperperiod, the
maximum runtime can be controlled.

VIII. CONCLUSION

In this paper, we analyze the maximum reaction time and
maximum data age. We present a precise definition in terms of
augmented job chains and an exact local analysis if we fix the
execution of all jobs to their worst-case. Moreover, we make
this local analysis available to the interconnected ECU case
by bounding the communication time between ECUs.

We plan to further explore priority assignments such that
all cause-effect chains in a system meet their requirements.
Moreover, we look for more efficient algorithms by partition-
ing cause-effect chains not only at the ECU-communication
but also on one ECU.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

ACKNOWLEDGMENT

This work has been supported by European Research
Council (ERC) Consolidator Award 2019, as part of PropRT
(Number 865170), and by Deutsche Forschungsgemeinschaft
(DFG), as part of Sus-Aware (Project no. 398602212)

REFERENCES

[1] AUTOSAR. Specification of timing extensions, release 4.3.1, Aug. 2017.
[2] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte.

Mechaniser-a timing analysis and synthesis tool for multi-rate effect
chains with job-level dependencies. In Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2016.

[3] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. Synthe-
sizing job-level dependencies for automotive multi-rate effect chains.
In International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 159–169, 2016.

[4] M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte. A generic
framework facilitating early analysis of data propagation delays in multi-
rate systems. In International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 1–11, 2017.

[5] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P. Talpin, and
S. Tripakis. A protocol for loosely time-triggered architectures. In
EMSOFT, pages 252–265, 2002.

[6] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[7] Bosch. Controller area network specification 2.0, 1991.
[8] H. Choi, M. Karimi, and H. Kim. Chain-based fixed-priority scheduling

of loosely-dependent tasks. In International Conference on Computer
Design (ICCD). IEEE, 2020.

[9] A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and A. L.
Sangiovanni-Vincentelli. Period optimization for hard real-time dis-
tributed automotive systems. In Design Automation Conference, DAC,
pages 278–283, 2007.

[10] M. Dürr, G. von der Brüggen, K.-H. Chen, and J.-J. Chen. End-
to-end timing analysis of sporadic cause-effect chains in distributed
systems. ACM Trans. Embedded Comput. Syst. (Special Issue for
CASES), 18(5s):58:1–58:24, 2019.

[11] R. Ernst, L. Ahrendts, and K. B. Gemlau. System level LET: mastering
cause-effect chains in distributed systems. In IECON 2018 - 44th Annual
Conference of the IEEE Industrial Electronics Society, Washington, DC,
USA, October 21-23, 2018, pages 4084–4089. IEEE, 2018.

[12] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics. In Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems, 2009.

[13] FlexRay Consortium. Flexray communications system-protocol specifi-
cation, 2005.

[14] J. Forget, F. Boniol, and C. Pagetti. Verifying end-to-end real-time
constraints on multi-periodic models. In ETFA, pages 1–8, 2017.

[15] A. Girault, C. Prevot, S. Quinton, R. Henia, and N. Sordon. Improving
and estimating the precision of bounds on the worst-case latency of
task chains. IEEE Trans. on CAD of Integrated Circuits and Systems,
(Special Issue for EMSOFT), 37(11):2578–2589, 2018.

[16] C. M. Kirsch and A. Sokolova. The logical execution time paradigm.
In Advances in Real-Time Systems, pages 103–120. Springer, 2012.

[17] T. Kloda, A. Bertout, and Y. Sorel. Latency analysis for data chains of
real-time periodic tasks. In IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA, pages 360–367, 2018.

[18] A. M. Kordon and N. Tang. Evaluation of the age latency of a real-time
communicating system using the LET paradigm. In ECRTS, volume
165 of LIPIcs, pages 20:1–20:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[19] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmark for free. In International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[20] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Perform. Eval., 2(4):237–250,
1982.

[21] A. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and S. Ramesh.
Schedulability and end-to-end latency in distributed ecu networks:
formal modeling and precise estimation. In International Conference
on Embedded Software, pages 129–138, 2010.

[22] J. Schlatow and R. Ernst. Response-time analysis for task chains in
communicating threads. In IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 245–254, 2016.

[23] J. Schlatow, M. Möstl, S. Tobuschat, T. Ishigooka, and R. Ernst. Data-
age analysis and optimisation for cause-effect chains in automotive
control systems. In IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 1–9, 2018.

[24] TU Dortmund LS12. End-to-end timing analysis. https://github.com/
tu-dortmund-ls12-rt/end-to-end, 2021.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

TA
S5

20
30

.2
02

1.
00

01
2

