
Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

Suspension-Aware Fixed-Priority Schedulability Test
with Arbitrary Deadlines And Arrival Curves

Mario Günzel, Niklas Ueter, Jian-Jia Chen
TU Dortmund, Department of Computer Science, Dortmund, Germany

Citation: 10.1109/RTSS52674.2021.00045

BIBTEX:
@inproceedings{guenzel21rtss_arrcurve,

author={Mario Günzel and Niklas Ueter and Jian-Jia Chen},
booktitle={42nd IEEE Real-Time Systems Symposium (RTSS)},
title={Suspension-Aware Fixed-Priority Schedulability Test with Arbitrary Deadlines
And Arrival Curves},
year={2021},
volume={},
number={},
pages={},
doi={}

}

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

10.1109/RTSS52674.2021.00045

Suspension-Aware Fixed-Priority Schedulability
Test with Arbitrary Deadlines And Arrival Curves

Mario Günzel
TU Dortmund University

mario.guenzel@tu-dortmund.de

Niklas Ueter
TU Dortmund University

niklas.ueter@tu-dortmund.de

Jian-Jia Chen
TU Dortmund University

jian-jia.chen@cs.tu-dortmund.de

Abstract—In real-time scheduling theory, self-suspension de-
scribes the behavior that a job can suspend itself from the
ready state and thus be exempted from the scheduling for the
suspension duration. This behavior makes it non-trivial to resort
to established concepts such as the busy-interval analysis to self-
suspending task sets which is required to analyze the worst-
case response time of tasks with backlog, e.g., arbitrary-deadline
task sets. In this paper, we present a novel suspension-aware
busy-interval analysis for dynamic self-suspension tasks where
the inter-arrival time of subsequent jobs can be bounded by an
arrival curve. Based on the general analysis, we provide worst-
case response time analyses and hence sufficient schedulability
tests for fixed-priority preemptive uniprocessor scheduling algo-
rithms for arrival-curve constrained and sporadic self-suspension
task systems with arbitrary deadlines. Moreover, we provide
evaluations based on synthetically generated task sets that show
that our method indeed exploits the optimism that is introduced
when enlarging the relative deadline of tasks. We demonstrate
that our approach improves the state of the art by considering
arrival curves that are obtained from tasks with release jitter.

I. INTRODUCTION

Real-time systems are characterized by the requirement to
satisfy specified temporal constraints for mission-critical com-
putations in the systems. These temporal constraints must be
formally verified beforehand under consideration of a model
of the generated workloads and a model of a given scheduling
algorithm. In current real-time systems these temporal con-
straints are given in terms of task deadlines, which have to be
met by each task instance (job). A commonly used class of
scheduling algorithms in real-time operating systems are fixed-
priority scheduling algorithms in which each task is assigned a
static priority that each job inherits. Despite the fact that fixed-
priority scheduling algorithms are not optimal they are widely
supported by real-time operating systems for uniprocessor
systems or partitioned scheduling algorithms in multiprocessor
systems. This is due to an intuitive parameterization in terms of
priorities that influence the response time of a task. Moreover,
the fact that the scheduling operations can be implemented
in O(1) complexity with low overhead enable fixed-priority
schedulers to be used on resource-constrained platforms.

Since the work on rate-monotonic scheduling of periodic
task sets under real-time constraints by Liu and Layland [33],

This work has been supported by Deutsche Forschungsgemeinschaft (DFG),
as part of Sus-Aware (Project No. 398602212). This result is part of a
project (PropRT) that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 865170).

many results have been published in the literature in pursuance
to understand and formalize the behavior of fixed-priority
uniprocessor scheduling systems and the analysis of worst-
case response times. Based on the critical instant theorem, the
time-demand analysis as proposed by Joseph and Pandya [23]
and Lehoczky et al. [30] provides exact analyses of the worst-
case response times of tasks, which have never more than
one unfinished job at any time, scheduled upon uniproces-
sor systems using fixed-priority scheduling. In the case of
arbitrary-deadline task systems in which tasks may have more
than one unfinished job at each time (backlog), the time-
demand analysis was extended to the busy-interval analysis by
Lehoczky [29]. The underlying assumption in all of the above
analyses is that no job can yield its ready state during any
time between a job release and that jobs completion. In many
real-world applications however, this model is insufficient to
describe application demands. For instance, offloading parts
of the computation to hardware accelerators [12], [35] or
the partitioned scheduling of parallel DAG task with sub job
partitioning [14] are cases in which a job yields its ready state
while waiting for offloaded computations or the completion of
preceding sub jobs before resuming to the ready state again.
In the literature, such behavior is referred to as self-suspension
as a job may suspend itself from the ready state and resume
at a later point in time.

Attempts to extend existing techniques [10], [26] and in-
sights such as the critical instant theorem to self-suspending
task systems have been shown to be non-trivial. Under the
assumption that a task may self-suspend, many “[...] key in-
sights underpinning the analysis of non-self-suspending tasks
no longer hold.” as detailed in the self-suspension review paper
by Chen et al. [9]. In consequence, several research results
have been found to be flawed, e.g., the extension of the critical
instant theorem in [26] was later proven unsound by Nelissen
et al. [37] and the extension of the schedulability test for
the earliest-deadline-first (EDF) scheduling algorithm in [10]
was proven incorrect by Günzel and Chen [16]. The irregular
interference behavior of self-suspending task systems makes
it mandatory to construct worst-case response time analyses
from first principles.

To date, dynamic and segmented self-suspension are the
predominately studied models in the literature as explained
by Chen et al. [9]. The segmented self-suspension model [3],
[6], [7], [17], [21], [25], [37]–[39] and the dynamic self-

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

suspension model [1], [8], [10], [16], [18], [22], [32] differ
in the allowed suspension pattern. In the segmented self-
suspension model, computation and suspension segments are
interleaved in a predefined manner and each segment’s du-
ration is bounded. In contrast, the dynamic self-suspension
model is a generalization of the segmented model in the sense
that any interleaved sequence of computation and suspension
is admissible as long as the cumultive duration of computation
and suspension is bounded. In addition to these two models,
von der Brüggen et al. [45] proposed a hybrid self-suspension
model, which increases the flexibility of the segmented model
and improves accuracy of the dynamic model.

The current state-of-the-art of schedulability analysis for
dynamic self-suspending task systems under task-level fixed-
priority (FP) scheduling is given by Chen et al. [8]. Other
analyses are presented in [1], [22], [24] and [34, Page 162].
However, the results in [1], [24] have been disproved [9]
due to the fact that the classical critical instant theorem
does not hold for self-suspending tasks. With regards to
suspension-aware schedulability tests for task-level dynamic-
priority scheduling algorithms, results have been limited to the
earliest-deadline-first (EDF) algorithm, in which the priority of
each job is given by its absolute deadline. Devi [10] provided
a schedulability test for EDF without a proof which has
recently been disproved by Günzel and Chen [16] presenting
a concrete counter example. Liu and Anderson [31] and
Dong and Liu [11] studied global EDF on multiprocessor
systems and provided schedulability tests. More recently a
dedicated suspension-aware EDF uniprocessor analysis was
presented by Günzel et al. [18], which improves the schedu-
lability for uniprocessor EDF significantly compared to the
analyses in [11], [31]. With respect to the approximation qual-
ity of fixed-priority (FP), earliest-deadline first (EDF), least-
laxity-first (LLF), and earliest-deadline-zero-laxity (EDZL)
scheduling algorithms have been shown to not have a constant
speedup factor when suspension can not be sped up [5]
implying that self-suspension may degrade schedulability.

In contrast to prior research, our work focuses on the worst-
case response time analysis of dynamic self-suspending task
systems with arbitrary deadlines, i.e., the deadline can be
larger than the minimum arrival-time, which is to the best
of our knowledge the first analysis of this kind. Since the
segmented self-suspension model is a specialization of the
dynamic self-suspension model, all presented results in this
paper can also be applied to the segmented self-suspension
model. The state-of-the-art analysis of the studied problem
is due to Chen et al. [8], in which a unifying response time
analysis was developed. Their analysis allows to either include
the suspension times of higher-priority tasks explicitly in the
analysis or include more workload modeled by a jitter term
induced by self-suspension.

However, their analysis has been limited to constrained-
deadline task systems, i.e., the deadline must be no more
than the minimum inter-arrival time. For arbitrary-deadline
tasks, we identify a suspension-aware busy-interval and prove
that in the analysis interval at most one self-suspending

job (carry-in) of each higher-priority task must be considered.
To the best of our knowledge it is an open problem if a
busy-interval equivalent concept can be established for self-
suspending arbitrary-deadline task systems. Moreover, it is
unclear how many jobs must be considered in the analysis
even if a busy-interval concept would exist. Current analyses
for self-suspending task systems solely focus on systems with
periodic or sporadic inter-arrival times of two subsequent
jobs. We here use the more general arrival curve model
known from Real-Time Calculus, Network Calculus [28], [43],
and Compositional Performance Analysis (CPA) [19], [20]
to model task activations. In the arrival curve model, the
maximum (and minimum) number of events for any interval of
a given length is provided in order to describe the online arrival
behavior of tasks. Since an arrival curve is a more general
description than periodic or sporadic inter-arrival times, there
also do not exist any dedicated results for self-suspending tasks
with arrival curve descriptions in the literature, except using
the worst-case execution time to model the additional carry-in
workload due to self-suspension.
Contributions: In this paper, we study the worst-case response
time analysis problem and devise a schedulability test to
validate the worst-case timing behavior for a set of self-
suspending arbitrary-deadline tasks given fixed-priority pre-
emptive uniprocessor scheduling algorithms. In conclusion, we
make the following contributions:

• We extend the concept of busy-interval by Lehoczky [29]
to suspension-aware busy-interval. Specifically, the anal-
ysis extends the window of interest in a way such that at
most one self-suspending job of each higher-priority task
has to be considered in the analysis.

• We provide the first worst-case response time analysis
for self-suspending real-time tasks described by arrival
curves in Section IV. The interference from higher-
priority self-suspending tasks can be arbitrarily modelled
with one of two types of carry-in terms, in which one has
self-suspending behavior and one does not.

• Section V handles the special case when the worst-case
(upper) arrival curve of a task is periodic, i.e., the classical
sporadic real-time tasks, each defined by the minimum
inter-arrival time of two consecutive jobs.

• In Section VII we compare our approach with the state of
the art for arbitrary-deadline tasks where the arrival curve
is modeled for tasks with release jitter. Moreover, we
demonstrate that our analysis exploits the optimism that
is obtained when increasing the tasks’ relative deadlines.

II. SYSTEM MODEL

We consider a task set T consisting of n recurrent tasks
τ1, . . . , τn. Each task τi recurrently releases jobs τi,j , j ∈ N.
A job τi,j is released at time ri,j and has to be executed for
a certain amount of time ci,j until its deadline di,j while it
suspends itself several times for a total amount of si,j time
units. We call the time from release ri,j to finish fi,j of a job
τi,j its response time.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

Definition 1 (Sporadic Task). A sporadic task τi is character-
ized by a tuple (Ci, Si, Di, Ti). More specifically, Ci > 0
is the worst-case execution time (WCET) of τi, Si ≥ 0
is the maximal suspension time, Di > 0 is the relative
deadline, and Ti ≥ 0 is the minimum inter-arrival time, i.e.,
ri,j+1 ≥ ri,j + Ti, ci,j ≤ Ci, si,j ≤ Si and di,j = ri,j + Di

for all j ∈ N. There are no constraints between deadline and
minimum inter-arrival time of a task, i.e., Di > Ti is allowed.
The worst-case response time (WCRT) Ri of a task τi is
defined by the supremum over the response times of all its
jobs τi,j , j ∈ N.

As a more general model, we further model the job arrivals
of sporadic tasks using arrival curves. For each task τi, an
upper arrival curve αui : R → R ≥ 0 is given, which
provides by αui (∆) an upper bound on the job releases
inside an interval of length ∆. More specifically, we have
αui (∆) ≥ supt(number of job releases during [t, t + ∆)) for
all ∆ ≥ 0 and αui (∆) = 0 for all ∆ < 0.

For a sporadic task whose minimum inter-arrival time is
Ti, the corresponding upper arrival curve is αui (∆) =

⌈
∆
Ti

⌉

for any ∆ ≥ 0. In case Ti is 0, it is possible to release
two (or more) jobs at the same time. Modeling such a task
with a tuple (Ci, Si, Di, Ti) results in an infinite burst and is
therefore infeasible. Therefore, for sporadic real-time tasks, we
assume to have Ti > 0 in Section V. However, when the upper
arrival curve is considered in this paper, we assume Ti ≥ 0 in
Section IV.

We consider that the given upper arrival curve function αui
is sub-additive [28], i.e., αui (∆1 + ∆2) ≤ αui (∆1) + αui (∆2),
∀∆1,∆2 ∈ R. If the given curve is not sub-additive, then it can
be tightened by applying the sub-additive closure to achieve
the sub-additivity property, i.e., by defining a new upper arrival
curve α̃ui (∆) := min(αui (∆),mint∈[0,∆](α

u
i (t)+αui (∆−t))).

Due to the sub-additivity property, we have that for all ∆ ∈ R:
1) αui (∆) ≤ αui (∆ + δ) for all δ ≥ 0 (αui monoton-

ically increasing); otherwise, the existence of δ ≥ 0
with αui (∆) > αui (∆ + δ) contradicts the sub-additivity
property αui (∆ + δ) ≤ αui (∆) + αui (δ) ≤ αui (∆).

2) αui (∆) ≤ αui (∆ − Ti) + 1, which is due to the sub-
additivity property αui (∆) ≤ αui (∆ − Ti) + αui (Ti) =
αui (∆ − Ti) + 1 when Ti > 0 and due to the fact that
αui (∆) ≤ αui (∆) + 1 when Ti is 0.

On the basis of the worst-case response time Ri of a given
task τi, the maximal amount of concurrently pending workload
that is generated by τi is given by C∗i := min(αui (Ri)·Ci, Ri).
In particular, this means that at each time there is no more than
C∗i ∈ [Ci, Ri] amount of pending workload of jobs of τi in
a ready state (ready queue). The reason for this is that the
maximal number of concurrent jobs of τi which are released
but not yet finished is upper bounded by αui (Ri). Each of them
can have pending workload of up to Ci time units. This shows
C∗i ≤ αui (Ri) · Ci. Moreover, if the concurrently pending
workload at some time instant t would be higher than Ri, then
the most recently released job would finish no earlier than at
t + Ri, i.e., Ri would not be an upper bound of the worst-

case response time of τi, which is a contradiction. Therefore,
C∗i ≤ Ri as well.

III. PROBLEM DEFINITION

In this work, we consider a task set T consisting of tasks
that are adhere to the characterization depicted in Section II.
We assume that each task is assigned a unique priority that is
given beforehand. Moreover, we focus on a work-conserving
preemptive fixed-priority (FP) scheduling on a uniprocessor
system, meaning that any released job that is not finished and
does not suspend itself, i.e., which is ready to be executed
on the processor, is subject to the scheduling decision. In
other words, as long as there exists at least one ready job,
the scheduler keeps the processor busy. In the remainder of
this paper, we assume that the task set is ordered according to
the priority level, i.e., a task τi has higher priority than a task
τj iff i < j.

This work answers the question whether jobs released by
the task set T are schedulable according to fixed-priority
preemptive scheduling, i.e., all jobs meet their deadline. More
specifically, we provide a sufficient schedulability test that
returns True when we can guarantee that the task set is
schedulable. If the test returns False the task set might or
might not be schedulable.

Although arrival curves are considered, we note that this pa-
per does not deal with the modular/compositional performance
analysis, the main feature of Real-Time Calculus (RTC) [28],
[43] and Compositional Performance Analysis (CPA) [19],
[20]. We focus only on the response time analysis (and
the schedulability test). In RTC, Greedy Processing Compo-
nent (GPC) is one of the fundamental components, which
processes jobs (input events) in a greedy manner following the
first-in-first-out (FIFO) policy. As long as there are available
resources, a GPC does not allow any suspension. The analysis
of GPC has been studied in [4], [15], [27], [40]–[42], in which
the improvements have focused on efficiency and precision.

For CPA, the analysis is based on holistic worst-case
schedules, which rely on the busy-interval concept (called
longest scheduling horizon in CPA [20]). When analyzing
self-suspending tasks, one possibility is to apply the jitter-
based analysis by considering that at most αui (∆ + Ri) jobs
of a higher-priority task τi can interfere with the task τk
under analysis, as shown in Equation (1) in [36]. Under fixed-
priority preemptive uniprocessor scheduling, it has been shown
that converting suspension into computation for task τk is
analytically sound in [9] when analyzing the worst case of τk.
Therefore, this treatment results in a jitter-based CPA analysis.
This unfortunately does not consider the characteristics of
suspension behavior of the higher-priority tasks.

Our analysis presented in this paper is the first suspension-
aware analysis for arbitrary-deadline sporadic real-time task
systems and arrival curves under fixed-priority uniprocessor
scheduling. Extending the analysis to be integrated into CPA
or RTC is not part of this paper.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

IV. SCHEDULABILITY TEST FOR ARRIVAL CURVES

In this section we derive a sufficient schedulability test. The
proof structure is inspired by the constrained-deadline analysis
in [8]. However, the characterizations of arbitrary-deadline
tasks are completely different from constrained-deadline tasks,
and none of their lemmas can be directly applied without
proper modifications. We start by considering a fixed-priority
uniprocessor preemptive schedule Ψ of the task set T. Itera-
tively, we consider the task τk, k = 1, . . . , n and provide an
upper bound on the worst-case response time for τk under the
assumption that the upper bound for τ1, . . . , τk−1 has been
derived beforehand.

Let τk be the task under analysis. In the following, we con-
sider some job τk,` and bound its response time. We partition
the higher priority tasks τ1, . . . , τk−1 into two sets denoted by
T0 and T1. Our analysis assumes that this partition is given and
provides a valid sufficient schedulability test. Depending on
the partition the analysis approach in Section IV-A is different:
For each task we either cut or extend the analysis window. To
find a suitable partition, one can examine all of them. We
explain how to find suitable partitions in Section VI.

The proof is divided into four steps:
Step 1: Reducing the schedule Ψ by removing jobs that do

not contribute to the response time of τk,`.
Step 2: Analyzing the reduced schedule Ψ1 and proving

useful properties for later analysis.
Step 3: Providing a response time upper bound for τk,`.
Step 4: Deriving the schedulability test.

Our analysis is based on the suspension-aware busy-interval
of τk defined as follows:

Definition 2 (Suspension-aware busy-interval). The half-
opened interval [v, w) is a suspension-aware busy-interval of
τk if there is pending workload of task τk at all times during
that interval [v, w).

Let a ∈ N. The job τk,` is the a-th job in a suspension-
aware busy-interval of τk if [rk,`−(a−1), fk,`) is a suspension-
aware busy-interval of τk and all jobs of τk released before
rk,`−(a−1) finish at latest at rk,`−(a−1).

Example 3. In Figure 1 we present an example schedule of
three tasks T = {τ1, τ2, τ3} with T0 = {τ1} and T1 = {τ2}
to give the reader guidance through the proof. The job τ3,2
is under analysis. It is the second job in a suspension-aware
busy-interval of τ3.

A. Step 1: Reducing the schedule Ψ

At first we remove all tasks with lower priority than τk from
the system. This does not affect the schedule of τ1, . . . , τk
as the lower priority tasks are anyway preempted when there
is pending workload of τ1, . . . , τk. Afterwards, we remove
further jobs from the schedule. In this step, the removal of
jobs in the schedule has to be guaranteed not to affect the
response time of τk,` in the schedule.

Let a ∈ N such that τk,` is the a-th job in a suspension-
aware busy-interval of τk, as defined in Definition 2. We

T0 3 τ1

T1 3 τ2

τ3

0 2 4 6 8 10 12 14 16 18

Figure 1: Schedule Ψ of 3 tasks from Example 3. The
execution of job τ3,2 is marked gray.

set tk := rk,`−(a−1) as the beginning of the suspension-
aware busy-interval and remove the jobs τk,1, . . . , τk,`−a from
the schedule. The removal of these jobs does not affect the
schedule of the higher-priority tasks, as the higher priority
tasks would preempt job execution of τk anyway. Moreover,
since τk has the lowest-priority in the schedule Ψ (after the
treatment in the first paragraph) there are no lower priority
tasks to be affected. The jobs released at or after tk (including
τk,`) are not affected as well, since all removed jobs are
finished until time tk.

We define Ψk to be the resulting reduced schedule. In the
following, we describe how to derive Ψi and ti from Ψi+1

and ti+1 iteratively, for i = k − 1, k − 2, . . . , 1. The main
procedure is to extend the analysis window if τi ∈ T1 and to
cut the overlapping job of τi if τi ∈ T0. More specifically, we
distinguish four different cases as depicted in Figure 2. Please
note that the four cases cover all possible scenarios.

Procedure from Ψi+1 to Ψi:
Case X0: All jobs of τi are released at or after ti+1. In this

case, we define Ψi := Ψi+1 and ti := ti+1.
The other three cases (X1, X2, and X3) involve scenarios in

which there are jobs of τi released before ti+1. We denote by
c∗i the residual workload at time ti+1 of τi, i.e., the amount of
remaining time that the processor needs to work on pending
jobs of τi at time ti+1. Moreover, let τi,`i be the first job of
τi which finishes after ti+1.

Case X1: τi ∈ T1 and ri,`i ≤ ti+1. In this case we set
ti := max(fi,`i−1, ri,`i) to be maximum of release of the first
job that finishes after ti+1 and the finish of the previous job.
We remove all jobs of τi before τi,`i .

Case X2: τi ∈ T1, ri,`i > ti+1. In this case we set ti :=
ti+1 and remove all jobs of τi released before τi,`i . Note that
afterwards there is no job execution of or job release of τi
before ti+1.

Case X3: τi ∈ T0. In this case we define ti := ti+1. All
jobs released after ti remain unmodified in the schedule. All
jobs released before ti are replaced by one artificial job with
execution time c∗i and release ti with same priority and the
same execution and suspension behavior as the other jobs had
after ti+1. In particular, the execution and suspension pattern
of τi after ti remains unchanged and there is no job release
before ti.

Please note that the transformation from Ψi+1 to Ψi does
not affect the response time of τk,` due to the following rea-

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

Case X0: ri,1 ≥ ti+1

τi

ti := ti+1

Case X1: τi ∈ T1, ri,`i ≤ ti+1

τi

ti+1ti

Case X2: τi ∈ T1, ri,`i > ti+1

τi

ti := ti+1

Case X3: τi ∈ T0

τi

ti := ti+1

Figure 2: Procedure from Ψi+1 to Ψi as in Step 1. Gray areas are removed from the schedule.

τ3

0 2 4 6 8 10 12 14 16 18t3

T1 3 τ2

t2

T0 3 τ1

t1

Figure 3: Schedule (Ψ1) from Example 3 after Step 1.

soning: In the procedure from Ψi+1 to Ψi, only the schedule of
τi before ti is modified. Before ti there are no jobs of lower
priority tasks released (all of them are already removed in
Ψi+1). Therefore, modifying the schedule of τi has no impact
on the lower priority tasks. As a result, the job τk,` is not
affected by the transformation from Ψi+1 to Ψi. We conclude
the following.

Lemma 4. The response time of τk,` in Ψ coincides with the
response time of τk,` in Ψ1.

Proof: In this subsection we discussed that neither the
transformation from Ψ to Ψk nor the transformation from
Ψi+1 to Ψi for any i ∈ {1, . . . , k − 1} affects the response
time of τk,`. Since the transformation from Ψ to Ψ1 is just a
composition of the above transformations, this does not affect
the response time of τk,` as well.

The procedure of this subsection is illustrated by the fol-
lowing example.

Example 5. In Figure 3 we present the schedule Ψ1 for the
original schedule from Figure 1. We set t3 to the release of
the first job in the suspension-aware busy-interval of the job
under analysis τ3,2 at time 5. When going from Ψ3 to Ψ2 we
set t2 according to Case X1 to time 3. Finally, we set t1 := t2
and cut the job as presented for Case X3. We obtain Ψ1.

B. Step 2: Analyzing Ψ1

To deduce a worst-case response time of τk,`, in this step
we analyze the amount of time that the processor executes and
idles in Ψ1. Therefore, we introduce the following notation.

Definition 6. For any interval [c, d), we define idle(c, d) and
exec(c, d) to be the amount of time that the processor is idle

and executing some job during [c, d) in Ψ1. Moreover, we
define execi(c, d) to be the amount of time a job of task
τi is executed during [c, d) in Ψ1. In particular we have
exec(c, d) =

∑n
i=1 execi(c, d).

The backbone for this step of the analysis is the fact that
for any interval [t1, t) with tk ≤ t ≤ fk,`, we have

idle(t1, t) + exec(t1, t) = t− t1. (1)

In the following we derive upper bounds for idle(t1, t) and
exec(t1, t), and conclude the response time upper bound.
We utilize idle(t1, t) =

∑k−1
i=1 idle(ti, ti+1) + idle(tk, t)

and exec(t1, t) =
∑k
i=1 execi(t1, t). Moreover, we have

execi(t1, t) = execi(ti, t) for all i since there is no job of
τi being executed before ti in Ψ1.

Lemma 8 shows that for each segment [ti, ti+1) the idle time
is upper bounded by suspension time in Ψ1. In the proof we
utilize that the original schedule Ψ provides a work-conserving
property.

Definition 7 (Work-Conserving). A schedule is called work-
conserving, if it fulfills the following property for any task τi:
Whenever there is pending workload of task τi, then either
a job of a higher priority task is executed or a job of τi is
executed or suspends itself.

Lemma 8. Consider the schedule Ψ1.
1) Let i ∈ {1, . . . , k − 1}. At any time instant during

[ti, ti+1) a job of τi is executed or suspends itself, or
a job from a higher priority task is executed.

2) At any time instant during [tk, fk,`) a job of τk is executed
or suspends itself, or a job from a higher priority tasks
is executed.

Proof: The schedule Ψ is work-conserving. By the con-
struction of ti in Section IV-A, at any time instant during
[ti, ti+1) there is pending work of τi. More specifically, either
ti = ti+1 or there is a job of τi which is released no later
than ti and finishes after ti+1. Due to the work preserving
property, at all time instants during [ti, ti+1) in the schedule
Ψ a job of τi is executed or suspends itself, or a job of a
higher priority task is executed. When we construct Ψ1 from
Ψ, during [ti, ti+1) we only remove execution and suspension
from jobs of lower priority tasks. Hence, 1) holds.

During [tk, fk,`) in Ψ, there is a suspension-aware busy-
interval of task τk, i.e., there is pending work of τk at all time

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

instants during [tk, fk,`). Similar as above, due to the work
preserving property, at all time instants during [tk, fk,`) in Ψ
a job of τk is executed or suspends itself, or a job of a higher
priority task is executed. However, when Ψ1 is constructed
from Ψ, during [tk, fk,`) only execution and suspension from
jobs of lower priority tasks is removed. Hence, 2) holds.

This lemma implies that each time the processor idles during
[ti, ti+1) a job of task τi suspends itself and each time the
processor idles during [tk, fk,`) a job of task τk suspends
itself. Let xi be 1 if τi ∈ T1 and 0 if τi ∈ T0. We define
by suspi(ti, ti+1) the amount of time that jobs of τi suspend
during [ti, ti+1) in Ψ1.

Lemma 9. For any i = 1, . . . , k− 1 we have idle(ti, ti+1) ≤
xi · suspi(ti, ti+1) ≤ xi · Si.

Proof: If ti and ti+1 coincide, then by definition the
equations idle(ti, ti+1) = 0 and suspi(ti, ti+1) = 0 hold.
Moreover, xi, Si ≥ 0 which concludes this case.

If ti and ti+1 do not coincide, then ti < ti+1. This can only
be achieved if Case X1 is applied when going from Ψi+1

to Ψi, i.e., xi = 1. It remains to show that idle(ti, ti+1) ≤
suspi(ti, ti+1) ≤ Si. Since ti = max(fi,`i−1, ri,`i), all jobs of
τi prior to τi,`i finish at or before ti. Moreover, τi,`i finishes
after ti+1. Hence, τi,`i is the only job of τi that suspends itself
during [ti, ti+1), i.e., suspi(ti, ti+1) ≤ Si. Due to Lemma 8,
during [ti, ti+1) a job of τi suspends itself whenever the
processor idles. Hence, idle(ti, ti+1) ≤ suspi(ti, ti+1).

Utilizing the second part of Lemma 8, we provide a
similar statement about the idle time during [tk, t) for any
t ∈ [tk, fk,`]. However, during this interval there are a many
jobs of τk that may suspend themselves.

Lemma 10. For any t ∈ [tk, fk,`] we have idle(tk, t) ≤ a ·Sk.

Proof: Due to Lemma 8, whenever the processor idles
during the interval [tk, t) then there is some job of τk that
suspends itself. By the definition of tk, the interval [tk, fk,`)
is a suspension-aware busy-interval of τk with a jobs. Hence,
there can be at most a jobs of τk that suspend themselves
during [tk, t) ⊂ [tk, fk,`) and idle(tk, t) ≤ a · Sk.

After an estimation of the idle time of the processor during
[t1, t), we focus on the execution time. For each task τi 6= τk,
we do this by setting ∆ to t−ti and providing an upper bound
for execi(ti, ti+∆). In Lemma 11 we present a general bound
which is applicable to all tasks. Afterwards, in Lemma 14 we
consider the case that τi ∈ T1, in Lemma 15 we consider the
case that τi ∈ T0, and in Lemma 16 we consider the case
τi = τk.

Lemma 11. Let τi in T. For any ∆ ≥ 0, we have

execi(ti, ti + ∆) ≤ αui (∆ +Ri) · Ci (2)

where Ri is an upper bound on the worst-case response time
of the task τi.

Proof: To be executed during the interval [ti, ti + ∆) a
job of τi must be released before ti + ∆. Moreover, it must
not be finished until ti, which is only possible if it is released

after ti − Ri. We conclude that only jobs that are released
during the interval (ti − Ri, ti + ∆) may be executed during
[ti, ti + ∆). The number of those jobs is upper bounded by
αui (∆ + Ri). Each of them can be executed for at most Ci
time units.

For a precise proof of Lemma 14, 15 and 16, we first
introduce the notation of interference Ii and derive useful
properties in Lemma 13:

Definition 12 (Interference). For all t ∈ R and ∆ ≥ 0, we
define by Ii(t, t+∆) the interference during the interval [t, t+
∆) from task τi, which is the amount of execution time during
[t, t+∆) from jobs of τi which are released during [t, t+∆).

Moreover, we define Iui (∆) to be the maximum interference
from task τi during an interval of length ∆, i.e.,

Iui (∆) =

{
supt Ii(t, t+ ∆) ∆ ≥ 0

0 ∆ < 0
. (3)

Lemma 13. For the maximum interference function Iui the
following properties hold for all ∆ ≥ 0:

1) Iui (∆) ≤ Iui (∆− δ) + δ for all δ ≥ 0
2) Iui (∆) ≤ αui (∆) · Ci

Proof: Let ∆, δ ≥ 0 be fixed. During an interval of length
δ, there can be at most δ amount of workload being executed.
Therefore, for all t we have Ii(t, t+∆)−Ii(t, t+∆−δ) ≤ δ.
By using the supremum, we obtain the first part of the lemma.

The maximum number of job releases during an interval of
length ∆ is upper bounded by αui (∆). Each of these jobs can
be executed for at most Ci time units.

In the following three lemmas, we provide the the upper
bound for execi(ti, ti + ∆) if τi ∈ T1, τi ∈ T0 or τi = τk.

Lemma 14. Let τi in T1. For any ∆ ≥ 0, we have

execi(ti, ti + ∆) ≤ αui (∆ + max(Ri − Ti, 0)) · Ci (4)

where Ri is an upper bound on the worst-case response time
of the task τi.

Proof: Since τi ∈ T1, ti can be derived by Case X0,
Case X1 or Case X2 during the procedure from Ψi+1 to Ψi.

If ti is derived by Case X0, then all jobs of τi are released
at or after ti. Therefore, execi(ti, ti + ∆) = Ii(ti, ti + ∆) ≤
Iui (∆) ≤ αui (∆) · Ci. Due to the monotonicity of the arrival
curve, we obtain the result from Equation (4).

If ti is derived by Case X1, then all jobs of τi prior to τi,`i
are finished at time ti and are therefore not executed after ti.
If ti = ri,`i , then all jobs that execute after ti are released
at or after ti, similar to Case X0. More specifically, we have
execi(ti, ti + ∆) = Ii(ti, ti + ∆) ≤ Iui (∆) ≤ αui (∆) · Ci ≤
αui (∆ + max(Ri − Ti, 0)) · Ci. If ti = fi,`i−1, then τi,`i is
released no earlier than ti−Ri + Ti. We obtain execi(ti, ti +
∆) ≤ Ii(ti −Ri + Ti, ti + ∆) ≤ Iui (∆ +Ri − Ti) ≤ αui (∆ +
Ri − Ti) · Ci. Since the arrival curve αui is monotonically
increasing, replacing Ri − Ti by max(Ri − Ti, 0) yields the
result.

If ti is derived by Case X2, then all jobs of τi which are
executed after ti are released at or after ti. Analogously to

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

Case X0, we obtain execi(ti, ti + ∆) = Ii(ti, ti + ∆) ≤
Iui (∆) ≤ αui (∆) · Ci ≤ αui (∆ + max(Ri − Ti, 0)) · Ci as
in Equation (4).

We note that the bound from Lemma 14 is tighter than the
bound from Lemma 11, since αui (∆ + max(Ri − Ti, 0)) ≤
αui (∆ + max(Ri, 0)) ≤ αui (∆ +Ri).

Lemma 15. Let τi in T0. For any ∆ ≥ 0, we have

execi(ti, ti + ∆) ≤ αui (∆− Ti +Ri − C∗i) · Ci + C∗i (5)

where Ri is an upper bound on the worst-case response time
of τi and C∗i = min(αui (Ri) · Ci, Ri) is an upper bound on
the maximum current workload as defined in Section II.

Proof: Since τi ∈ T0, ti can be derived by Case X0 or
Case X3 during the procedure from Ψi+1 to Ψi.

If ti is derived by Case X0, then analogously to the proof of
Lemma 14 we obtain execi(ti, ti+∆) ≤ αui (∆)·Ci. According
to Section II, for the arrival curve we have αui (∆) ≤ αui (∆−
Ti)+1. Due to the monotonicity of αui and since Ri−C∗i ≥ 0,
αui (∆ − Ti) is less than or equal to αui (∆ − Ti + Ri − C∗i).
by using Ci ≤ C∗i we obtain the result from Equation (5).

If ti is derived by Case X3, then c∗i ≤ C∗i denotes the
residual workload at time ti. Let τi,`i , . . . , τi,`i+p be the
jobs that contribute to c∗i , then τi,`i+p finishes no earlier
than fi,`i+p ≥ ti + c∗i . Since fi,`i+p ≤ ri,`i+p + Ri ≤
ri,`i+p+1−Ti+Ri, we obtain that τi,`i+p+1 and all following
jobs are released no earlier than ri,`i+p+1 ≥ ti+c∗i +Ti−Ri.
This yields execi(ti, ti + ∆) ≤ c∗i + Iui (∆ − c∗i − Ti + Ri).
Lemma 13 with δ set to C∗i − c∗i yields the inequality
execi(ti, ti + ∆) ≤ C∗i + Iui (∆ − C∗i − Ti + Ri) which is
at most C∗i + αui (∆− C∗i − Ti +Ri) · Ci.

In general, the bounds from Lemma 11 and Lemma 15 do
not dominate each other. Hence, when τi ∈ T0 both bounds
have to be considered.

Lemma 16. For t ∈ [tk, fk,`] we have execk(tk, t) ≤ a · Ck.

Proof: The interval [tk, fk,`) is a suspension aware busy-
interval of τk with a jobs. Hence, there are only a jobs of τk
that can be executed by the processor during [tk, fk,`). As a
result, execk(tk, t) < execk(tk, fk,`) ≤ a · Ck.

For τk we have an upper bound for the idle time and
execution time formulated in Lemma 10 and Lemma 16
when t ∈ [tk, fk,`]. If t 6= fk,`, i.e., τk,` is not already
finished at time t, we know that there is remaining execution
or suspension time from τk,`. In this case we provide the
following lemma.

Lemma 17. For all t ∈ [tk, fk,`) we have execk(tk, t) +
idle(tk, t) < a · (Ck + Sk).

Proof: We proof this lemma by contradiction and assume
that there exists one t ∈ [tk, fk,`) such that execk(tk, t) +
idle(tk, t) ≥ a · (Ck + Sk). Since execk(tk, t) ≤ a · Ck and
idle(tk, t) ≤ a · Sk by Lemmas 16 and 10, both take their
highest value, i.e., execk(tk, t) = a·Ck and idle(tk, t) = a·Sk.
We conclude that all a jobs of τk in the suspension-aware busy-
interval finished their complete execution time. Moreover,

T0 3 τ1

t∗1

T1 3 τ2

t∗2

τ3

0 2 4 6 8 10 12 14 16 18t∗3

Figure 4: Schedule from Example 3 after Step 3.

idle(tk, t) ≤ suspk(tk, t) by Lemma 8. In particular, all a
jobs suspend themselves for Sk time units each. As a result,
all a jobs of τk are finished and t ≥ fk,`. This contradicts the
assumption.

C. Step 3: Provide Response Time Upper Bound

In this step we provide a response time upper bound for the
job τk,`. For this purpose, we safely enlarge the intervals for
which we estimate the execution time from [ti, t) to [t∗i , t).
We do this to ensure the property t∗i+1− t∗i = idle(ti, ti+1) ≤
Si, which is then utilized to bound the left boundary of the
analysis intervals [t∗i , t). Subsequently, we compose the upper
bounds from Step 2 to obtain a response time bound.

Definition 18. Iteratively, we define

t∗1 := t1 (6)
t∗i := t∗i−1 + xi−1 · idle(ti−1, ti) (7)

for all i = 2, . . . , k, where idle(ti−1, ti) is the amount of idle
time during [ti−1, ti) in the schedule Ψ1.

Example 19. In Figure 4 we present the choice of t∗i that is
obtained from the schedule Ψ1 in Figure 3. We start by setting
t∗1 := t1 = 3. Since there is no idle time between t1 and t2
in Ψ1, we define t∗1 := t∗2. Between t2 and t3 the processor
idles for one time unit, namely during the interval [4, 5). We
set t∗3 := t∗2 + 1 = 4.

We start the analysis by proving a simple property which is
later used to describe the boundaries of the analysis intervals.

Lemma 20. For all i = 1, . . . , k we have t∗i ≤ ti.
Proof: This follows from Definition 18 using the fact that

idle(ti−1, ti) ≤ (ti − ti−1).
With the following definition the execution time bounds

from Step 2 can be summarized by execi(ti, ti+∆) ≤ A1
i (∆)

whenever τi ∈ T1 and ≤ A0
i (∆) whenever τi ∈ T0.

Definition 21 (A1
i and A0

i). We define the A1
i and A0

i by

A1
i (∆) := αui (∆ + max(Ri − Ti, 0)) · Ci (8)

A0
i (∆) := min

(
αui (∆ +Ri) · Ci,
αui (∆− Ti +Ri − C∗i) · Ci + C∗i

)
(9)

for all ∆ ∈ R, where C∗i = min(αui (Ri) · Ci, Ri) as defined
in Section II.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

For the response time upper bound we formulate a property
that only holds when t < fk,`, in the following lemma.
Whenever the property does not hold, we assure that the
finishing time must be exceeded. In particular, this allows to
indicate response time upper bounds.

Lemma 22. For all t ∈ [t∗k, fk,`) the inequality

a · (Ck +Sk)+

k−1∑

i=1

(
xi ·A1

i (t− t∗i)
+(1− xi)A0

i (t− t∗i)

)
> t− t∗k (10)

holds.

Proof: Equation (1) states that idle(t1, t) + exec(t1, t) =
t − t1. We know that idle(t1, t) = idle(t1, tk) + idle(tk, t)
and t1 + idle(t1, tk) = t∗k. Hence, subtracting idle(t1, tk) in
Equation (1) yields

idle(tk, t) + exec(t1, t) = t− t∗k. (11)

For the execution part, exec(t1, t) =
∑k−1
i=1 execi(ti, t) +

exec(tk, t) holds. By Lemma 14 and Lemma 15,

execi(ti, t) ≤ xi ·A1
i (t− ti) + (1− xi) ·A0

i (t− ti) (12)

for all i < k since xi = 1 iff τi ∈ T1 and xi = 0 iff τi ∈ T0.
Since the arrival curve is monotonically increasing, A1

i and
A0
i are monotonically increasing as well. Hence, (12) is upper

bounded by xi ·A1
i (t− t∗i) + (1− xi) ·A0

i (t− t∗i) since t∗i ≤
ti by Lemma 20. Using this together with the bound from
Lemma 17 yields the result from Equation (10).

In the following lemma, we make the property in Equa-
tion (10) independent from t∗i by introducing Q~xi .

Lemma 23. For i = 1, . . . , k−1 we define Q~xi :=
∑k−1
j=i xjSj .

The inequality

a · (Ck + Sk) +
k−1∑

i=1

(
xi ·A1

i (θ +Q~xi)

+(1− xi)A0
i (θ +Q~xi)

)
> θ (13)

holds for all θ ∈ [0, fk − t∗k).

Proof: We obtain Equation (13) be replacing the variable t
in Lemma 22 by θ + t∗k, i.e., θ = t − t∗k. Moreover, we have
(t∗k − t∗i) ≤ Q~xi since (t∗k − t∗i) =

∑k−1
j=i xj · idle(tj , tj+1) ≤∑k−1

j=i xj · Sj because of Lemma 9.
From Lemma 23 we derive that any θ ≥ 0, such that

Equation (13) does not hold, is an upper bound on the response
time of τk,`.

Theorem 24. Let ~x = (x1, . . . , xk−1) ∈ {0, 1}k−1 and a ∈ N.
If there exist some θ ≥ 0 such that

a · (Ck + Sk) +

k−1∑

i=1

(
xi ·A1

i (θ +Q~xi)

+(1− xi)A0
i (θ +Q~xi)

)
≤ θ (14)

with Q~xi defined as in Lemma 23, then θ is an upper bound
on fk,`−rk,`−a+1 for all a-th jobs τk,` in a suspension-aware
busy-interval of τk. In particular,

Rak := θ − inf {∆ ≥ 0 |αuk(∆) ≥ a} (15)

is an upper bound on the response time of any a-th job in a
suspension-aware busy-interval of τk.

Proof: Let τk,` be any a-th job in a suspension-aware
busy-interval of τk. We prove this theorem by contraposition.

Assume that θ ≥ 0 is not an upper bound on fk,`−rk,`−a+1

but Equation (14) holds. In this case, we know that fk,` >
θ + rk,`−a+1 = θ + tk ≥ θ + t∗k. In particular θ ∈ [0, fk −
t∗k). Applying Lemma 23 yields that (14) does not hold. This
contradicts the assumption.

Since we have shown that θ ≥ fk,`−rk,`−a+1, we conclude

Rak = θ − inf {∆ ≥ 0 |αuk(∆) ≥ a} (16)
≥ fk,` − rk,`−a+1 − inf {∆ ≥ 0 |αuk(∆) ≥ a} (17)
≥ fk,` − rk,`−a+1 − (rk,` − rk,`−a+1) (18)
= fk,` − rk,`, (19)

i.e., Rak is a response time upper bound. Since τk,` was chosen
to be any a-th job in a suspension-aware busy-interval of τk,
the response time upper bound is valid for all of them.

D. Step 4: The Schedulability Test

To provide a response time upper bound for all jobs of
τk using Theorem 24, we need to figure out which job in a
suspension-aware busy-interval has the highest response time.
In this regard, we first need to figure out the maximal number
ã of jobs that belong to one suspension-aware busy-interval.
A sufficient condition for the maximal number is Rãk ≤
inf {∆ ≥ 0 |αuk(∆) ≥ ã+ 1}−inf {∆ ≥ 0 |αuk(∆) ≥ ã}, i.e.,
the ã-th job is finished before the next job is released. If the
maximal number can be detected with this condition, then
a worst-case response time upper bound is provided by the
following corollary.

Corollary 25. Let ã ∈ N be the lowest natural num-
ber such that the response time upper bound Rãk derived
by Theorem 24 is at most inf {∆ ≥ 0 |αuk(∆) ≥ ã+ 1} −
inf {∆ ≥ 0 |αuk(∆) ≥ ã}. Then Rk := maxa=1,...,ã(Rak) is an
upper bound on the worst-case response time of τk.

Proof: To prove this corollary, we need to show that each
job of τk is an a-th job in a suspension-aware busy-interval
of τk for some a ∈ {1, . . . , ã}. We do this by contraposition.
Let τk,` be the first job of τk which is not an a-th job in a
suspension-aware busy-interval of τk with a ≤ ã according to
Definition 2.

Let a be the smallest positive integer, such that τk,` is the
a-th job in a suspension-aware busy-interval of τk. Due to
our assumption, a > ã. The job τk,`−a+ã is the ã-th job
in a suspension-aware busy-interval of τk. By Theorem 24,
τk,`−a+ã finishes no later than at time

rk,`−a+ã−ã+1 +Rãk + inf {∆ ≥ 0 |αuk(∆) ≥ ã} (20)
≤ rk,`−a+1 + inf {∆ ≥ 0 |αuk(∆) ≥ ã+ 1} (21)
≤ rk,`−a+ã+1. (22)

In particular, this means that τk,`−a+ã and all previous jobs
are finished at time rk,`−a+ã+1. As a result, τk,` is also an

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

Algorithm 1 Sufficient schedulability test.
1: for k = 1, . . . , n do . Loop tasks.
2: for a = 1, 2, 3, . . . do
3: if a > amax then
4: return False
5: comp := inf

{
∆ ≥ 0

∣∣αu
k(∆) ≥ a+ 1

}

6: − inf
{

∆ ≥ 0
∣∣αu

k(∆) ≥ a
}

7: θ := 0
8: while True do
9: Compute lhs of Eq. (14).

10: if lhs ≤ θ then . Result found.
11: Break
12: else if lhs > Dk then . Too high.
13: return False
14: else . Continue search.
15: θ := lhs
16: Ra

k := θ − inf
{

∆ ≥ 0
∣∣αu

k(∆) ≥ a
}

17: if Ra
k ≤ comp then

18: ã := a
19: Break
20: Rk := maxa=1,...,ã(Ra

k) . WCRT upper bound.
21: return True

(a− ã)-th job in a suspension-aware busy-interval of τk which
contradicts the minimality of a.

We have proven that each job of τk is an a-th job in a
suspension-aware busy-interval of τk for some a ∈ {1, . . . , ã}
and we use Theorem 24 to provide response time upper bounds
Rak for all ã cases.

In Section II we have shown that any sub-additive upper
arrival curve αui is monotonically increasing for all tasks τi.
Hence, the left hand side (lhs) of Equation (14) is monoton-
ically increasing with respect to θ. We use this monotonicity
to apply similar search strategy as classical time-demand
analysis. We start by setting θ := 0 and compute the lhs
of Equation (14). Whenever θ is less than the lhs, we set
θ to the value of the lhs and compute lhs again. When θ is
bigger than or equal to lhs, then θ can be used to compute the
response time upper bound as in Theorem 24. The procedure
is presented in Algorithm 1. Please note that we artificially set
an upper bound amax to exit the algorithm when the number
of jobs in a suspension-aware busy-interval is unbounded.

Upper arrival curves are typically modeled as step functions.
Under the assumption that the upper arrival curve αui is a
step function with minimal step size > 0 for all i, the lhs
increases by a certain minimal step size in each iteration as
well, until either lhs ≤ θ or lhs > Dk. As a result Algorithm 1
is deterministic in such a scenario.

In the following, we show that our method dominates
the Compositional Performance Analysis, which is shortly
introduced in Section III.

Corollary 26. The worst-case response time analysis by using
Compositional Performance Analysis (CPA) for task τk with
suspension as computation, i.e., execution time αuk(∆) · (Ck +
Sk) for any interval length of ∆ ≥ 0, and jitter-based higher-
priority preemptive interference of task τi with execution time
αui (∆+Ri)·(Ci), is dominated by the analysis in Corollary 25
when all higher-priority tasks are in T0.

Proof: When all tasks are in the set T0, then Equa-

tion (14) simplifies to a · (Ck + Sk) +
∑k−1
i=1 A

0
i (θ) ≤ θ.

However, A0
i (θ) is upper bounded by αui (∆ + Ri) · Ci.

This is the formula that is used for the a-th job in the
busy-interval. In our schedulability test, we increase a, un-
til the subsequent job release of τk is outside the busy-
interval, i.e., until Rak ≤ inf {∆ ≥ 0 |αuk(∆) ≥ ã+ 1} −
inf {∆ ≥ 0 |αuk(∆) ≥ ã}. This coincides with the test used
in CPA analysis.

V. SCHEDULABILITY TEST FOR SPORADIC TASKS.

In this Section, we derive a schedulability test for sporadic
tasks with arbitrary deadlines and Tk > 0. We do this by
constructing an arrival curve and using the result from the
previous section. In the end, we show that by restricting to
the constrained-deadline case, our schedulability test coincides
with the test in [8], which is limited to constrained-deadline
task sets. Hence, in this work we provide a natural extension of
their analysis to the generalized case with arbitrary deadlines
and arrival curves.

For any arbitrary-deadline task τi with Ti > 0, an upper
arrival curve is given by

αui =

(
∆ 7→

⌈
max(∆, 0)

Ti

⌉
=

{⌈
∆
Ti

⌉
∆ ≥ 0

0 ∆ < 0

)
. (23)

Applying this to A1
i and A0

i yields

A1
i (∆) =

⌈
∆ + max(Ri − Ti, 0)

Ti

⌉
· Ci (24)

A0
i (∆) = min



⌈

∆+Ri

Ti

⌉
,

⌈
max(∆−Ti+Ri−C∗

i ,0)
Ti

⌉
· Ci + C∗i


 (25)

for all ∆ ≥ 0. Please note that ∆ + max(Ri − Ti, 0) ≥
0 which is why max(·, 0) is omitted in the numerator
of (24). Moreover, we have C∗i = min(

⌈
Ri

Ti

⌉
· Ci, Ri) and

inf {∆ ≥ 0 |αui (∆) ≥ a} = (a − 1) · Ti. This leads to the
following upper bound on the worst-case response time.

Theorem 27. Let ~x = (x1, . . . , xk−1) ∈ {0, 1}k−1 and a ∈ N.
If there exist some θ ≥ 0 such that

a · (Ck + Sk)

+
k−1∑

i=1




xi ·
⌈
θ+Q~x

i +max(Ri−Ti,0)
Ti

⌉
· Ci + (1− xi)·

min



⌈
θ+Q~x

i +Ri

Ti

⌉
,

⌈
max(θ+Q~x

i−Ti+Ri−C∗
i ,0)

Ti

⌉
· Ci + C∗i







≤ θ
(26)

with Q~xi defined as in Lemma 23, then θ is an upper bound
on fk,`−rk,`−a+1 for all a-th jobs τk,` in a suspension-aware
busy-interval of τk. In particular,

Rak := θ − (a− 1)Ti (27)

is an upper bound on the response time of any a-th job in a
suspension-aware busy-interval of τk.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

Proof: This follows from Theorem 24 using the arrival
curve from Equation (23), and A1

i from Equation (24) and A0
i

from Equation (25).
Similar to Corollary 25, we formulate the following.

Corollary 28. Let ã ∈ N be the lowest natural number such
that the response time upper bound derived by Theorem 27 is
at most Tk. Then Rk := maxa=1,...,ã(Rak) is an upper bound
on the worst-case response time of τk.

Proof: The corollary follows from the correctness of
Corollary 25 by using that inf {∆ ≥ 0 |αuk(∆) ≥ ã+ 1} −
inf {∆ ≥ 0 |αuk(∆) ≥ ã} = Tk.

For any constrained-deadline task τi with Ti > 0, if its
schedulability is already ensured, i.e., i < k in this work,
then Ri ≤ Di ≤ Ti is ensured. In such a case C∗i = Ci and
the formulas for A1

i and A0
i from Equation (24) and (25) are

further simplified to

A1
i (∆) =

⌈
∆

Ti

⌉
· Ci (28)

A0
i (∆) =

⌈
∆ +Ri − Ci

Ti

⌉
· Ci (29)

for all ∆ > 0. Please note that Equation (29) is obtained
from (25) in the following way: For all ∆ > 0 we have
∆ − Ti + Ri − Ci ≥ ∆ − Ti > −Ti. Therefore, we
obtain

⌈
max(∆−Ti+Ri−Ci,0)

Ti

⌉
= max(

⌈
∆−Ti+Ri−Ci

Ti

⌉
, 0) =⌈

∆−Ti+Ri−Ci

Ti

⌉
for all ∆ > 0. Moreover,

A0
i (∆) =

⌈
∆− Ti +Ri − Ci

Ti

⌉
· Ci + Ci

=

(⌈
∆− Ti +Ri − Ci

Ti

⌉
+ 1

)
· Ci

=

⌈
∆ +Ri − Ci

Ti

⌉
· Ci.

For the constrained-deadline case, we only need to compute
the worst-case response time upper bound for a = 1, since if
R1
i > Tk then R1

i > Dk as well and the schedulability test
fails. The schedulability test formulated with A1

i and A0
i from

Equation (28) and (29) with only a = 1 coincides with the
schedulability test in [8, Corollary 1]. The high performance
of the abovementioned schedulability test demonstrated in [8]
indicates high performance of the schedulability test derived
in this work.

VI. CHOICE OF T0 AND T1

For the schedulability test presented in Section IV any
partition of the task set T into T0 and T1 can be used.
To fully utilize the power of the proposed test, all possibile
combinations of T0 and T1 should be explored. However, this
results in an exhaustive search of 2k−1 different partitions of
the k− 1 higher-priority tasks, for which every schedulability
test itself also takes high time complexity.

This limitation was also presented by Chen et al. [8] in their
analysis for constrained-deadline task systems. They presented

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00

Ac
ce

pt
an

ce
 R

at
io

All 0
All 1

Heuristic Lin
Comb 3

Exhaust

(a) Low suspension in [0, 0.1] · (Ti − Ci).

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00

Ac
ce

pt
an

ce
 R

at
io

All 0
All 1

Heuristic Lin
Comb 3

Exhaust

(b) Medium suspension in [0.1, 0.3] · (Ti − Ci).

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00

Ac
ce

pt
an

ce
 R

at
io

All 0
All 1

Heuristic Lin
Comb 3

Exhaust

(c) High suspension in [0.3, 0.5] · (Ti − Ci).

Figure 5: Acceptance ratio of our schedulability test with
different heuristics as described in Section VI.

some heuristics, which can also be applied here for arbitrary-
deadline task systems and tasks with arrival curves. Here,
we shortly present the heuristics that can be used to reduce
the complexity significantly. They are compared in the next
section. However, those heuristics are not the focus of this
paper and should be further examined in the future.

The most simple heuristic is to include all into T0, i.e.,
T0 = T and T1 = ∅, or to include all tasks into T1, i.e.,
T0 = ∅ and T1 = T. In Section VII we observe that such a
simple heuristic is already sufficient in many cases.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

As argued in Section V, our analysis is a natural ex-
tension to arbitrary-deadline task systems from the analysis
for constrained-deadline task systems in [8]. In their work
they provide a linear approximation that is stated as follows:
τi is in T1 if Ci

Ti
(Ri − Ci) > Si(

∑i
j=1

Cj

Tj
); otherwise

τi ∈ T0. They provided mathematical reasoning about this
linear approximation.

Our analysis for arbitrary-deadline task systems is much
more involved and more difficult to approximate to find
a closed-form break-even equation to judge whether it is
better to place τi in T0 or in T1. We do not have con-
crete mathematical approximations to derive any classification
strategies to partition T into T0 and T1. However, the above
linear approximation can still be applied. Unfortunately, when
considering arrival curves, it is possible that Ti is 0 and
Ci/Ti → ∞ for Ti → 0. The above linear approximation
is therefore invalid. One possible patch is to apply the linear
approximation of the arrival curve by defining slopei and
consti such that αui (∆) ≤ consti + slopei∆ holds for all
∆ ≥ 0 for every task τi. Then, we can heuristically put task
τi in T1 if slopei(Ri − Ci) > Si(

∑i
j=1 slopej); otherwise

τi ∈ T0.

VII. EVALUATION

In order to evaluate the performance of our proposed
schedulability analysis presented in Section IV, we conduct
three different experiments using synthetically generated tasks
sets as follows:

1) We demonstrate how the heuristics from Section VI
perform for arbitrary-deadline task sets (Experiment –
Suspension Time).

2) We show that the increase of deadlines can be exploited
in our schedulability test, i.e., the schedulability is in-
creased with increased deadlines (Experiment – Varying
Deadline).

3) We examine the performance of our schedulability test
for arrival curves obtained from tasks with release jitter
(Experiment – Release Jitter).

The source code that is used to conduct the experiments
is released on Github [44]. In all our experiments, we use
the Algorithm 1 configured with amax = 10. The values of
inf {∆ ≥ 0 |αui (∆) ≥ a} for different a are stored in a list
to improve the execution efficiency of the schedulability test.
For all three experiments, we present the acceptance ratio of
the test under analysis, i.e., the number of task sets that are
deemed schedulable by the test divided by the total number
of task sets. We consider deadline-monotonic scheduling, i.e.,
the task with a lower relative deadline has a higher priority,
and ties are broken arbitrarily. We emphasize that we do not
consider a constrained-deadline scenario, since in this case
our method is identical to the current state-of-the-art analysis
in [8], which dominates all other valid analyses for the studied
problem.

A. Experimental Setup and Generation

For each total utilization between 0% and 100% in steps
of 5% we randomly generate 200 task sets according to the
description below. In a first step, given the required length
of task sets, we use the UUniFast [2] algorithm to synthesize
task utilizations that add up to a specified cumulative (total)
utilization. In a second step, the minimum inter-arrival time
for each sporadic task is drawn log-uniformly from the interval
[1, 100][ms] as suggested in [13]. Based on the utilization Ui
and minimum inter-arrival time Ti, the worst-case execution
time is calculated by Ci := Ui · Ti [ms]. The arrival curve of
the sporadic tasks is given by αui (∆) =

⌈
∆
Ti

⌉
.

In our experiments, we evaluate Algorithm 1 for different
partitioning strategies of tasks in T into T0 and T1 as described
in Section VI. Namely, these are:
• (All 0): All tasks τi ∈ T are put to T0.
• (All 1): All tasks τi ∈ T are put in T1.
• (Heuristic Lin): The linear heuristic from [8] is adopted.
• (Comb 3): We choose the best partition of the above three

heuristics All 0, All1, and Heuristic Lin (in each step).
• (Exhaust): In the exhaustive approach we apply our

schedulability test for all 2k−1 partitions.

B. Experiments

In this section, we present the details of the experiments
and describe the results.
Experiment – Suspension Time: In this experiment, we
mostly use the settings described in Section VII-A with only
10 tasks per task set due to the time complexity of (Exhaust).
Moreover, we draw the relative deadline Di uniformly from
the interval [0.8Ti, 1.2Ti] and consider three different config-
urations of self-suspension time:
• low – Si is drawn uniformly from [0, 0.1](Ti − Ci),
• medium – Si is drawn uniformly from [0.1, 0.3](Ti−Ci),
• high – Si is drawn uniformly from [0.3, 0.5](Ti − Ci).
Figure 5 shows the evaluation results, in which (All 0) and

(All 1) do not dominate each other. When the suspension
time is short, (All 1) is better than (All 0), in Figure 5a.
When the suspension time is long, (All 0) is better than
(All 1), in Figure 5c . Moreover, (Heuristic Lin) outperforms
both of them for all scenarios. The benefit of exhaust is
marginal compared to the linear heuristic as can be seen in
all Figures 5a, 5b, and 5c.
Experiment – Varying Deadlines: In this experiment, we
use the settings described in Section VII-A with 30 tasks
per task set and draw the suspension time Si uniformly at
random from the interval [0, 0.5(Ti − Ci)] for each task. In
addition, the deadline of all tasks τi is set to Di = X · Ti
(DX) for X = 1.0, 1.1, . . . , 1.5. We evaluate Algorithm 1
with the partitioning strategy (Comb 3) and show the results
in Figure 6. The results show that the acceptance ratio of our
algorithm improves with increased deadlines.
Experiment – Release Jitter: In this experiment, we use the
settings described in Section VII-A with 10 tasks per task set
and draw the suspension time Si uniformly from the interval

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00
Ac

ce
pt

an
ce

 R
at

io

Our D1.0
Our D1.1

Our D1.2
Our D1.3

Our D1.4
Our D1.5

Figure 6: Acceptance ratio of our schedulability test with
extended deadlines.

[0, 0.1](Ti−Ci) for each task. The relative deadline of task τi
is drawn uniformly from the interval [0.8, 1.2]Ti. Moreover,
we consider task sets with release jitter of 10% or 20%. That
is, after the generation of Ci, Ti, Di, Si for τi, we add jitteri
as 0.1Ti or 0.2Ti. The corresponding arrival curve of τi is
then αui (∆) =

⌈
∆+jitteri

Ti

⌉
. There are two different state-of-

the-art methods that we compare with. For the CPA state of the
art (SOTA CPA), we adhere to the state of the art presented
in Corollary 26. For the sporadic state of the art (SOTA Spor),
we transform the task set into a constrained-deadline task set
by reducing the deadline of each τi to min(Di, Ti) and keeping
its original priority. Then we adopt [8] using the heuristic with
three partitions, similar to (Comb 3). The schedulability of
the transformed task set indicates the schedulability of the
original task set. The arrival curve suggests that the minimum
inter-arrival time of two consecutive jobs is Ti − jitteri and
we can shorten the relative deadline to Ti − jitteri if Di >
Ti − jitteri.

The results for the release jitter of 10% or 20% are shown
in Figure 7a and Figure 7b respectively. Our schedulabiltiy
test (Our) performs much better than the state of the art
(SOTA Spor) and (SOTA CPA) for the scenario with release
jitter. We note that we also conducted experiments with higher
suspension and larger number of tasks per task set as well. In
such a case, the suspension time per task becomes longer and
the scenario of having tasks in T1 is less beneficial. When the
analysis with all tasks in T0 is superior, our analysis becomes
also jitter-based analysis which is still superior to the (SOTA
CPA) but the gain of the acceptance ratio becomes smaller.

VIII. CONCLUSION

In this paper, we examine uniprocessor fixed-priority pre-
emptive scheduling for self-suspending task sets. More specif-
ically, we present a suspension-aware schedulability test that
is applicable to task sets with arbitrary deadlines and whose
release properties are specified by arrival curves. To the best
of our knowledge we are the first to present such a result. In
the evaluation we show that our schedulability test performs
well for tasks with increased deadlines.

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00

Ac
ce

pt
an

ce
 R

at
io

SOTA Spor SOTA CPA Our

(a) Release jitter: 10% of Ti.

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00

Ac
ce

pt
an

ce
 R

at
io

SOTA Spor SOTA CPA Our

(b) Release jitter: 20% of Ti.

Figure 7: Acceptance ratio of task sets with release jitter. Our
schedulability test and two state of the art are presented.

This paper answers two open problems that have not been
tackled in the literature of real-time systems. Firstly, we
demonstrate that the suspension-aware busy-interval can be
constructed by including the suspension behavior for arbitrary-
deadline task systems and at most one self-suspending job of
every higher-priority task has to be accounted for the analysis
during this busy-interval. Secondly, this is the first result
exploring the worst-case response time analysis for arrival
curves that can be potentially further integrated into the Real-
Time Calculus (RTC) or Compositional Performance Analysis
(CPA) to empower their capability.

In the future work, we plan to explore mathematical reason-
ing for heuristics to partition T into T1 and T2 and explore
modular performance analysis in RTC or CPA.

REFERENCES

[1] N. C. Audsley and K. Bletsas. Fixed priority timing analysis of real-
time systems with limited parallelism. In 16th Euromicro Conference
on Real-Time Systems (ECRTS), pages 231–238, 2004.

[2] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[3] K. Bletsas and N. C. Audsley. Extended analysis with reduced pessimism
for systems with limited parallelism. In 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 525–531, 2005.

[4] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In DATE, pages 10190–10195, 2003.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

[5] J.-J. Chen. Computational complexity and speedup factors analyses for
self-suspending tasks. In Real-Time Systems Symposium (RTSS), pages
327–338, 2016.

[6] J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen.
Scheduling self-suspending tasks: New and old results. In 31st Eu-
romicro Conference on Real-Time Systems, ECRTS, volume 133, pages
16:1–16:23, 2019.

[7] J.-J. Chen and C. Liu. Fixed-relative-deadline scheduling of hard real-
time tasks with self-suspensions. In Real-Time Systems Symposium
(RTSS), pages 149–160, 2014.

[8] J.-J. Chen, G. Nelissen, and W.-H. Huang. A unifying response time
analysis framework for dynamic self-suspending tasks. In Euromicro
Conference on Real-Time Systems (ECRTS), 2016.

[9] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, Neil, Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen. Many suspensions, many problems:
A review of self-suspending tasks in real-time systems. Real-Time
Systems, 55(1):144–207, 2019.

[10] U. C. Devi. An improved schedulability test for uniprocessor periodic
task systems. In 15th Euromicro Conference on Real-Time Systems
(ECRTS), pages 23–32, 2003.

[11] Z. Dong and C. Liu. Closing the loop for the selective conversion
approach: A utilization-based test for hard real-time suspending task
systems. In RTSS, pages 339–350, 2016.

[12] Z. Dong, C. Liu, S. Bateni, K.-H. Chen, J.-J. Chen, G. von der Brüggen,
and J. Shi. Shared-resource-centric limited preemptive scheduling: A
comprehensive study of suspension-based partitioning approaches. In
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, RTAS, pages 164–176, 2018.

[13] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS
2010), pages 6–11, 2010.

[14] J. C. Fonseca, G. Nelissen, V. Nélis, and L. M. Pinho. Response time
analysis of sporadic DAG tasks under partitioned scheduling. In 11th
IEEE Symposium on Industrial Embedded Systems, SIES, pages 290–
299, 2016.

[15] N. Guan and W. Yi. Finitary real-time calculus: Efficient performance
analysis of distributed embedded systems. In Proceedings of the IEEE
34th Real-Time Systems Symposium, RTSS, pages 330–339, 2013.

[16] M. Günzel and J.-J. Chen. Correspondence article: Counterexample for
suspension-aware schedulability analysis of EDF scheduling. Real Time
Syst., 56(4):490–493, 2020.

[17] M. Günzel and J.-J. Chen. A note on slack enforcement mechanisms
for self-suspending tasks. Real-Time Syst., 2021.

[18] M. Günzel, G. von der Brüggen, and J.-J. Chen. Suspension-
aware earliest-deadline-first scheduling analysis. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):4205–4216, 2020.

[19] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System level performance analysis–the symta/s approach. IEE Proc.-
Computers and Digital Techniques, (2):148–166, 2005.

[20] R. Hofmann, L. Ahrendts, and R. Ernst. CPA: Compositional Perfor-
mance Analysis, pages 721–751. Springer Netherlands, 2017.

[21] W.-H. Huang and J.-J. Chen. Self-suspension real-time tasks under fixed-
relative-deadline fixed-priority scheduling. In Design, Automation, and
Test in Europe (DATE), pages 1078–1083, 2016.

[22] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority
assignment of real-time tasks with dynamic suspending behavior under
fixed-priority scheduling. In Proceedings of the 52nd Annual Design
Automation Conference (DAC), pages 154:1–154:6, 2015.

[23] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System. The Computer Journal, 29(5):390–395, May 1986.

[24] I. Kim, K. Choi, S. Park, D. Kim, and M. Hong. Real-time scheduling
of tasks that contain the external blocking intervals. In RTCSA, pages
54–59, 1995.

[25] J. Kim, B. Andersson, D. de Niz, J.-J. Chen, W.-H. Huang, and
G. Nelissen. Segment-fixed priority scheduling for self-suspending real-
time tasks. Technical Report CMU/SEI-2016-TR-002, CMU/SEI, 2016.

[26] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-
time tasks with rate-monotonic priorities. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 3–12, 2010.

[27] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi. Generalized
finitary real-time calculus. In IEEE Conference on Computer Commu-
nications, INFOCOM, pages 1–9. IEEE, 2017.

[28] J. Le Boudec and P. Thiran. Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet. Springer, 2001.

[29] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In proceedings Real-Time Systems Symposium
(RTSS), pages 201–209, Dec 1990.

[30] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
Real-Time Systems Symposium’89, pages 166–171, 1989.

[31] C. Liu and J. H. Anderson. Suspension-aware analysis for hard real-time
multiprocessor scheduling. In 25th Euromicro Conference on Real-Time
Systems, ECRTS, pages 271–281, 2013.

[32] C. Liu and J. Chen. Bursty-interference analysis techniques for analyzing
complex real-time task models. In Real-Time Systems Symposium
(RTSS), pages 173–183, 2014.

[33] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[34] J. W. S. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition, 2000.
[35] W. Liu, J.-J. Chen, A. Toma, T.-W. Kuo, and Q. Deng. Computation

offloading by using timing unreliable components in real-time systems.
In Design Automation Conference (DAC), volume 39:1 – 39:6, 2014.

[36] M. Negrean and R. Ernst. Response-time analysis for non-preemptive
scheduling in multi-core systems with shared resources. In 7th IEEE
International Symposium on Industrial Embedded Systems (SIES’12),
pages 191–200, 2012.

[37] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Timing Analysis of
Fixed Priority Self-Suspending Sporadic Tasks. In Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 80–89, 2015.

[38] B. Peng and N. Fisher. Parameter adaption for generalized multiframe
tasks and applications to self-suspending tasks. In 22nd IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA, pages 49–58. IEEE Computer Society, 2016.

[39] L. Schönberger, W. Huang, G. von der Brüggen, K. Chen, and J. Chen.
Schedulability analysis and priority assignment for segmented self-
suspending tasks. In 24th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA, pages
157–167. IEEE Computer Society, 2018.

[40] Y. Tang, N. Guan, W. Liu, L. T. X. Phan, and W. Yi. Revisiting GPC and
AND connector in real-time calculus. In 2017 IEEE Real-Time Systems
Symposium, RTSS, pages 255–265. IEEE Computer Society, 2017.

[41] Y. Tang, Y. Jiang, and N. Guan. Improving the analysis of GPC
in real-time calculus. In N. Guan, J. Katoen, and J. Sun, editors,
Dependable Software Engineering. Theories, Tools, and Applications -
5th International Symposium, SETTA, volume 11951 of Lecture Notes
in Computer Science, pages 106–121. Springer, 2019.

[42] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework
for evaluating design tradeoffs in packet processing architectures. In
Proceedings of the 39th Design Automation Conference, DAC, pages
880–885. ACM, 2002.

[43] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. IEEE International Symposium on
Circuits and Systems ISCAS, 4:101–104, 2000.

[44] TU Dortmund LS12. Suspension-aware analysis for arrival curves. https:
//github.com/tu-dortmund-ls12-rt/arr_curve, 2021.

[45] G. von der Brüggen, W.-H. Huang, and J.-J. Chen. Hybrid self-
suspension models in real-time embedded systems. In International Con-
ference on Real-Time Computing Systems and Applications (RTCSA),
pages 1–9, 2017.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
45

