
Work-in-Progress: Evaluation Framework for
Self-Suspending Schedulability Tests

Mario Gnzel, Harun Teper, Kuan-Hsun Chen, Georg von der Brggen and Jian-Jia
Chen

TU Dortmund, Department of Computer Science, Dortmund, Germany

Citation: 10.1109/RTSS52674.2021.00058

BIBTEX:
@inproceedings{guenzel21rtss_evalframework,

author={Mario Gnzel, Harun Teper, Kuan-Hsun Chen, Georg von der Brggen, Jian-Jia Chen},
booktitle={42nd IEEE Real-Time Systems Symposium (RTSS)},
title={Work-in-Progress: Evaluation Framework for Self-Suspending Schedulability Tests},
year={2021},
volume={},
number={},
pages={},
doi={}

}

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

10.1109/RTSS52674.2021.00058

Work-in-Progress: Evaluation Framework for
Self-Suspending Schedulability Tests

Mario Günzel, Harun Teper, Kuan-Hsun Chen, Georg von der Brüggen, Jian-Jia Chen
TU Dortmund University, Dortmund, Germany

{mario.guenzel, harun.teper, kuan-hsun.chen, georg.von-der-brueggen, jian-jia.chen}@tu-dortmund.de

Abstract—Numerical simulations often play an important role
when evaluating and comparing the performance of schedulabil-
ity tests, as they allow to empirically demonstrate their applica-
bility using synthesized task sets under various configurations.
In order to provide a fair comparison of various schedulability
tests, von der Brüggen et al. presented the first version of an
evaluation framework for self-suspending task sets. In this work-
in-progress, we further enhance the framework by providing
more features to ease the use, e.g., Python 3 support, an improved
GUI, multiprocessing, Gurobi optimization, and external task
evaluation. In addition, we integrate the state-of-the-arts we
are aware of into the framework. Moreover, the documentation
is improved significantly to simplify the application in further
research and development. To the best of our knowledge, the
framework contains all suspension-aware schedulability tests for
uniprocessor systems and we aim to keep it up-to-date.

I. INTRODUCTION

In real-time systems, tasks need to comply with timing
requirements. In particular, each task instance (called job) has
to meet its deadline to guarantee correct behavior or prevent
catastrophic outcomes. To provide such timing guarantees,
various schedulability tests were developed and applied for
assessing a given task set. In particular, if such tests return
True, then the task set is schedulable, i.e., each job meets its
deadline even in the worst case.

When a task is eligible to leave the processor and continue
being executed after a certain time interval, such an interval
can be utilized by other jobs. Such a behavior is known as self-
suspension and often occurs in different scenarios like GPU-
Offloading or Multiprocessor synchronization [5]. However,
self-suspension behavior also complicates the schedulability
tests. In order to mitigate the unnecessary pessimism, several
advanced techniques have been developed to take various self-
suspension models into consideration.

In WATERS 2019, an evaluation framework has been pre-
sented by von der Brüggen et al. [26]. It provides an easy-
to-use framework for evaluating the performance of various
schedulability tests, based on synthesized task sets. However,
only a few schedulability tests were implemented. In this work,
we enhance the framework by implementing the state-of-the-
arts we are aware of and provide additional features. The
functionality of the framework is threefold: First, it can be used
to generate self-suspending task sets, using existing synthesis
approaches [7]. Second, it provides schedulability tests that
can be applied to the generated task sets or external task

sets, which are loaded into the framework. Third, it illustrates
the performance of schedulability tests by providing plots of
acceptance ratio, i.e., the amount of task sets that are deemed
schedulable by the test divided by the total amount of task
sets, over task utilizations.

For categorization, the schedulability tests can be distin-
guished according to self-suspension models as defined in [5]:

• Segmented self-suspension: The structure of execution
and suspension segments is predefined for each task.

• Dynamic self-suspension: Only upper bounds on total
execution time and total suspension time are provided.
The segmentation of jobs may change within one task.

• Hybrid self-suspension: Different segmentations are pre-
defined for one task. Each job follows one of these
segmentations.

Moreover, there are different deadline constraints:

• Implicit deadline: Deadline and period/minimal inter-
arrival time of each task coincide.

• Constrained deadline: The relative deadline of each task
is less than or equal to its period/minimal inter-arrival
time.

• Arbitrary deadline: There are no constraints on the dead-
lines, i.e., the deadline can be higher than, equal to, or
lower than the period/minimal inter-arrival time.

In the framework, we also classify the schedulability tests,
according to the targeted self-suspension models. However, as
the tests are not always compatible with constrained deadlines
or arbitrarily deadlines, the framework only considers the
implicit-deadline model for generating automatic comparisons.
Furthermore, since there is no standardized way of construct-
ing constrained- and arbitrary-deadline task sets yet in the
literature, the users are recommended to adjust the program for
evaluating constrained- or arbitrary-deadline task systems if
necessary. The user can easily configure it as different deadline
models, so we leave that out.

In a nutshell, the schedulability tests from 18 relevant papers
are realized in the current framework. The enhanced frame-
work does not only support the evaluation and comparison of
schedulability tests, but also integrates the Gurobi optimization
solver [9] to supply tests which use linear programming. The
framework is published on Github at [18] and there is an
ongoing effort to keep the framework up to date.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
58

1

2

3

4

Figure 1: Overview of the enhanced framework.

II. FRAMEWORK DESCRIPTION

In this section, we first introduce the features of the current
framework in detail. In Figure 1 the GUI of our framework is
presented. Besides the general setting of the framework (1),
the framework consists of three components (2 , 3 and 4):

1) A task set generator to provide periodic/sporadic task
sets for evaluation.

2) The schedulability test evaluator applies a choice of
schedulability tests to the generated task sets.

3) The plotting tool configurator illustrates the perfor-
mance of the schedulability tests.

Please note that the following description is explained in a
sequential manner to demonstrate the usage from beginning
to end. However, these components can also be used indepen-
dently for different scenarios (see Section III).
General Setting: In part 1 , the user selects the option to
either generate task sets in the framework or to load an external
file that contains the task set data. The task sets can be reused
by saving them after evaluation and reloading them at a later
point in time. Additionally, the number of threads used to
evaluate the task sets in parallel can be set. The generated
or loaded task sets are evenly distributed to the selected
number of threads and evaluated in parallel. The evaluation of
a large number of task sets can therefore be done in a fraction
of the time compared to the case without multiprocessing.
Furthermore, the seed for the random number generator can
be set, so that the results of a previous run can be reproduced.
Task Set Configurations: The parameters of synthesized
task sets can be configured in part 2 . The task sets are

generated using the integrated UUnifast algorithm [1] and can
be configured by using the parameters that are provided in the
framework. In particular, these parameters are: the number of
task sets, the number of tasks per set, the number of suspension
segments, the utilization values to evaluate, and the suspension
parameters for the tasks. At first, the utilization of each task
is drawn randomly according to UUnifast [1]. Afterwards, the
period and deadline are drawn from a log-uniform distribution,
where the default is over two orders of magnitude, i.e.,
[1,100]. Depending on the considered suspension models, the
suspension time of each task is drawn accordingly1.
Test Selection: After configuring the parameters, the user can
select a set of schedulability tests in part 3 to evaluate the task
sets. All currently available schedulability tests are presented
in Table I. Please note that some schedulability tests can set
custom parameters, e.g., SEIFDA-based approaches [25]. After
pressing the Run button at the bottom, each generated task set
will be tested by the selected schedulability tests iteratively.
If a tested task set is deemed schedulable, the considered test
will return True. After checking all task sets, the framework
counts the number of Trues, and calculates the percentage of
task sets that are deemed schedulable by each test. It is worth
to note that the framework can also support tests which require
linear programming solvers, e.g., MILP-ReleaseJitter, by using
the Gurobi optimization solver [9].
Plotting Format: The results of the schedulability analysis
can then be plotted using an integrated tool of the framework.
The user can determine the format of the plots in part 4 ,

1Details of implementation can be found in the readme file on [18].

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
58

Year Papers Methods Suspension Deadline New
Baseline approaches Suspension as computation, i.e., SCEDF, SCRM, SUSPOBL — (up to tests)

2000 Liu [16, pp. 164–165] SUSPBLOCK (proof in [4]) Dynamic Implicit X
2014 Liu et al. [17] PROPORTIONAL Segmented Implicit
2014 Chen and Liu [3] EDA Segmented Implicit
2014 Liu and Chen [15] Idv-Burst-RM Dynamic Implicit X
2015 Liu and Anderson et al. [14]1 WLAEDF Dynamic Implicit X
2015 Huang et al. [13] PASS-OPA Dynamic Constrained
2015 Nelissen et al. [20], [21],

Biondi et al. [2]2
MILP-ReleaseJitter Segmented Constrained X

2016 Dong and Liu [6]1 UDLEDF Dynamic Implicit X
2016 Mohaqeqi et al. [19] SRSR Segmented Implicit X
2016 von der Brüggen et al. [25] SEIFDA-minD, SEIFDA-maxD, SEIFDA-PBminD, SEIFDA-MILP, NC Segmented Implicit
2016 Peng and Fisher [22] GMFPA Segmented Arbitrary X
2016 Huang and Chen [12] EDAGMF-OPA Segmented Constrained X
2016 Chen et al. [4] UNIFRAMEWORK, SUSPOBL, SUSPJIT, SUSPBLOCK Dynamic Constrained X
2017 von der Brüggen et al. [24] Oblivious-IUB, Clairvoyant-SSSD, Oblivious-MP, Clairvoyant-PDAB Hybrid Implicit
2018 Schönberger et al. [23]3 SCAIR-RM, SCAIR-OPA Dynamic Constrained
2019 Yalcinkaya et al. [27] UPPAAL Dynamic Implicit X
2020 Günzel et al. [10] RSS, RTEDF Dynamic Implicit X

1 Uniprocessor version is presented in [10].
2 Originally proposed in Section VI in [20], revised in [21], implemented in [2] with open source.
3 Originally proposed in [11] and revised in [23].

Table I: Schedulability tests included in the framework.

Figure 2: Plot provided by the framework schedulability
analysis with three tests and 100 tasks per set.
either plot each selected test by itself, or combine the plots
of all selected tests, so that they can be directly compared
against each other. A resulting exemplary plot is shown in
Figure 2. The framework relies on a plotting library, namely
matplotlib in Python. The raw data of the evaluation can
also be post-processed by other plotting schemes.

III. RESEARCH APPLICATIONS

The framework now can also be applied in different research
scenarios. In the following, we detail three scenarios, in which
the framework can be used:

• Scenario 1: Evaluate and compare the performance of an
own schedulability test.

• Scenario 2: Analyze own task sets with already known
schedulability tests.

• Scenario 3: Utilize already known schedulability tests in
an own python program.

Scenario 1: Additional schedulability tests can be integrated
into the framework. This involves two steps: First, the analysis
needs to be implemented in Python. Alternatively for C++-
algorithms, a pre-built binary can also be executed from a
Python script. Second, the additional test needs to be integrated
into the framework infrastructure. The test has to be integrated
into the testing component of the framework and it has to be
made available in part 3 of the GUI. In particular, several
things should be added into effsstsMain.py, e.g., add an
entry to the GUI and an additional case to the switchTest
method. After integration, it is possible to evaluate the test
using the provided task generator and plotting tool.

Scenario 2: Custom task sets can be loaded into the frame-
work to evaluate them using the provided schedulability tests.
For this scenario the task set generator component (2) is
replaced, but the other two components, i.e., 3 and 4

are utilized. In this regard, we additionally provide a script
SaveTaskSet to convert task sets into the required format.
This script will guide the user to create a serialized file for
custom task sets, so that they can be loaded into the framework
properly. To this end, the general setup 1 also has to be
configured accordingly to load the own task sets, i.e., ticking
“Load Taskset” and enter the name of the saved task set. In
fact, this feature is particularly useful for a large number of
task sets which need to be evaluated all at once.

Scenario 3: The realized schedulability tests in the framework
can also be imported into other programs, which can be
done by a standard import statement in Python. The names
for the schedulability tests are identical as the ones in part
3 of the GUI. After the import, it is possible to evaluate

custom external task sets, as long as the required arguments
are given correctly. Please note that the return value of every
schedulability test is always in a Boolean expression.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
58

IV. FUTURE WORK

In this work, we enhance an evaluation framework for self-
suspending schedulability tests, by providing more complete
features to ease the use for the users. In addition, the enhanced
framework has included all suspension-aware schedulability
tests developed for uniprocessor systems, and there is an
ongoing effort to keep the framework up to date.

The current version of the framework is focused on schedu-
lability test comparison. For task creation, we only consider
workload/task constructions based on UUnifast [1], which
have been widely used in the literature for evaluating self-
suspending task systems. The current approach generates the
self-suspension time based on a randomized percentage of the
slack of a task (i.e., a randomized percentage of the relative
deadline minus the worst-case execution time). This approach
is sensitive to the number of tasks and the target utilization. In
future work, we plan to implement a collection of benchmarks
for task set creation to cover a large variety of task set
characteristics and explore the potential pitfalls of different
configurations. In particular, we aim to integrate an extended
version of the Dirichlet Rescale (DRS) [8] task generation
algorithm for self-suspending task systems. Moreover, we
would like to extend our work to multiprocessor scenarios. In
this regard, we aim to provide a collection of benchmarks for
multiprocessor self-suspension task set generation and analysis
for those task sets.

V. ACKNOWLEDGEMENT

We would like to acknowledge the support of all the authors
who helped to extend the framework. In particular, we would
like to thank Bo Peng, Morteza Mohaqeqi, Alessandro Biondi
and Beyazit Yalcinkaya for providing the source code and
additional information of their work. Furthermore, we thank
Milad Nayebi, Tai-Jung Chang and Junjie Shi who were part
of the team that developed the initial version.

This work has been supported by Deutsche
Forschungsgemeinschaft (DFG), as part of Sus-
Aware (Project No. 398602212), and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– Projektnummer 124020371 – SFB 876.

REFERENCES

[1] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[2] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo. A framework for supporting real-time applications on dynamic
reconfigurable fpgas. In IEEE Real-Time Systems Symposium (RTSS),
pages 1–12, 11 2016.

[3] J.-J. Chen and C. Liu. Fixed-relative-deadline scheduling of hard real-
time tasks with self-suspensions. In Real-Time Systems Symposium
(RTSS), pages 149–160, 2014. A typo in the schedulability test in
Theorem 3 was identified on 13, May, 2015.

[4] J.-J. Chen, G. Nelissen, and W.-H. Huang. A unifying response time
analysis framework for dynamic self-suspending tasks. In Euromicro
Conference on Real-Time Systems (ECRTS), 2016.

[5] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. C. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen. Many suspensions, many problems:
a review of self-suspending tasks in real-time systems. Real-Time
Systems, 55(1):144–207, 2019.

[6] Z. Dong and C. Liu. Closing the loop for the selective conversion
approach: A utilization-based test for hard real-time suspending task
systems. In IEEE Real-Time Systems Symposium (RTSS), pages 339–
350, 2016.

[7] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS
2010), pages 6–11, 2010.

[8] D. Griffin, I. Bate, and R. I. Davis. Generating utilization vectors for
the systematic evaluation of schedulability tests. In RTSS, pages 76–88.
IEEE, 2020.

[9] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.
[10] M. Günzel, G. von der Brüggen, and J.-J. Chen. Suspension-

aware earliest-deadline-first scheduling analysis. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):4205–4216, 2020.

[11] W.-H. Huang and J.-J. Chen. Schedulability and priority assignment
for multi-segment self-suspending real-time tasks under fixed-priority
scheduling. Technical report, Technical University of Dortmund, Dort-
mund, Germany, 2015.

[12] W.-H. Huang and J.-J. Chen. Self-suspension real-time tasks under fixed-
relative-deadline fixed-priority scheduling. In Design, Automation, and
Test in Europe (DATE), pages 1078–1083, 2016.

[13] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority
assignment of real-time tasks with dynamic suspending behavior under
fixed-priority scheduling. In Proceedings of the 52nd Annual Design
Automation Conference (DAC), pages 154:1–154:6, 2015.

[14] C. Liu and J. H. Anderson. Erratum to “suspension-aware analysis
for hard real-time multiprocessor scheduling”, 2015. https://cs.unc.edu/
~anderson/papers/ecrts13e_erratum.pdf.

[15] C. Liu and J. Chen. Bursty-interference analysis techniques for analyzing
complex real-time task models. In Real-Time Systems Symposium
(RTSS), pages 173–183, 2014.

[16] J. W. S. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition, 2000.
[17] W. Liu, J.-J. Chen, A. Toma, T.-W. Kuo, and Q. Deng. Computation

offloading by using timing unreliable components in real-time systems.
In Design Automation Conference (DAC), volume 39:1 – 39:6, 2014.

[18] T. D. LS12. Evaluation framework for self-suspending task systems.
https://github.com/tu-dortmund-ls12-rt/SSSEvaluation, 2021.

[19] M. Mohaqeqi, P. Ekberg, and W. Yi. On fixed-priority schedulability
analysis of sporadic tasks with self-suspension. In Proceedings of the
24th International Conference on Real-Time Networks and Systems,
RTNS, pages 109–118, 2016.

[20] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Timing Analysis of
Fixed Priority Self-Suspending Sporadic Tasks. In Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 80–89, 2015.

[21] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Errata: Timing
analysis of fixed priority self-suspending sporadic tasks. Technical
Report CISTER-TR-170205, CISTER, ISEP, INESC-TEC, 2017.

[22] B. Peng and N. Fisher. Parameter adaptation for generalized multiframe
tasks and applications to self-suspending tasks. In International Con-
ference on Real-Time Computing Systems and Applications, 2016.

[23] L. Schönberger, W.-H. Huang, G. von der Brüggen, K.-H. Chen, and J.-
J. Chen. Schedulability analysis and priority assignment for segmented
self-suspending tasks. In 2018 IEEE 24th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 157–167, 2018.

[24] G. von der Brüggen, W.-H. Huang, and J.-J. Chen. Hybrid self-
suspension models in real-time embedded systems. In International Con-
ference on Real-Time Computing Systems and Applications (RTCSA),
2017.

[25] G. von der Brüggen, W.-H. Huang, J.-J. Chen, and C. Liu. Uniprocessor
scheduling strategies for self-suspending task systems. In International
Conference on Real-Time Networks and Systems, RTNS ’16, pages 119–
128, 2016.

[26] G. von der Brüggen, M. Nayebi, J. Shi, K.-H. Chen, and J.-J. Chen.
Evaluation framework for self-suspending task systems. In International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), 2019.

[27] B. Yalcinkaya, M. Nasri, and B. Brandenburg. An exact schedulability
test for non-preemptive self-suspending real-time tasks. pages 1228–
1233, 03 2019.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
SS

52
67

4.
20

21
.0

00
58

