
Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

EDF-Like Scheduling for Self-Suspending Real-Time
Tasks

Mario Günzel, Georg von der Brüggen, Kuan-Hsun Chen, Jian-Jia Chen
TU Dortmund University, Department of Computer Science, Dortmund, Germany

University of Twente, Department of Computer Science, preprint.pdf, The Netherlands

Citation:

BIBTEX:
@inproceedings{22RTSS_GuenzelBCC,

author={Mario Günzel, Georg von der Brüggen, Kuan-Hsun Chen, Jian-Jia Chen},
booktitle={43rd IEEE Real-Time Systems Symposium (RTSS)},
title={EDF-Like Scheduling for Self-Suspending Real-Time Tasks},
year={2022},
volume={},
number={},
pages={},
doi={}

}

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

computer
science 12

EDF-Like Scheduling for Self-Suspending
Real-Time Tasks

Mario Günzel∗, Georg von der Brüggen∗, Kuan-Hsun Chen‡, and Jian-Jia Chen∗
∗TU Dortmund University, Germany, {mario.guenzel, georg.von-der-brueggen, jian-jia.chen}@tu-dortmund.de

‡University of Twente, The Netherlands, k.h.chen@utwente.nl

Abstract—In real-time systems, schedulability analyses provide
the required timing guarantees. However, current suspension-
aware analyses are limited to Task-Level Fixed-Priority (TFP)
scheduling or Earliest-Deadline-First (EDF) scheduling of
constrained-deadline self-suspending task systems. In this work,
we provide a unifying schedulability analysis for uniproces-
sor Global EDF-Like (GEL) schedulers of arbitrary-deadline
task sets. While analyses for EDF-Like schedulers are rare,
many widely used scheduling algorithms can be considered
as EDF-Like, for example, EDF, First-In-First-Out (FIFO),
Earliest-Quasi-Deadline-First (EQDF), and Suspension-Aware
EDF (SAEDF). Therefore, the provided analysis is applicable
to those algorithms. It can be applied to TFP scheduling as well.
Our analysis is the first suspension-aware schedulability analysis
for arbitrary-deadline sporadic real-time task systems under Job-
Level Fixed-Priority (JFP) scheduling, such as EDF, and the first
unifying suspension-aware schedulability analysis framework
that covers a wide range of scheduling algorithms. Through
numerical simulations, we show that our analysis improves the
state of the art for constrained-deadline EDF scenarios.

Index Terms—Real-Time Systems, Schedulability Analysis,
EDF-Like, Self-Suspension

I. INTRODUCTION

In real-time systems, jobs (task instances) of recurrent tasks
have to satisfy timing constraints. That is, each job has to
finish no later than its absolute deadline. Hence, the com-
pliance to these timing constraints under a given scheduling
algorithm has to be verified using a related schedulability
test. Most classical analysis techniques, like the critical instant
theorem [28], Time-Demand Analysis (TDA) [21], [24], or the
demand bound function [3], are based on the assumption that
a job, after it is released, is either executed or waiting to be
executed in the ready queue until it finishes.

Contrarily, a job of a self-suspending task may release the
processor before being completed, for instance when waiting
to get access to a shared resource or offloading computation
to an external device, and continue its execution later on. In
this setting, the classical critical instant theorem does not hold
and related early results [1], [22] have been disproved, cf., [9].
Recently, a large number of additional results have also been
reported to be flawed in [9], [14], [15], [31], showing that
analyses for self-suspending task systems is non-trivial.

A vast majority of the literature studies either the segmented
or the dynamic self-suspension model. The segmented model
[5]–[7], [18], [19], [23], [30], [32], [33], [36] predefines an
iterating pattern of execution and suspension intervals for the
execution behavior of all jobs for each task, based on execution

and suspension time upper bounds for each segment. The
dynamic model [1], [8], [11], [16], [20], [27] assumes that,
as long as the maximum suspension time of the related task
is not exceeded, jobs may suspend as often and as long as
desired. A hybrid self-suspension model was proposed by
von der Brüggen et al. [35], which can improve the modelling
accuracy of the dynamic self-suspension model and increase
the flexibility of the segmented self-suspension model. De-
tailed discussions can be found in the survey papers by
Chen et al. [9], [10]. In this work, we focus on dynamic self-
suspending tasks on a single processor, whereas the scheduling
algorithm and (sufficient) schedulability test can be used for
the segmented or hybrid self-suspension model as well.

Previous work for self-suspending task sets considered
either Task-Level Fixed-Priority (TFP) scheduling or Earliest-
Deadline-First (EDF) scheduling. For preemptive TFP (i.e., if
one task has higher priority than another, all its jobs have
higher priority as well), the work by Chen [8] (and its recent
extension by Günzel et al. [17] to arbitrary-deadline and arrival
curves) dominate the other schedulability tests derived in the
literature [1], [20], [22], [29]. For task-level dynamic-priority
scheduling algorithms (where the priority of the jobs of one
task may differ over time) only EDF (where the priority of
a job is specified by its absolute deadline) has been studied.
The result by Devi [11] has recently been disproved [14]. The
results by Liu and Anderson [26] and Dong and Liu [12]
for global EDF can be applied for uniprocessor systems by
setting the number of processors to one. The only dedicated
analysis for EDF on uniprocessor systems by Günzel et al. [16]
significantly improves their results in the uniprocessor setting.

In this work, we consider the window-constrained scheduler
EDF-Like (EL). The category of window-constrained sched-
ulers, where at each time job priorities are assigned according
to a priority point (PP), has originally been proposed by Leon-
tyev and Anderson [25] to provide general tardiness bounds for
multiprocessor scheduling. The popular task-level dynamic-
priority algorithms, such as EDF, First-In-First-Out (FIFO),
and EQDF [2] fall into this category.
Contributions: We provide the first unifying suspension-
aware schedulability test for uniprocessor EDF-Like (EL)
scheduling that can be applied to a set of widely used
scheduling algorithms, liked EDF, FIFO, EQDF, and TFP, for
arbitrary-deadline task systems.

• In Section III, we discuss the capabilities and limitations
of EDF-Like (EL) scheduling algorithms and demon-

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

strate how they can be configured to behave as EDF,
FIFO, EQDF, suspension-aware EDF (SAEDF), TFP
algorithms, and hierarchical scheduling.

• In Section IV, we introduce a unifying schedulability test
for uniprocessor EL scheduling algorithms, that is appli-
cable to self-suspending arbitrary-deadline task systems.
To the best of our knowledge, this is the first result that
can handle arbitrary-deadline task sets under Job-Level
Fixed-Priority (JFP) scheduling and cover a wide range
of scheduling algorithms in one analysis framework for
self-suspending task systems.

• Our numerical evaluation in Section V shows that our
schedulability test outperforms the state of the art for
EDF and performs slightly worse than the test by
Chen et al. [8] for Deadline-Monotonic scheduling under
constrained-deadlines. We also examine the performance
of different configurations for EQDF and SAEDF.

II. SYSTEM AND SCHEDULING MODEL

System model. We consider a set T = {τ1, . . . , τn} of
n ∈ N independent self-suspending sporadic real-time tasks
in a uniprocessor system. Each task τi, i ∈ {1, . . . , n} is
described by a 4-tuple τi = (Ci, Si, Di, Ti), composed of
worst-case execution time (WCET) Ci ∈ [0, Di], maximum
suspension time Si ≥ 0, relative deadline Di ≥ 0, and
minimum inter-arrival time Ti > 0. It releases an infinite
number of jobs according to Ti, i.e., ri,j+1 ≥ ri,j +Ti, where
the jth job of τi is denoted by τi,j and released at time ri,j
with j ∈ N. Each job τi,j has to be executed for ci,j ∈ [0, Ci]
time units before its absolute deadline di,j = ri,j + Di.
Each job may suspend itself dynamically, i.e., it may suspend
itself as often as desired without exceeding Si. We denote
by Ui :=

Ci

Ti
the utilization of τi and by U :=

∑n
i=1 Ui the

total utilization of T. A task set T has constrained-deadlines
if Di ≤ Ti for every τi ∈ T; otherwise, it has arbitrary-
deadlines. We assume continuous time, but our results can be
applied for discretized time as well.

Scheduling algorithms. A scheduling algorithm A specifies
the execution behavior of jobs on the processor, that is, it
determines at each time, which of the jobs in the ready queue
is scheduled. We denote start and finish of job τi,j in a
certain schedule with si,j and fi,j , respectively, and call a
job τi,j finished by time t, if fi,j ≤ t. The length of the
time interval from release to finish is called the response time
Ri,j = fi,j − ri,j . The worst-case response time of a task τi
is Ri = supj Ri,j . A schedule is feasible, if all jobs finish
before or at their absolute deadline, i.e., fi,j ≤ di,j for all
τi,j or Ri ≤ Di for all τi. A task set is schedulable by a
scheduling algorithm A if for each job sequence released by T,
A creates a feasible schedule. In this work, we only consider
preemptive, work-conserving scheduling, where job execution
may be preempted to execute another job, and the processor
executes a job whenever there is one in the ready queue.

EDF-Like scheduling. In EDF-Like (EL) scheduling, the
priority of each job τi,j is based on a job-specific priority point

τi,j

ri,j fi,j πi,j di,j

Πi

Di

τ1

τ2

0 2 4 6 8 10 12 14 16

Fig. 1: Left: Presentation of our Notation. Right: Jobs of two
tasks scheduled by EL scheduling. The schedule is feasible
and the job priority is given by π1,1 < π1,2 < π2,1 < π1,3.

TFP ⊆ EL ⊆ JFP ⊆ TDP

Fig. 2: Expressiveness of the scheduling policies Task-
Level Fixed-Priority (TFP), EDF-Like (EL), Job-Level Fixed-
Priority (JFP), and Task-Level Dynamic-Priority (TDP).

(PP) πi,j ∈ R. More specifically, a job τi,j has higher priority
than τi′,j′ if πi,j < πi′,j′ . The priority point is induced by the
release of the job and a task specific parameter Πi denoted
as relative priority point, i.e., πi,j = ri,j + Πi. As a result,
smaller Πi in comparison to the other relative priority points
favor the jobs of τi to be scheduled first. The left hand side
of Figure 1 depicts the notation used throughout this work.

Definition 1 (Priority assignment in EL scheduling). Let τi,j
and τi′,j′ be two different jobs of tasks τi and τi′ in T.
Furthermore, let Πi and Πi′ be the relative priority points
of τi and τi′ . The job τi,j has higher priority than τi′,j′ if
πi,j < πi′,j′ for the priority points πi,j = ri,j + Πi and
πi′,j′ = ri′,j′ + Πi′ . If the priority points coincide, i.e.,
πi,j = πi′,j′ , then the tie is broken arbitrarily.

Under an assignment of relative priority points
(Π1, . . . ,Πn), whenever a job is added to the ready
queue, the new highest-priority job is determined and
executed. Whenever a job finishes or suspends itself, it is
removed from the ready queue and a new highest-priority job
is determined and executed.
Example 2. The right hand side of Figure 1 shows a schedule
for two tasks τ1 = (C1 = 2, S1 = 0, D1 = 5, T1 = 5)
and τ2 = (C2 = 7, S2 = 3, D2 = 16, T2 = 16) under EL
scheduling with relative priority points (Π1 = 4,Π2 = 10).

We assume that the jobs of a task τi must be executed one
after another in a FIFO manner. That is, if a job τi,j of task τi
is only eligible for execution (i.e., ready to be executed) after
all jobs of τi released prior to τi,j finish execution. Specifically,
τi,j cannot be executed while τi,j−1 is suspended.

III. CAPABILITIES AND LIMITATIONS OF EL SCHEDULING

Since the class of EDF-Like (EL) scheduling algorithms is
considered sparsely in the literature, in this section, we discuss
how they relate to Task-Level Fixed-Priority (TFP), Job-Level
Fixed-Priority (JFP), and Task-Level Dynamic-Priority (TDP)
scheduling. This relation is depicted in Figure 2.

Since all jobs are assigned priorities based on a fixed priority
point, EL scheduling algorithms are by design a subclass of

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

JFP algorithms, i.e., if one job has higher priority than another
job at some point in time, then it has higher priority at all
times.1 While the EL scheduling algorithms are a subset of
JFP, it contains many frequently used JFP algorithms:

• Earliest-Deadline-First (EDF) [28] (Πi = Di)
• Earliest-Quasi-Deadline-First (EQDF) [2]

(Πi = Di + λCi for some predefined λ ∈ R)
• Suspension-aware variations of EDF (SAEDF)

(Πi = Di + λSi for some predefined λ ∈ R)
• First-In-First-Out (FIFO) (Πi = 0)

As a result, the schedulability test that we present in Section IV
is applicable to all these scheduling algorithms by configuring
the relative priority points Πi accordingly.

Moreover, Task-Level Fixed-Priority (TFP) algorithms can
be treated as EL scheduling algorithms in the analysis as
well. That is, each TFP algorithm can be transferred into
a related EL scheduling algorithm with the same behavior.
Hence, if a task set is determined to be schedulable under
this EL scheduling algorithm, it is schedulable under the TFP
algorithm as well. Assume a given TFP assignment, that the
tasks are ordered by their priorities, i.e., τk has higher priority
than τk′ if and only if k < k′ (with τ1 having highest priority),
and that a worst-case response time (WCRT) upper bound Kj

for each task either for the schedule under EL scheduling or
under TFP scheduling is given. If we set the relative priority
point of each task τi to Πi =

∑i
j=1 Kj , then EL and TFP

coincide. An EL schedulability test can also be utilized when
the relative deadline Di is taken as an upper bound on the
WCRT. In both cases, if a task set is schedulable according to
an EL schedulability test, it is also schedulable under the given
TFP assignment. For the sake of completeness, we provide a
detailed proof for these two statements in the appendix. We
note that the response time of tasks may be unbounded and
that for such cases a TFP algorithm cannot be treated as EL
scheduling algorithm. However, these cases do not apply in
practical scenarios if it is required that the jobs of all tasks
finish at or before their absolute deadline.

The assignment of relative priority points also allows to
mix different scheduling algorithms or hierarchical scheduling
algorithms as shown in the following example.

Example 3. We consider a task set T = {τ1, . . . , τ4} of 4
tasks. In the following we demonstrate how to assign priorities
such that τ1 and τ2 are on one priority-level, and τ3 and τ4
are on another priority-level, and on each priority-level EDF
is utilized. We assign the relative priority points Π1 = D1,
Π2 = D2, Π3 = D1 +D2 +D3 and Π4 = D1 +D2 +D4. If
T is schedulable under EL scheduling with the given relative
priority points, then EL produces the same schedule as the
desired scheduling policy: Since Πi−Πj ≥ Di for all i = 3, 4
and j = 1, 2, a job J of τ1 or τ2 can only have higher priority
than a job J ′ of τ3 or τ4 if J ′ is already finished when J is
released. τ1 and τ2 are scheduled according to EDF, since their

1Please note that Leontyev and Anderson [25] define priority points as
well. However, they obtain priority points by prioritization functions, thus
their model has the same expressiveness as TDP.

relative priority points are set to the deadline. The tasks τ3 and
τ4 are also scheduled according to EDF, since the difference
between the global priorities π3,j and π4,j′ of each two jobs
τ3,j and τ4,j′ is the same as the difference between the absolute
deadlines r3,j +D3 and r4,j′ +D4.

To conclude, the expressiveness of EDF-Like (EL) schedul-
ing algorithms is between Task-Level Fixed-Priority (TFP) and
Job-Level Fixed-Priority (JFP) scheduling, but includes many
important JFP algorithms like EDF, EQDF, FIFO, and SAEDF.
Furthermore, EL scheduling allows to mix different scheduling
strategies and hierarchical scheduling.

IV. SCHEDULABILITY TEST FOR EL SCHEDULING
ALGORITHMS

In this section, we derive a sufficient schedulability test
for EL scheduling. That is, for an arbitrary-deadline task set
T = {τ1, . . . , τn} and an assignment of relative priority points
(Π1, . . . ,Πn) the test returns True if T is schedulable by the
corresponding EL scheduling algorithm.

Our high-level idea is to bound the worst-case response time
of a task τk by looking at one job τk,ℓ, bounding the time the
job needs to run, the time the job can be suspended, and the
possible interference, both from higher-priority tasks and from
earlier jobs of the same task τk.

We summarize the individual steps in the following
roadmap, which we depict in Figure 3:

• In Section IV-A, we formalize the above intuition by
defining two processor states from the perspective of τk,ℓ,
namely the intervals where the processor is working on
or suspended by jobs of τk and the intervals where the
processor is blocked by higher-priority jobs. This leads
to our analysis backbone, the response time upper bound
in Theorem 9, which assumes that upper bounds for all
the interference values are known.

• In Section IV-B, we provide upper bounds for the self-
interference, denoted

∑
j<ℓ WSk,j , and for the interfer-

ence from other tasks, denoted Bi
k,ℓ, when EL scheduling

is applied.
• We show in Section IV-C how the analysis can be con-

ducted for a fixed analysis window, i.e., we only analyze
active intervals starting when τk,ℓ is already released.

• Moreover, we provide an approach with a gradually
increasing analysis window in Section IV-D.

Although increasing the analyzed active interval may reduce
the worst-case response time bound from the analysis, in
Section IV-E we discuss why the two approaches from Sec-
tion IV-C and Section IV-D do not dominate each other.

A. Examination of Processor States

We first define the terminology to describe the processor state.

Definition 4 (Active and Current Job). For a certain schedule,
a job τk,ℓ of a task τk is active at time t, if it is released but
not already finished by time t, i.e., t ∈ [rk,ℓ, fk,ℓ). When there
are active jobs of task τk at a time instant t, then we call the
active job of τk with the earliest release time the current job

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Analysis backbone
Sec. IV-A, Theorem 9

Bounds for interference: Sec. IV-B
• from τk: Lemma 10
• from τi ̸= τk: Lemma 11

WCRT analysis
Sec. IV-C, Theorem 12

WCRT analysis
Sec. IV-D, Theorem 15

Fixed
analysis window

Variable
analysis window

Fig. 3: Roadmap of the analysis in Section IV.

of τk at time t. We call the task τk active at t, if there exists
an active job of τk at t.

Definition 5 (Work, Suspend, and Wait).

• The processor is working on a job τi,j at time t, if τi,j is
executed on the processor at t. It is suspended by τi,j at
time t, if τi,j is suspending itself at t, i.e., the remaining
suspension time of τi,j is reduced.

• We say that the processor is working at time t if it is
working on any job at t. It is suspended at t, if it is
suspended by at least one job but not working on any
job at t. It is waiting at t, if it is neither working nor
suspended at t. The processor is idle at t, if it is not
working at t, i.e., if it is suspended or waiting.

For unambiguous partition of the processor to the different
states, we use half-opened intervals, e.g., if the processor is
working on a job τi,j from time t1 to time t2, then we say
that the processor is working on τi,j during [t1, t2).

We consider a schedule obtained by the EL scheduling
algorithm with relative priority points (Π1, . . . ,Πn) for the
task set T = {τ1, . . . , τn}. For each task τk we define the
following two Processor States (PS):

• PSbk: There is an active job of τk but the processor is
working on a job with higher priority than the current
job of task τk, i.e., τk is blocked.

• PSws
k : There is an active job of τk and the processor is

working on or suspended by a job of τk.

Whenever there is an active job of τk and the current job τk,ℓ of
τk is not blocked by a higher priority job, then the processor is
either working on or suspended by τk,ℓ since the underlying
scheduling algorithm is work-conserving. This leads to the
following observation.

Observation 6. Whenever there is an active job of τk, the
processor is in state PSbk or in state PSws

k .

Please note that the processor can also be in both states at
the same time, i.e., the processor is suspended by the current
job of τk and then a higher priority job is released and the
processor starts working on the higher priority job. However,
it is sufficient for our analysis, that the processor is in at least
one of the states PSbk and PSws

k .

Under the assumption that the job τk,ℓ is the current job of
τk, the time in the two processor states can be described by
the following terms.

Definition 7. Let τk,ℓ be a job of τk. Furthermore, let [c, d)
with c < d be any half opened interval.

• Bi
k,ℓ(c, d) is the amount of time during [c, d) that the

processor is working on jobs of τi with higher priority
than τk,ℓ.

• WSk,ℓ(c, d) is the amount of time during [c, d) that the
processor is working on or suspended by τk,ℓ.

If c ≥ d, we set both terms to 0 for simplicity.

In particular, if τk,ℓ is current during [c, d), then∑
i ̸=k B

i
k,ℓ(c, d) is the amount of time during [c, d) that the

processor in state PSbk and WSk,ℓ(c, d) is the amount of time
during [c, d) that the processor in state PSws

k . Moreover, if a
a previous job τk,j , j < ℓ of τk is current during [c, d), then∑

i ̸=k B
i
k,ℓ(c, d) is an upper bound on the amount of time

during [c, d) that the processor is in state PSbk.
We utilize the description of the processor states to derive

a necessary condition for τk,ℓ not being finished.

Lemma 8. Consider some interval [c, d) with c ≤ d. If τk,ℓ
is not finished by time d and the task τk is active during (the
whole interval) [c, d), then

(Ck +Sk) +
∑

i̸=k

Bi
k,ℓ(c, d) +

∑

j<ℓ

WSk,j(c, d) > (d− c). (1)

Proof. By Observation 6, the processor is in state PSbk or in
state PSws

k at all times during [c, d).
Let ξ ≥ 0 be the non-negative integer, such that

τk,ℓ−ξ, . . . , τk,ℓ are the current jobs of τk during the interval
[c, d). Moreover, let

⋃ℓ
j=ℓ−ξ[cj , dj) = [c, d) be a partition of

[c, d), such that τk,j is current during [cj , dj).
Since

∑
i ̸=k B

i
k,ℓ(cj , dj) and WSk,j(cj , dj) are upper

bounds for the amount of time during [cj , dj) in state PSbk
and PSws

k , respectively, we obtain

dj − cj ≤
∑

i̸=k

Bi
k,ℓ(cj , dj) +WSk,j(cj , dj) (2)

for all j ∈ {ℓ− ξ, . . . , ℓ}. Summing up the individual bounds
for all j yields

d− c ≤
∑

i̸=k

Bi
k,ℓ(c, d) +

ℓ∑

j=ℓ−ξ

WSk,j(cj , dj). (3)

Since
∑ℓ

j=ℓ−ξ WSk,j(cj , dj) ≤ ∑
j≤ℓ WSk,j(cj , dj) ≤∑

j≤ℓ WSk,j(c, d), we obtain

d− c ≤
∑

i ̸=k

Bi
k,ℓ(c, d) +

∑

j≤ℓ

WSk,j(c, d). (4)

Moreover, we have WSk,ℓ(c, d) < Ck+Sk because τk,ℓ is not
finished at time d. Applying this to Equation (4) leads to the
equation presented in the lemma.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

By contraposition, if Equation (1) does not hold, then d
is an upper bound on the finishing time of τk,ℓ. We utilize
Lemma 8 to provide a response time bound R̃k,ℓ ≤ Dk for
τk,ℓ by setting d = rk,ℓ + R̃k,ℓ. Enlarging the window of
interest from [c, d) to [c, dk,ℓ) enables the following response
time bound which serves as the analysis backbone for the
remainder of this section.

Theorem 9 (Analysis Backbone). Let c ≤ dk,ℓ ∈ R such that
either 1) τk,ℓ is released before c, i.e., c ≥ rk,ℓ, or 2) c < rk,ℓ
and task τk is active during [c, rk,ℓ). If

R̃k,ℓ :=(Ck + Sk) +
∑

i ̸=k

Bi
k,ℓ(c, dk,ℓ) +

∑

j<ℓ

WSk,j(c, dk,ℓ)

+ c− rk,ℓ,
(5)

is at most Dk, then R̃k,ℓ is an upper bound on the response
time of τk,ℓ.

Proof. We prove by contradiction and assume that R̃k,ℓ is not
an upper bound on the response time of τk,ℓ, i.e., the job τk,ℓ
is not finished at time rk,ℓ + R̃k,ℓ. We set d := rk,ℓ + R̃k,ℓ.
Lemma 8 can be applied for the following reasons:

• d = rk,ℓ + R̃k,ℓ = (Ck + Sk) +
∑

i ̸=k B
i
k,ℓ(c, dk,ℓ) +∑

j<ℓ WSk,j(c, dk,ℓ)+ c ≥ c by the definition of R̃k,ℓ in
Equation (5).

• τk,ℓ is not finished at time d by assumption.
• Since 1) or 2) from the description of the theorem holds,

this means that τk is active during the interval [c, d).

Since Lemma 8 can be applied this means that Equation (1)
holds. We have Bi

k,ℓ(c, d) ≤ Bi
k,ℓ(c, dk,ℓ) for all i ̸= k and

WSk,j(c, d) ≤ WSk,j(c, dk,ℓ) for all j < ℓ since d ≤ dk,ℓ.
Hence, the left hand side of Equation (1) is upper bounded by
R̃k,ℓ − c+ rk,ℓ. We conclude that R̃k,ℓ − c+ rk,ℓ > d− c =

R̃k,ℓ + rk,ℓ − c which is a contradiction.

So far, Theorem 9 examines a given interval that starts at
time c and ends at time dk,ℓ, i.e., the absolute deadline of the
analysed job, under the assumption that the inference in the
interval is known. However, how to choose the starting value c
and how the interference in [c, dk,ℓ) can actually be calculated
has not yet been discussed. Hence, to apply the upper bound
in Theorem 9, the following questions have to be answered:

• Question 1: What are the values of Bi
k,ℓ(c, dk,ℓ) and

WSk,j(c, dk,ℓ)? Since computing the values directly has
high complexity, we use overapproximation. In Sec-
tion IV-B we derive upper bounds for Bi

k,ℓ(c, dk,ℓ) and
WSk,j(c, dk,ℓ) with i ̸= k and j < ℓ.

• Question 2: Which are good values for c? Trying out
all possible c for the estimation would result in very
high complexity. Therefore, we discuss two strategies to
choose c in Sections IV-C and IV-D. More precisely, with
the first procedure we restrict c to be in the interval
[rk,ℓ, dk,ℓ), which has benefits on the runtime of our
analysis due to the fixed analysis windows. For the second
strategy, we examine active intervals for τk, and gradually

τi
R̃i Πi

τk

rk,ℓ c

Πk

τi Ci

R̃i

τk

rk,ℓ c

Fig. 4: Intuition for Lemma 11. The left schedule describes the
approach for Equation (8) and the right schedule describes the
approach for Equation (9). Only jobs of τi that are released
during the gray boxes can have higher priority than τk,ℓ and
be executed during the analysis interval [c, dk,ℓ).

increase the analysis window. In Section IV-E we discuss
that these two methods do not dominate each other.

B. Upper Bounds on Higher-Priority Interference

In this subsection, we bound the interference of higher-
priority jobs during the interval [c, dk,ℓ), providing up-
per bounds for

∑
j<ℓ WSk,j(c, dk,ℓ) in Lemma 10 and for

Bi
k,ℓ(c, dk,ℓ) in Lemma 11. We do this under the assumption

that all jobs with higher priority than τk,ℓ meet their deadline
since this is our induction hypothesis later used in Theorem 12
and Lemma 14. As mentioned earlier, how to choose c is
discussed in Sections IV-C and IV-D.

For arbitrary deadlines, there might be several active jobs
of one task at the same time, which makes the analysis in
general more complicated. Note that, according to the FIFO
mechanism introduced in the end of Section II, the jobs of τk
must be executed one after another, i.e., even if the processor
idles, a job of τk cannot start its execution unless all jobs of
τk released prior to it are finished.

We achieve a bound for
∑

j<ℓ WSk,j(c, dk,ℓ) by accounting
for the WCET Ck and the maximal suspension time Sk for
all higher priority jobs current during [c, dk,ℓ).

Lemma 10 (Bound for interference from τk). The amount
of time during [c, dk,ℓ) that the processor is working on or
suspended for jobs of τk with by higher priority than τk,ℓ is

∑

j<ℓ

WSk,j(c, dk,ℓ) ≤
(⌈

dk,ℓ − c

Tk

⌉
− 1

)
· (Ck + Sk). (6)

Proof. All higher-priority jobs of τk finish until their deadline.
Therefore, the processor can only work on or be suspended
by a higher priority job of τk during [c, dk,ℓ) if the deadline
of the job is after c. Moreover, the job can only have higher
priority than τk,ℓ if its deadline is no later than dk,ℓ − Tk.
At most

⌈
dk,ℓ−c

Tk

⌉
− 1 jobs of τk have their deadline during

(c, dk,ℓ − Tk]. The processor can work on each of those jobs
for at most Ck time units and it can be suspended by each of
those jobs for at most Sk time units.

For the interference from τi ̸= τk, we estimate the number
of job releases during a certain interval under analysis, as
depicted by the gray boxes in Figure 4, and account for Ci

time units for each of those jobs.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

For each task τi ̸= τk, let R̃i be an upper bound on the
worst-case response time (WCRT) of jobs of τi with higher
priority than τk,ℓ. We set R̃i := Di if no upper bound is
known, as all jobs with higher priority meet their deadline.

Lemma 11 (Bound for interference from τi ̸= τk). For i ̸=k,
the amount of time during [c, dk,ℓ) that the processor is
working on jobs of τi with higher priority than τk,ℓ is

Bi
k,ℓ(c, dk,ℓ) ≤ max

(⌈
Gi

k + R̃i + rk,ℓ − c

Ti

⌉
, 0

)
Ci (7)

where Gi
k := min(Dk − Ci,Πk −Πi).

Proof. The bound from Equation (7) is achieved by proving
the two upper bounds for Bi

k,ℓ we get for both cases of Gi
k.

That is, we prove the following two bounds individually:

Bi
k,ℓ(c, dk,ℓ) ≤ max

(⌈
Πk −Πi + R̃i + rk,ℓ − c

Ti

⌉
, 0

)
Ci

(8)

Bi
k,ℓ(c, dk,ℓ) ≤ max

(⌈
Dk − Ci + R̃i + rk,ℓ − c

Ti

⌉
, 0

)
Ci

(9)

Bound in Equation (8): The bound is based on the
following two observations:

• Jobs of τi have higher priority than τk,ℓ only if they are
released no later than rk,ℓ +Πk −Πi.

• Jobs of τi can be executed after c only if they are released
after c− R̃i.

Due to these two observations, the number of jobs that
contribute to Bi

k,ℓ(c, dk,ℓ) is upper bounded by the number
of releases in (c − R̃i, rk,ℓ + Πk − Πi], which is at most
max

(⌈
Πk−Πi+R̃i+rk,ℓ−c

Ti

⌉
, 0
)

. The processor can work on
each of them for at most Ci time units.

Bound in Equation (9): Before formally proving Equa-
tion (9), we first examine the worst-case scenario depicted in
Figure 4. Intuitively, the maximal interference from task τi
is obtained when the last interfering job of τi is released at
dk,ℓ−Ci and executed for Ci time units during [dk,ℓ−Ci, dk,ℓ)
as depicted in Figure 4. The maximum number of jobs that
contribute to Bi

k,ℓ(c, dk,ℓ) is therefore upper bounded by the
number of releases in (c − R̃i, dk,ℓ − Ci], which is at most
max

(⌈
Dk−Ci+R̃i+rk,ℓ−c

Ti

⌉
, 0
)

. The processor can work on
each of them for at most Ci time units.

In the following we present a formal proof for the bound
from Equation (9). If the processor is not working on any job
of τi during [c, dk,ℓ) then Bi

k,ℓ(c, dk,ℓ) = 0 and the lemma
is proven. Otherwise, let τi,j′ be the last job of τi that the
processor is working on during [c, dk,ℓ). We isolate the job
τi,j′ in the following way. Let ri,j′ be the release time of
τi,j′ , let si,j′ be the start time of τi,j′ , i.e., the first time that
the processor is working on τi,j′ , and let C∗ be the amount of

time that the processor is working on τi,j′ during the interval
[c, dk,ℓ). Therefore, by definition, we have

ri,j′ + C∗ ≤ dk,ℓ = rk,ℓ +Dk (10)

and
Bi

k,ℓ(c, dk,ℓ) ≤ Bi
k,ℓ(c, si,j′) + C∗. (11)

We distinguish two cases:
Case 1: si,j′ − c < (Ci − C∗): The left hand side of

Equation (9) is Bi
k,ℓ(c, si,j′) + C∗ ≤ (si,j′ − c) + C∗ ≤ Ci.

Moreover, the right hand side of Equation (9) is at least⌈
Dk−Ci+rk,ℓ−c+R̃i

Ti

⌉
Ci ≥

⌈
Dk+rk,ℓ−c

Ti

⌉
Ci ≥ Ci since:

• R̃i ≥ Ci by definition of R̃i.
• τi,j′ is executed during [c, dk,ℓ) and therefore

c < ck,ℓ ≤ Dk + rk,ℓ must hold.
In this case, Equation (9) is proven.

Case 2: si,j′ − c ≥ (Ci − C∗): Since during the interval
[c, c + (Ci − C∗)) the processor can work on jobs of τi for
at most (Ci −C∗) time units, we have Bi

k,ℓ(c, si,j′) ≤ (Ci −
C∗) + Bi

k,ℓ(c+ (Ci − C∗), si,j′). Hence, we obtain:

Bi
k,ℓ(c, dk,ℓ) (12)

by (11)
≤ Bi

k,ℓ(c, si,j′) + C∗ (13)

≤ (Ci − C∗
i) + Bi

k,ℓ(c+ (Ci − C∗), si,j′) + C∗
i (14)

= Bi
k,ℓ(c+ (Ci − C∗), si,j′) + Ci (15)

The number of jobs of τi that contribute to Bi
k,ℓ(c + (Ci −

C∗), si,j′) is at most the number of releases from jobs of τi
during the interval (c+ Ci − C∗ − R̃i, ri,j′ − Ti], which is

⌈
ri,j′ − Ti − c− Ci + C∗ + R̃i

Ti

⌉

by (10)
≤

⌈
rk,ℓ − Ti − c− Ci +Dk + R̃i

Ti

⌉

=

⌈
rk,ℓ − c− Ci +Dk + R̃i

Ti

⌉
− 1.

Therefore, for this case, we conclude that

Bi
k,ℓ(c, dk,ℓ) ≤ Bi

k,ℓ(c+ (Ci − C∗), si,j′) + Ci

≤
(⌈

rk,ℓ − c− Ci +Dk + R̃i

Ti

⌉
− 1

)
Ci + Ci

=

⌈
rk,ℓ − c− Ci +Dk + R̃i

Ti

⌉
Ci.

Hence, in this case Equation (9) is proven as well.

C. Fixed Analysis Window

In this subsection, we fix the analysis window, i.e., the possi-
ble range of [c, dk,ℓ) from the previous sections, to the interval
[rk,ℓ, dk,ℓ). We utilize the upper bounds on Bi

k,ℓ(c, dk,ℓ) and
WSk,j(c, dk,ℓ) provided in the previous section to obtain the
following schedulability test.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Algorithm 1 Schedulability test with fixed analysis window.
Input: T = {τ1, . . . , τn}, (Π1, . . . ,Πn), η, depth
Output: True: schedulable, False: no decision

1: Order τ1, . . . , τn, s.th. D1 ≥ · · · ≥ Dn.
2: Set R̃i := Di for all i.
3: for i = 1, 2, . . . , depth do
4: solved := True
5: for k = 1, 2, . . . , n do
6: cand := []; step := η ·Dk ▷ Preparation.
7: for b = 0, step, 2 · step, · · · < Dk do ▷ Compute.
8: cand.append(R̃k(b)) using Equation (16).
9: R̃k := min(cand) ▷ Compare candidates.

10: if R̃k > Dk then ▷ Check condition.
11: solved := False; R̃k := Dk; break
12: return solved

Theorem 12 (Sufficient Schedulability Test). Let
T = {τ1,τn} be an arbitrary-deadline task set with
relative priority points (Π1, . . . ,Πn). If for all k = 1, . . . , n
there exists some bk ∈ [0, Dk) such that

R̃k(bk) ≤ Dk, (16)

where R̃k(bk) :=
∑
i ̸=k

max
(⌈

Gi
k+R̃i−bk

Ti

⌉
, 0
)
Ci +

⌈
Dk−bk

Tk

⌉
(Ck + Sk) + bk and Gi

k = min(Dk −Ci,Πk −Πi),
then the task set is schedulable by EL scheduling with the
given relative priority points and the worst-case response
time of τk is upper bounded by R̃k := R̃k(bk).

Proof. Assume we have found bk, k = 1, . . . , n such that
Equation (16) holds. We consider some schedule obtained by
the task set T and denote by Seq the sequence of all jobs
in the schedule ordered by their priority. Via induction, we
prove that the first ξ jobs in Seq have the required response
time upper bound, for all ξ ∈ N0. Consequently, R̃k is an
upper bound on the worst-case response time of τk for all k
and the task set is schedulable.

Initial case: ξ = 0. In this case, the set of the first ξ jobs in
Seq is the empty set. Trivially, all of them have the required
response time upper bound.

Induction step: ξ → ξ + 1. By assumption, the first ξ
jobs in Seq have the required response time upper bound.
We denote the (ξ + 1)-th job in Seq by τk,ℓ. We aim to
use the analysis backbone from Theorem 9 to prove that
the response time of τk,ℓ is upper bounded by R̃k. By
definition, we have R̃k,ℓ = (Ck +Sk) +

∑
i̸=k B

i
k,ℓ(c, dk,ℓ) +∑

j<ℓ WSk,j(c, dk,ℓ) + c − rk,ℓ. Since all higher priority
jobs have the required response time upper bound, we can
use the estimation for Bi

k,ℓ(c, dk,ℓ) and
∑

j<ℓ WSk,j(c, dk,ℓ)
presented in Section IV-B. In particular, using Lemma 10 and
Lemma 11, we obtain that R̃k,ℓ is upper bounded by

(Ck + Sk) +
∑

i̸=k

max

(⌈
Gi

k + R̃i + rk,ℓ − c

Ti

⌉
, 0

)
Ci

+

(⌈
dk,ℓ − c

Tk

⌉
− 1

)
· (Ck + Sk) + c− rk,ℓ.

(17)

When choosing c := bk + rk,ℓ we obtain that R̃k,ℓ is
upper bounded by R̃k. Due to Equation (16), we know
R̃k,ℓ ≤ R̃k ≤ Dk, i.e., the job meets its deadline. We use
Theorem 9 to conclude that R̃k,ℓ is an upper bound on the
response time of τk,ℓ and therefore R̃k is an upper bound on
the response time of τk,ℓ as well. Since all jobs meet their
deadline, the task set is schedulable.

Although Theorem 12 looks like a classical mechanism
extended from time demand analysis (TDA) [21], [24], im-
plementing an efficient schedulability test based on it requires
some efforts since the values of R̃k for every task τk are
dependent on each other. To apply this schedulability test, two
critical points have to be addressed:

1) Finding good values for bk with low complexity. Without
an efficient mechanism, there are Dk options for bk,
provided that all input parameters are integers, and
infinitely many options in general.

2) Computing the dependent values of R̃k for every task
τk correctly and efficiently.

To determine the values of bk, we take a user-specified
parameter η and discretize the search space into 1

η values with
a step size η ·Dk. To determine R̃k, we go through the task
set several times and compute upper bounds for the values of
R̃k in each iteration. Improving this search algorithm is out
of scope for this paper but may be discussed in future work.

The search algorithm is depicted in pseudocode in Algo-
rithm 1. It takes as input the task set T, the relative priority
points (Π1, . . . ,Πn), a step size parameter η ∈ (0, 1] and
depth to indicate the number improving runs of the search
algorithm. It returns True if the task set is schedulable by EL
scheduling with the given relative priority points. We start by
setting R̃k = Dk for all k = 1, . . . , n, and go depth-times
through the task set ordered by the relative deadline, as we
obtained the best results with this ordering. With a step size
of step = η · Dk, i.e., a certain share of Dk like 1 percent,
we compute R̃k(bk) for bk = 0, 1 · step, 2 · step, . . . until
b ≥ Dk is reached. We then take the minimal value of all these
candidates and define it as the new R̃k. The time complexity
of Algorithm 1 is O

(
depth·n2

η

)
.

Please note that the computed values of R̃k are in fact
only upper bounds of R̃k from Theorem 12. A reduction of
R̃i, i ̸= k in subsequent iterations reduces the actual value of
R̃k as well, since R̃k is monotonically increasing with respect
to R̃i, for all i ̸= k.

D. Variable Analysis Window

In this subsection, we detail an approach based on active
intervals. More specifically, if all jobs finish until the next
job release is reached, i.e., Rk ≤ Tk, then no previous jobs
contribute interference to the job under analysis and they
can be safely removed from the computation of the worst-
case response-time upper bound. However, if Rk > Tk then
interference from previous jobs has to be considered. We
utilize that a job τk,ℓ−a can only interfere with τk,ℓ, if τk

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

is active during [rk,ℓ−a, rk,ℓ). For the schedulability test with
variable analysis window, we gradually increase the length
of the active interval (i.e., a = 0, 1, 2, . . .) and analyze the
window [c, dk,ℓ) with c ∈ [rk,ℓ−a, dk,ℓ).

With this approach, the pessimism of the interference esti-
mation from higher-priority jobs of the same task is reduced
in some cases. Please note that this approach only differs from
the approach with a fixed analysis window when considering
arbitrary-deadline tasks. For constrained-deadline task sets, the
variable analysis window approach coincides with the fixed
analysis window approach, as the algorithm stops at a = 0
without enlarging the analysis window.2

We start by formally defining active intervals.

Definition 13. Let a ∈ N0. A job τk,ℓ is the (a+1)-th job in
an active interval of τk, if the following two conditions hold.

• τk is active during [rk,ℓ−a, fk,ℓ).
• At time rk,ℓ−a there is no active job which is released

before rk,ℓ−a.

If τk,ℓ is the (a + 1)-th job in an active interval of τk,
then only τk,ℓ−a, . . . , τk,ℓ are current jobs of τk during
[rk,ℓ−a, fk,ℓ). More specifically, in this case the value of
Bk,j(c, dk,ℓ) is 0 if c ≥ rk,ℓ−a and j < ℓ − a. We formalize
this by the following lemma.

Lemma 14. Let τk,ℓ be the (a + 1)-th job in an active
interval of τk and let all higher-priority jobs meet their
deadline. Let R̃i be an upper bound on the response time of
all higher-priority jobs of τi with i ̸= k. If there exists some
c ∈ [rk,ℓ−a, dk,ℓ) such that

min

(
a+ 1,

⌈
dk,ℓ − c

Tk

⌉)
(Ck + Sk)

+
∑

i̸=k

max

(⌈
Gi

k + R̃i + rk,ℓ − c

Ti

⌉
, 0

)
Ci + c− rk,ℓ

(18)

is at most Dk, with Gi
k := min(Dk −Ci,Πk −Πi), then (18)

is an upper bound on the response time of τk,ℓ.

Proof. For the proof, we apply the analysis backbone from
Theorem 9. Since τk,ℓ is the (a + 1)-th job in an active
interval, τk is active during [rk,ℓ−a, rk,ℓ). Hence, the restric-
tion on c in the formulation of Theorem 9 is fulfilled if c
is chosen from the interval [rk,ℓ−a, dk,ℓ). Moreover, since
τk,ℓ is the (a + 1)-th job in an active interval, the jobs
τk,1, . . . , τk,ℓ−a−1 are finished by time rk,ℓ−a. We obtain∑

j<ℓ−a WSk,j(c, dk,ℓ) ≤ ∑
j<ℓ−a WSk,j(rk,ℓ−a, dk,ℓ) = 0.

Hence,
∑

j<ℓ WSk,j(c, dk,ℓ) =
∑ℓ−1

j=ℓ−a WSk,j(c, dk,ℓ) ≤∑ℓ−1
j=ℓ−a(Ck + Sk) = a · (Ck + Sk). We combine this upper

2The reason is that for constrained deadline task sets in the variable analysis
window approach we get one of the following two cases: Case 1: If the
response time bound obtained for the first job in an active interval is larger
than the task’s deadline, then the schedulability cannot be guaranteed and the
algorithm stops at a = 0. Case 2: If the response time bound for the first
job in an active interval is at most the task’s deadline, then Rk ≤ Dk ≤ Tk

is guaranteed for the first job in an active interval. Therefore, the subsequent
job is a first job in some active interval as well. By induction, all jobs of τk
are first job in some active interval. Therefore, the algorithm stops at a = 0.

bound on
∑

j<ℓ WSk,j(c, dk,ℓ) with the upper bounds from
Lemma 10 and Lemma 11, and obtain that R̃k,ℓ from the
analysis backbone, i.e., Equation (5), is upper bounded by the
value in Equation (18). If Equation (18) is at most Dk, then
R̃k,ℓ ≤ Dk. The analysis backbone from Theorem 9 states
that R̃k,ℓ is an upper bound on the response time of rk,ℓ and
therefore, also Equation (18) is an upper bound on the response
time.

Similar to the proof of the response time upper bound for the
fixed analysis window in Theorem 12, we derive a response
time bound for the variable analysis window. However, the
different cases for a = 0, 1, . . . have to be considered for
each task τk and the value of c can be chosen from the interval
[rk,l−aTk, rk,l+Dk). To improve readability, in the following
we replace rk,ℓ − c by aTk − x, where x can be chosen from
the interval [0, aTk +Dk).

Theorem 15 (Sufficient Schedulability Test). Let
T = {τ1, . . . , τn} be an arbitrary-deadline task set with
relative priority points (Π1, . . . ,Πn). We define the function
R̃a

k : [0, aTk +Dk) → R≥0 by the assignment

x 7→min

(
a+ 1,

⌈
Dk − x+ aTk

Tk

⌉)
(Ck + Sk)

+
∑

i ̸=k

max

(⌈
Gk

i + R̃i − x+ aTk

Ti

⌉
, 0

)
Ci + x− aTk.

(19)
If for all k = 1, . . . , n there exists ãk ∈ N0, such that for all
a = 0, . . . , ãk there exists bak ∈ [0, aTk +Dk), such that

R̃a
k(b

a
k) ≤ Dk, and furthermore R̃ãk

k (bãk

k) ≤ Tk, (20)

then the task set is schedulable by EL scheduling with the
given relative priority points and R̃k := maxa=0,...,ã R̃

a
k(b

a
k)

is an upper bound on the WCRT of τk for all k.

Proof. The proof is similar to the one of the sufficient
schedulability test for the fixed analysis window presented
in Theorem 12. Let Seq be the sequence of all jobs in the
schedule ordered by their priority. By induction we show that
the following response time upper bounds holds for the first
ξ ∈ N0 jobs in Seq:
(i) R̃k is a response time upper bound for all jobs of τk.

(ii) Tk is a response time upper bound for all ãk-th jobs in
an active interval of τk.

Initial case: ξ0. The initial case is again trivially fulfilled,
since there has nothing to be checked when there are no jobs.

Induction step: ξ → ξ+1. The first ξ jobs in Seq have the
required response time upper bounds (i) and (ii) by induction.
We denote by τk,ℓ the (ξ + 1)-th job of Seq. Let a be the
lowest value in N0, such that τk,ℓ is the (a + 1)-th job in an
active interval of τk.

We first show that a ≤ ãk by contraposition. In this regard,
we assume a > ãk and consider the job τk,ℓ−(a−ãk). The job
τk,ℓ−(a−ãk) is the (ãk + 1)-th job in an active interval of τk.
Moreover, this job is one of the first ξ jobs in Seq and therefore

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Algorithm 2 Schedulability test with var. analysis window.
Input: T = {τ1, . . . , τn}, (Π1, . . . ,Πn), η, max_a, depth
Output: True: schedulable, False: no decision

1: Order τ1, . . . , τn, s.th. D1 ≥ · · · ≥ Dn.
2: Set R̃i := Di for all i.
3: for i = 1, 2, . . . , depth do
4: solved := True
5: for k = 1, 2, . . . , n do
6: for a = 0, 1, . . . ,max_a do ▷ Different a.
7: cand := []; step := η ·Dk ▷ Preparation.
8: for b = 0, step, 2 · step, · · · < aTk +Dk do ▷ Compute

candidate.
9: cand.append(R̃a

k(b)) from Equation (19)
10: R̃a

k := min(cand) ▷ Compare candidates.
11: if R̃a

k ≤ Tk then ▷ Check cond. 1.
12: ã := a; R̃k := mina=0,...,ã R̃a

k; break ▷ WCRT upper
bound.

13: if R̃a
k > Dk or a = max_a then ▷ Check cond. 2.

14: solved := False; R̃k := Dk; break
15: return solved

has a response time of at most Tk due to (ii). Hence, the job
τk,ℓ−(a−ãk) is finished by time rk,ℓ−(a−ãk)+1. We conclude
that τk,ℓ is the (a − ãk)-th job in an active interval of τk,
which contradicts the minimality of a.

We now choose c := bak−a·Tk+rk,ℓ. Applying the response
time upper bound provided by Equation (18) in Lemma 14
with this c shows that R̃a

k(b
a
k) is a response time upper bound

of τk,ℓ, which shows that (i) holds for τk,ℓ. Moreover, if a = ãk
then we have already shown that R̃ãk

k (bãk

k) is an upper bound
on the response time of τk,ℓ. By Equation (20) the response
time of τk,ℓ is upper bounded by Tk, which shows that (ii)
holds for τk,ℓ as well.

We apply a similar search strategy as for the case with fixed
analysis window. However, the values of R̃k are computed
through an additional loop over the values of a until R̃a

k ≤ Tk.
Algorithm 2 depicts an implementation of the schedulability
test in pseudocode. As the value of R̃a

k can be between Tk

and Dk for all iterations of a, the program may never return
a result. To make the schedulability test deterministic, we
introduce an additional parameter max_a which aborts the
loop when no result is obtained for a = 0, 1, ...,max_a.

E. Dominance of Fixed and Variable Analysis Window

At first glance, the analysis with variable window size
derived in Section IV-D seems to improve the analysis with
fixed window size from Section IV-C in all cases: When
setting x = bk + a · Tk in Theorem 15, then the result is
lower bounded by R̃k(bk) from Theorem 12. However, both
methods do not dominate each other, as demonstrated in the
discussion of Figure 7 in Section V, due to the following
reasons. First, the analysis with variable analysis window can
only analyze schedules where the length of active intervals is
bounded. More specifically, if the response-time upper bound
R̃a

k is in the interval (Tk, Dk) for all a, then the schedulability
test with the variable analysis window never deems the task
schedulable. Second, by setting max_a this effect is even

intensified: The analysis with variable analysis window has
to find R̃a

k ≤ Tk even for some a ≤ max_a. Third, the
discretization using η in Algorithm 1 and Algorithm 2 ensures
the same number of points for each analysis interval. As a
result, not all points b + aTk with b from Algorithm 1 are
checked during Algorithm 2 as well.

V. EVALUATION

In this section, we evaluate the performance of our schedula-
bility tests (EL) presented in Algorithm 1 for the fixed analysis
window and in Algorithm 2 for the variable analysis window.
More precisely we show that:

1) Our schedulability test performs similar to already ex-
isting schedulability tests for Deadline-Monotonic (DM)
and improves the state of the art for Earliest-Deadline-
First (EDF) scheduling.

2) Our schedulability test can be used to compare different
configurations of Earliest-Quasi-Deadline-First (EQDF)
and suspension-aware EDF (SAEDF) (see Section III).

3) Our schedulability test exploits the optimism introduced
when the deadline of tasks is extended over their mini-
mum inter-arrival time.

Please note that for constrained deadlines we do not distin-
guish between fixed and variable analysis window since both
schedulability tests coincide, as explained in Section IV-D.
When applying our schedulability test, we choose the config-
uration η = 0.01, depth = 5, and max_a = 10. In each figure,
we present the acceptance ratio, which is the share of task sets
that are deemed schedulable by the schedulability test under
consideration. The evaluation is released on Github [34].

For the evaluation, we synthesized 500 task sets with 50
tasks each for each total system utilization from 0% to 100%
in steps of 5%. We first generated 50 utilization values Ui

using the UUniFast [4] method with the given total utilization
goal, and adopted the suggestion by Emberson et al. [13]
to draw the minimum inter-arrival time Ti according to a
log-uniform distribution from the interval [1, 100][ms]. The
worst-case execution time was computed as Ci = Ti · Ui and
the deadline was set to the minimum inter-arrival time, i.e.,
Di = Ti. For each task, we drew the maximum suspension
time Si uniformly at random from [0, 0.5(Ti−Ci)]. The tasks
in each set were ordered by their deadline.

In Figure 5a, we show the results when applying EL
with relative priority points Πi =

∑i
j=1 Dj to obtain a

schedulability test for DM scheduling (EL DM). We compared
with the methods Suspension as Jitter (SuspJit) [9, Page 163]
and Suspension as Blocking (SuspBlock) [9, Page 165]. More-
over, we compared with the Suspension-Oblivious Analysis
(SuspObl) [9, Page 162] and the Unifying Analysis Frame-
work from Chen, Nelissen, and Huang (CNH16) [8] config-
ured with three vectors according to Eq. (27), Lemma 15, and
Lemma 16 of their paper. As depicted, our schedulability test
performed similar to the state-of-the-art methods.

In Figure 5b, we compare our schedulability test (EL EDF)
with state-of-the-art methods for EDF. We compared with the
method by Liu and Anderson (LA13) [26]. Moreover, we

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL DM
CNH16

SuspJit
SuspBlock

SuspObl

(a) Deadline-Monotonic (DM).

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL EDF
GBC20

LA13 SuspObl

(b) Earliest-Deadline-First (EDF).

Fig. 5: Acceptance ratio of different schedulability tests. Our EDF-Like (EL) schedulability test (EL DM and EL EDF, black
curve) performs similar to the state of the art.

show the schedulability test by Günzel, von der Brüggen, and
Chen (GBC20) [16] and the Suspension-Oblivious Analysis
(SuspObl) [16, Section III.A]. The method from Dong and
Liu [12] is not displayed since it is dominated by SuspObl,
as shown in [16]. EL EDF improves the state of the art.

In Figure 6, the performance of our schedulability test
is shown for different configurations for Earliest-Quasi-
Deadline-First (EQDF) (Πi = Di + λCi) and for suspension-
aware EDF (SAEDF) (Πi = Di + λSi). Choosing λ to be the
best integer in [−10, 10] improves acceptance ratio compared
to the standard EDF with λ = 0, especially for EQDF.

Figures 7 and 8 show the performance of our schedulability
test for arbitrary deadlines. More specifically, we set the
deadline to x = 1.0, 1.1, 1.2, 1.5 times the minimum inter-
arrival time (Dx) and applied our schedulability test. We see
that both the fixed and the variable analysis window lead to
better acceptance ratios in certain scenarios, depending on
the size of x and the scheduling algorithm under analysis.
From the theoretical discussion in Section IV-D we know that
EL-fix DM 1.0 (EL-fix EDF 1.0, respectively) and EL-var
DM 1.0 (EL-var EDF 1.0, respectively) coincide. We observe
that EL-var already benefits from small enlargements of the
deadline, whereas EL-fix can reach better guarantees for larger
deadline extensions in some scenarios. The non-dominance
discussed in Section IV-E can be observed in Figure 7 for
D1.2 and D1.5.

In Figure 9, we compare the performance of our schedula-
bility test (EL-fix, EL-var) with the test by Günzel et al. [17]
(GUC21), applying them to arbitrary deadline tasks under
DM scheduling. We observe that in the more general case
with [0.8, 1.2]Ti, GUC21 outperforms EL-fix and EL-var.
However, as shown in Figure 9b, there are some configurations
where EL-var performs better than GUC21.

Moreover, we examined the runtime of our analysis. We
created 100 task sets for each utilization in 0% to 100%
in steps of 10% and measured the runtime to receive a
schedulability decision. To obtain the measurements, we run
an implementation with Python3 on a machine with 2x AMD
EPYC 7742 running Linux, i.e., in total 256 threads with

2,25GHz and 256GB RAM. Each of the measurements ran
on one independent thread. For sets with 200 tasks, our
schedulability test took on average 12.87 seconds and at most
17.77 seconds to return the result. The runtime for other
relative priority points was comparable.

VI. CONCLUSION

We study EDF-Like (EL) scheduling algorithms, which in-
clude common scheduling strategies like Task-Level Fixed Pri-
ority, Earliest Deadline First, and First-In-First-Out. Through
an examination of different analysis intervals, we provide two
versions of a suspension-aware schedulability test that are
valid for all EL scheduling algorithms. We do not assume
any restriction for the relation between deadline and period
and, to our knowledge, provide the first suspension-aware
schedulability test for EL scheduling of arbitrary-deadline
tasks. In particular, this is also the first suspension-aware
schedulability test for arbitrary-deadline tasks under First-In-
First-Out (FIFO), Earliest-Quasi-Deadline-First (EQDF), and
Suspension-Aware EDF (SAEDF) scheduling.

APPENDIX A: PROOF FOR TFP AS EL

For the sake of completeness, we here provide the proof
for the statement that there is an EL algorithm for every TFP
algorithm from Section III.

Proposition 16 (TFP as EL.). Let K1, . . . ,Kn ∈ R≥0 and
Πi :=

∑i
j=1 Kj for i = 1, . . . , n. If for all j = 1, . . . , n the

value Kj is an upper bound on the worst-case response time
of τj in EL or in TFP, then the schedule of T under EL and
the schedule of T under TFP coincide.

Proof. For an indirect proof we assume that the schedule of T
under EL and TFP does not coincide. Let τk,ℓ be the job with
the highest priority in the EL schedule, such that the schedule
of τk,ℓ does not coincide under EL and TFP. We define the
interval

I := [rk,ℓ, rk,ℓ +Kk). (21)

Let JTFP and JEL be the set of jobs with higher priority than
τk,ℓ under TFP and under EL that are executed during I . We

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL EQDF = 1
EL EQDF = 0

EL EQDF = + 1
EL EQDF [10, 10]

(a) EQDF (Πi = Di + λCi).

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL SAEDF = 1
EL SAEDF = 0

EL SAEDF = + 1
EL SAEDF [10, 10]

(b) SAEDF (Πi = Di + λSi).

Fig. 6: Acceptance ratio of variants of EDF using our EDF-Like (EL) schedulability test. Choosing the best λ ∈ [−10, 10] for
each task set (black line) improves standard EDF (λ = 0).

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL-fix DM D1.0
EL-fix DM D1.1

EL-fix DM D1.2
EL-fix DM D1.5

(a) Fixed analysis window.

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL-var DM D1.0
EL-var DM D1.1

EL-var DM D1.2
EL-var DM D1.5

(b) Variable analysis window.

Fig. 7: Arbitrary deadline evaluation for Deadline-Monotonic (DM) scheduling.

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL-fix EDF D1.0
EL-fix EDF D1.1

EL-fix EDF D1.2
EL-fix EDF D1.5

(a) Fixed analysis window.

0 25 50 75 100
Utilization (%)

0.00
0.25
0.50
0.75
1.00

Ac
ce

pt
an

ce
 R

at
io

EL-var EDF D1.0
EL-var EDF D1.1

EL-var EDF D1.2
EL-var EDF D1.5

(b) Variable analysis window.

Fig. 8: Arbitrary deadline evaluation for Earliest-Deadline-First (EDF) scheduling.

will reach a contradiction by showing that JTFP = JEL and
that further the schedule of the jobs in JTFP = JTFP coincides
under TFP and under EL scheduling. For that purpose we par-
tition the job sets into three subsets JTFP =

∐
i∈{+,−,0} JiTFP

and JEL =
∐

i∈{+,−,0} JiEL, where each of them denotes the
subset of jobs released by tasks of T+ = {τk+1, . . . , τn},
T− = {τ1, . . . , τk−1} or T0 = {τk}. In the following we
show that JiTFP = JiEL for all i ∈ {+,−, 0}.

Proof of J+TFP = J+EL: Because of the task-level priority
order under TFP, all jobs of the tasks of T+ have a lower

priority than τk,ℓ, i.e., J+TFP = ∅. Under EL, we choose any
job τi,j , with τi ∈ T+, that has higher priority than τk,ℓ, i.e.,
πi,j = ri,j +Πi ≤ πk,ℓ = rk,ℓ +Πk holds. By subtracting Πk

we obtain

ri,j +Ki ≤ ri,j + (Πi −Πk) ≤ rk,ℓ. (22)

Since τi,j has higher priority than τk,ℓ, by assumption the
schedule of τi,j coincides under EL and TFP, and we have
fi,j ≤ ri,j +Ki. With Equation (22) we conclude fi,j ≤ rk,ℓ.
In particular, the job τi,j is not executed during I . Since τi,j

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00
Ac

ce
pt

an
ce

 R
at

io

GUC21 EL-fix EL-var

(a) Di ∈ [0.8, 1.2]Ti.

0 25 50 75 100
Utilization (%)

0.00

0.25

0.50

0.75

1.00

Ac
ce

pt
an

ce
 R

at
io

GUC21 EL-fix EL-var

(b) Di ∈ [1.0, 1.2]Ti.

Fig. 9: Comparison of arbitrary-deadline schedulability tests under DM scheduling.

was chosen arbitrarily, this means that J+EL = ∅ as well.
Proof of J−TFP = J−EL: Under TFP and under EL, jobs of the

tasks in T− can only be executed during I if they are released
before rk,ℓ+Kk, i.e., let J′− be the set of jobs released before
rk,ℓ +Kk by tasks of T− then J−TFP, J

−
EL ⊆ J′−. Under TFP,

all jobs in J′− have higher priority than τk,ℓ since they are
released by the tasks of T−. Under EL, we show the same:
Let τi,j ∈ J′−, i.e., ri,j < rk,ℓ +Kk. It directly follows that

πi,j = ri,j +Πi < rk,ℓ +Kk +Πi ≤ rk,ℓ +Πk = πk,ℓ. (23)

In particular, τi,j has higher priority than τk,ℓ. We have shown
that all jobs in J′− have higher priority than τk,ℓ under EL and
under TFP scheduling. By assumption the schedule of the jobs
in J′− coincides under TFP and EL. Therefore the same jobs
of J′− executed during I under TFP and EL, i.e., J−TFP = J−EL.

Proof of J0TFP = J0EL: Under TFP and EL,
J′0 := {τk,1, . . . , τk,ℓ−1} are the jobs of τk that have higher
priority than τk,ℓ, i.e., J0TFP, J0EL ⊆ J′0. By assumption, the
schedule of the jobs in J′0 coincides. Therefore the same jobs
of J′0 are executed during I , i.e., J0TFP = J0EL.

We have shown that JTFP = JEL by the above discussion.
Since the schedule of the jobs JTFP = JEL coincides during I ,
τk,ℓ is preempted/blocked during the same time intervals under
TFP and EL scheduling during I . Hence, the schedule of τk,ℓ
during I coincides. Since by assumption Kk is an upper bound
on the response time under EL or TFP scheduling, the job τk,ℓ
finishes during I . This proves that the whole schedule of τk,ℓ
coincides.

Even without knowledge about the worst-case response
times, we can use a schedulability test based on EL scheduling
for TFP scheduling by setting the relative priority points to
Πi =

∑i
j=1 Dj . If the schedulability test assures that all jobs

meet their deadline, then Dj is an upper bound on the worst-
case response time. In this case, the schedule obtained by EL
scheduling coincides with the TFP schedule and is feasible.

Corollary 17. If the task set T is schedulable under EL with
Πi :=

∑i
j=1 Dj , i = 1, . . . , n, then T is schedulable under

TFP as well.

Proof. If T is schedulable under EL with the given relative
priority points Πi, then Dj is an upper bound on the worst-
case response time of τj for all τj ∈ T under EL scheduling.
In this case, by Proposition 16 the schedule under TFP and EL
coincide. Therefore, Dj is also an upper bound on the worst-
case response time of τj for all τj ∈ T under TFP scheduling.
Hence, T is schedulable under TFP as well.

ACKNOWLEDGMENT

This work has been supported by Deutsche Forschungs-
gemeinschaft (DFG), as part of Sus-Aware (Project No.
398602212). This result is part of a project (PropRT) that
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 865170).

REFERENCES

[1] N. C. Audsley and K. Bletsas. Fixed priority timing analysis of real-
time systems with limited parallelism. In 16th Euromicro Conference
on Real-Time Systems (ECRTS), pages 231–238, 2004.

[2] H. Back, H. S. Chwa, and I. Shin. Schedulability analysis and priority
assignment for global job-level fixed-priority multiprocessor scheduling.
In IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pages 297–306. IEEE Computer Society, 2012.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In proceedings Real-
Time Systems Symposium (RTSS), pages 182–190, Dec 1990.

[4] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[5] K. Bletsas and N. C. Audsley. Extended analysis with reduced pessimism
for systems with limited parallelism. In 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 525–531, 2005.

[6] J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen.
Scheduling self-suspending tasks: New and old results. In S. Quinton,
editor, 31st Euromicro Conference on Real-Time Systems, ECRTS,
volume 133, pages 16:1–16:23, 2019.

[7] J.-J. Chen and C. Liu. Fixed-relative-deadline scheduling of hard real-
time tasks with self-suspensions. In Real-Time Systems Symposium
(RTSS), pages 149–160, 2014.

[8] J.-J. Chen, G. Nelissen, and W.-H. Huang. A unifying response time
analysis framework for dynamic self-suspending tasks. In Euromicro
Conference on Real-Time Systems (ECRTS), 2016.

[9] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. C. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen. Many suspensions, many problems:
a review of self-suspending tasks in real-time systems. Real Time Syst.,
55(1):144–207, 2019.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

[10] J.-J. Chen, G. von der Brüggen, W.-H. Huang, and C. Liu. State of the art
for scheduling and analyzing self-suspending sporadic real-time tasks.
In 23rd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2017, Hsinchu, Taiwan,
August 16-18, 2017, pages 1–10. IEEE Computer Society, 2017.

[11] U. C. Devi. An improved schedulability test for uniprocessor periodic
task systems. In 15th Euromicro Conference on Real-Time Systems
(ECRTS), pages 23–32, 2003.

[12] Z. Dong and C. Liu. Closing the loop for the selective conversion
approach: A utilization-based test for hard real-time suspending task
systems. In RTSS, pages 339–350. IEEE Computer Society, 2016.

[13] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS
2010), pages 6–11, 2010.

[14] M. Günzel and J.-J. Chen. Correspondence article: Counterexample for
suspension-aware schedulability analysis of EDF scheduling. Real Time
Syst., 56(4):490–493, 2020.

[15] M. Günzel and J.-J. Chen. A note on slack enforcement mechanisms
for self-suspending tasks. Real-Time Syst., 2021.

[16] M. Günzel, G. von der Brüggen, and J.-J. Chen. Suspension-
aware earliest-deadline-first scheduling analysis. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):4205–4216, 2020.

[17] M. Günzel, N. Ueter, and J.-J. Chen. Suspension-aware fixed-priority
schedulability test with arbitrary deadlines and arrival curves. In 2021
IEEE Real-Time Systems Symposium (RTSS), pages 418–430, 2021.

[18] W.-H. Huang and J.-J. Chen. Schedulability and priority assignment
for multi-segment self-suspending real-time tasks under fixed-priority
scheduling. Technical report, Technical University of Dortmund, Dort-
mund, Germany, 2015.

[19] W.-H. Huang and J.-J. Chen. Self-suspension real-time tasks under fixed-
relative-deadline fixed-priority scheduling. In Design, Automation, and
Test in Europe (DATE), pages 1078–1083, 2016.

[20] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority
assignment of real-time tasks with dynamic suspending behavior under
fixed-priority scheduling. In Proceedings of the 52nd Annual Design
Automation Conference (DAC), pages 154:1–154:6, 2015.

[21] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System. The Computer Journal, 29(5):390–395, May 1986.

[22] I. Kim, K. Choi, S. Park, D. Kim, and M. Hong. Real-time scheduling
of tasks that contain the external blocking intervals. In RTCSA, pages
54–59, 1995.

[23] J. Kim, B. Andersson, D. de Niz, J.-J. Chen, W.-H. Huang, and
G. Nelissen. Segment-fixed priority scheduling for self-suspending real-
time tasks. Technical Report CMU/SEI-2016-TR-002, CMU/SEI, 2016.

[24] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
Real-Time Systems Symposium’89, pages 166–171, 1989.

[25] H. Leontyev and J. H. Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. In RTSS, pages 413–422. IEEE Computer
Society, 2007.

[26] C. Liu and J. H. Anderson. Suspension-aware analysis for hard real-time
multiprocessor scheduling. In 25th Euromicro Conference on Real-Time
Systems, ECRTS, pages 271–281, 2013.

[27] C. Liu and J.-J. Chen. Bursty-interference analysis techniques for ana-
lyzing complex real-time task models. In Real-Time Systems Symposium
(RTSS), pages 173–183, 2014.

[28] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[29] J. W. S. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition, 2000.
[30] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Timing Analysis of

Fixed Priority Self-Suspending Sporadic Tasks. In Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 80–89, 2015.

[31] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis. Errata: Timing
analysis of fixed priority self-suspending sporadic tasks. Technical
Report CISTER-TR-170205, CISTER, ISEP, INESC-TEC, 2017.

[32] B. Peng and N. Fisher. Parameter adaption for generalized multiframe
tasks and applications to self-suspending tasks. In 22nd IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA, pages 49–58. IEEE Computer Society, 2016.

[33] L. Schönberger, W.-H. Huang, G. von der Brüggen, K.-H. Chen, and J.-
J. Chen. Schedulability analysis and priority assignment for segmented

self-suspending tasks. In 24th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA,
pages 157–167. IEEE Computer Society, 2018.

[34] TU Dortmund LS12. EDF-like scheduling schedulability evaluation.
https://github.com/tu-dortmund-ls12-rt/EDF-Like, 2022.

[35] G. von der Brüggen, W.-H. Huang, and J.-J. Chen. Hybrid self-
suspension models in real-time embedded systems. In International Con-
ference on Real-Time Computing Systems and Applications (RTCSA),
2017.

[36] G. von der Brüggen, W.-H. Huang, J.-J. Chen, and C. Liu. Uniprocessor
scheduling strategies for self-suspending task systems. In International
Conference on Real-Time Networks and Systems, RTNS ’16, pages 119–
128, 2016.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

