technische universitat
dortmund

Junjie Shi' and Mario Glinzel' and Niklas Ueter! and Georg von der Briiggen'!
and Jian-Jia Chen'?

ITU Dortmund University, Germany
2Lamarr Institute for Machine Learning and Artificial Intelligence, Germany

Citation: RTAS2024.05

BIBTEX:

@inproceedings{DBLP:conf/rtas/ShiGUBC24,
author = {Junjie Shi and
Mario G{\"u}nzel and
Niklas Ueter and
Georg von der Br{\"u}ggen and
Jian{-}Jia Chen},

title = {DAG Scheduling with Execution Groups},

booktitle = {30th {IEEE} Real-Time and Embedded Technology and Applications Symposium,
{RTAS}},

publisher = {{IEEE}},

year = {2024},

url = {1},

doi = {}

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

Ia computer
science 12


RTAS2024.05

DAG Scheduling with Execution Groups

Junjie Shi!, Mario Giinzel®, Niklas Ueter!, Georg von der Briiggen' and Jian-Jia Chen'?
1'TU Dortmund University, Germany
2 Lamarr Institute for Machine Learning and Artificial Intelligence, Germany

Abstract—In many modern safety-critical cyber-physical sys-
tems, such as in the automotive or robotic domain, the appli-
cation complexity requires the use of multi-core platforms to
execute all workloads under strict hard real-time constraints.
The sporadic DAG task model is a parallel task model adept at
representing tasks comprised of subtasks, which possess internal
data flow and precedence constraints induced by synchronization.
A significant challenge to the system’s performance and its real-
time verification stems from the communication-centric nature
of applications in these domains. Inter-core communication,
required for data sharing among subtasks across different
cores, depends on either a shared bus or a network-on-chip,
culminating in significant overhead due to latency, congestion,
and synchronization. To improve performance and reduce these
overheads, it is advantageous to execute subtasks, those that
either exchange large volumes of data or access the same data,
on a singular physical processor, thereby utilizing more efficient
intra-core communication.

In this paper, we tackle this issue by introducing the DAG
task model with execution groups, incorporating a constraint that
mandates the execution of grouped subtasks on the same pro-
cessor. We provide an analysis of worst-case response times and
propose optimizations for our DAG task model with execution
groups, subsequently evaluating our approach against existing
solutions. The evaluation results demonstrate that our approach,
even with the imposition of group execution constraints, remains
competitive in comparison to existing approaches that do not
take group execution constraints into account. Additionally, we
explore implementation strategies and potential extensions for
multi-task systems.

Index Terms—DAG Tasks, Gang Scheduling, Cyber-Physical
Systems, Real-Time Systems

I. INTRODUCTION

In many cyber-physical systems such as in the automotive or
robotic domain, real-time requirements must be met to ensure
system safety and performance. The multitude of generated
sensor data in modern systems requires sensor data processing
algorithms, sensor fusion algorithms, and optimization-based
control algorithms. Consequently, heavy and complex work-
loads have to be executed under strict timing constraints to
meet the application’s quality-of-service (QoS) requirements.
Hence, multi-core and multi-processor systems have become
the standard computing platforms, due to their parallel and
concurrent computing capabilities, facilitating the fulfillment
of these requirements.

In the context of hard real-time systems, formal guarantees
for the worst-case response time (WCRT) of each task must be
provided. The formal guarantee (or analysis) is based on a task
model, the execution model, and the task parameters, such as
activation model (inter-arrival times) and worst-case execution

times (WCET). In regard to parallel task models, the sporadic
DAG task model is a widely studied and generic parallel task
model, capable of modeling tasks which are composed of
subtasks with internal precedence constraints. The precedence
constraints can be due to a data producer consumer relation,
or due to synchronization barriers, determining the partial
execution order of the subtasks.

When scheduling DAG task sets, the objective is to ef-
ficiently utilize the parallelism provided by multiprocessors
for task sets with inter- and intra-task parallelism, while
guaranteeing that each task meets its deadline. Parallelism
can be categorized into inter-task parallelism (which refers
to the parallel execution of distinct tasks, each of which
executes sequentially) and intra-task parallelism (which refers
to the parallel execution of a single task). Intra-task parallelism
requires task models with subtask level granularity that can be
scheduled in parallel, e.g., Fork-join models [30], synchronous
parallel task models, or DAG (directed-acyclic graph) based
task models. A plethora of real-time scheduling algorithms and
response time analyses thereof have been proposed, e.g., for
generalized parallel task models [37], and for DAG (directed-
acyclic graph) based task models [3], [4], [12], [18], [19], [25],
[33], [49]. For DAG-based task models, improvements in the
response time analyses can be categorized into analyses that
improve inter-task interference, e.g., in [12], [18], or intra-task
interference such as in [25], [26], [32], [49]. In general, intra-
task interference analyses build upon the interference analysis
along the execution of the envelope (also known as critical
path or key path).

A common critique in the context of multiprocessor, and
parallel task scheduling models in particular, is that the com-
plex interference patterns on the shared resources, such as
memory and cache, are neglected despite having been shown
to have a significant impact on the efficiency and execution
time of parallel tasks [2], [9], [10], [35], [48], [50].

In multi-core systems, there are two typical approaches to
implement inter-core communication, namely memory sharing
(or pointer passing) and physical copying of data (or data
moving). In the case of memory sharing, addressing and ac-
cesses to shared memory must be managed. For instance, each
core has a local physical memory that can be addressed — on
that respective core — by using the core-local memory map.
The respective core-local physical memories can be addressed
from other cores by using global addresses, which will then
be routed through a crossbar to access the physical memory.
Data-copying (or data-moving-based) approaches rely on the



sending core to copy the data to the receiving core and to
notify the receiving core once the transfer has finished. Data
can be moved to fast accessible memory, e.g., L1/L2-cache,
however the transfer latency has to be considered. Intra-core
communication, in contrast, can be achieved through the use
of cache memory — if the communicated data size does
not exceed the Ll-cache size — where each core has its
own fast L1-cache to store frequently accessed data. Notably,
many modern processors also support more efficient intra-
core sharing of data; for instance, via hardware support for
thread-level parallelism, which allows multiple threads to share
data more efficiently by providing dedicated caches and other
resources.

In multiprocessor multi-threaded systems, cache memory
primarily contributes negatively to schedulability by increasing
WCET values. This increase is affected by evictions from
concurrent execution as well as cache coherency delays across
cores via communication. To address this issue, various cache-
aware multicore real-time scheduling algorithms have been
proposed and studied [6], [7], [11], [46], [47]. Feljan and Car-
lons [17] demonstrated that inter-core communication could
take up to three times longer than intra-core communication
— if the shared data fits into Ll-cache. In our motivated
application domain of robotics and automotive systems, many
shared data satisfy this requirement. According to the real
world automotive benchmarks by Kramer et al. [29], more
than 90% of the shared labels are of atomic data type, i..,
1, 2, and 4 bytes, which fit the L1-cache in most modern
multiprocessor architectures.

Most applications in the automotive and robotics domain
are communication-centric, i.e., accesses to shared data by
subtasks are very frequent and even occur across different
tasks. Typically, communication overheads are the dominating
factor for communication-centric tasks’ WCET estimates [1].
Consequently, communication overheads in parallel applica-
tions have a significant impact on the average-case system
performance, and are detrimental to resource utilization under
hard real-time constraints, if not properly addressed.

Therefore, we propose to consider more restrictive DAG
task models, which try to reduce the communication overheads
by grouping subtasks — which share a large amount of data
— to execute on the same processor. Consequently, we avoid
expensive inter-core communication in favor of more efficient
intra-core communication and ideally use the private L1-cache
of the respective processor for most of the time.

From an analysis perspective however, subtask grouping
degrades parallelism, because executing certain subtasks on
the same processor requires them to be executed sequentially,
which must hence be handled carefully.

To the best of our knowledge, the only other DAG task
model addressing subtask group execution constraints is the
tied DAG task model from OpenMP. However, our proposed
model allows for the grouping of arbitrary subtasks, whereas
the tied DAG task model restricts groupings to specific sub-
paths of a DAG, tying them to a particular thread or processor.
Moreover, while there are published response time analyses

for the tied DAG task model [38], [39] specific to OpenMP
scheduling, they predominantly address the response time
problem associated with the extended Breadth First Scheduling
(BFS*) algorithm [39].

Contributions. To the best of our knowledge, our presented
work is the first to focus on complying with design constraints
where certain vertices of DAG tasks must be executed on
the same core. This decision might be made by system de-
signers to mitigate unacceptable overheads in communication,
synchronization, memory access, and other factors inherent in
the general sporadic DAG task model on multiprocessor sys-
tems. We address this problem by imposing group execution
constraints and provide hard real-time response-time analyses
thereof.

We summarize our contributions as follows:

e« We introduce an extension to the DAG task model in
Section II, namely the EG-DAG, which accommodates
arbitrary group execution constraints for subtasks. This
model ensures that group-constrained subtasks must be
executed on the same physical core, effectively reducing
communication overhead among different cores. Unlike
conventional models, EG-DAG does not enforce a spe-
cific group-to-processor binding but dynamically binds a
group to a processor when the first subjob of that group
executes on it, maintaining this binding for the duration
of the respective DAG task instance.

« We propose a scheduling mechanism tailored to the EG-
DAG model in Section III. We present a worst-case
response time analysis in Section IV along with a group
merging heuristic in Section V in the case that the number
of groups exceeds the number of available cores.

e We propose an algorithm to improve the WCRT analysis
in Section VI, by adding additional edges for subjobs
within a group.

o« We provide practical insights into the implementation
of the EG-DAG model and its associated scheduling
mechanisms in Section VIL

e We conduct a comprehensive numerical evaluation in
Section VIII, comparing the performance of our proposed
approaches against existing algorithms for DAG task
scheduling without group execution constraints. Our eval-
uation results demonstrate that the proposed approaches
are highly competitive with existing algorithms, with
performance differences typically less than 5%, especially
when the probability of edges between subtasks is rela-
tively high.

II. SYSTEM MODEL AND SPECIFICATION

In the proposed model, similar to the standard DAG model,
each task is composed of several subtasks. Those subtasks
need to comply to precedence constraints, that is, for exam-
ple, if a subtask utilizes data produced by another subtask,
then those subtasks should be executed one after the other.
Moreover, and distinct from the standard DAG model, we
assume that some subtasks are required to be executed on the
same processor — we call this restriction a group execution



source

Iy = {v4,v5,v8}

Fig. 1: An exemplary DAG under group execution constraints.
Edges denote precedence constraints between subtasks. The
execution group I'; contains the 3 red subtasks.

constraint. In Figure 1, a DAG with one group is illustrated.
In the following we first define the DAG task model, and
afterwards extend it with the group execution constraints.

A. DAG Task Model
A sporadic DAG task 7 is specified by the tuple
7:=(G,D,T) (1)

where G = (V,E) is a Directed Acyclic Graph (DAG)
describing the precedence constraints among subtasks, D is
the tasks relative deadline, and 7" is the tasks minimum inter-
arrival time. In the following, we formalize those variables
further and make useful definitions for the analysis.

Inter-Arrival Time 7. Task 7 releases an infinite number of
instances, called jobs (J] )een, and any two consecutive job
releases are separated by at least 7' time units.

Relative Deadline D. The relative deadline of task 7 is D.
Each job J; must be finished before its absolute deadline
d; = aj + D, where aj is the arrival time of job J;. The
deadline is assumed to be constrained, i.e., D <T.

Precedence Constraints (formalized by G = (V, E)). The
DAG G = (V,E) describes a finite set of subtasks with
precedence constraints. Specifically, each DAG is composed
of a finite set of subtasks v € V, and a finite set of edges
(u,v) € E C V x V. We assume that the graph G is
acyclic and weakly connected. The number of elements in V'
is denoted as |V'|. When job J] is released, one subjob J; of
each subtask v is released which must be executed according
to the precedence constraints, i.e., if the edge (u,v) € E exists
then J; can only be executed once J;' is finished.

Worst-case Execution Time (formalized by vol). Each
subtask v € V' is associated with a worst-case execution time
(WCET) vol : V — R™, that specifies the maximum execution
time for any instance of subtask v. The volume of any subset
of subtasks U C V is given by vol(U) := > . vol(v),
including the case where U = V/, representing the total volume
of the DAG task. It is assumed that every subtask has a positive
execution time, i.e., vol(v) > 0 for all v € V.

Path 7 € ¥(G). For each subtask v € V, the set of predeces-
sors of v and the set of successor of v is defined as pred(v) =
{w € V|(w,v) € E} and succ(v) = {w € V|(v,w) € E},
respectively. A path is an ordered set of subtasks
7w ={v1,...,v,}, such that pred(vy) = 0, succ(v,) = 0, and
Vk e {1,...,n —1},v; € pred(vi4+1). For a given DAG task,
the set of all possible paths is denoted as ¥(G), and the critical
path is defined as 7* := arg max, ¢y ¢ vol(). The length of
the critical path is denoted as vol(7*).

B. Execution Groups

Inter-core communication can take up to three times longer
than intra-core communication [17]. In practical scenarios, this
necessitates the strategic placement of interdependent subtasks
(i.e., those involved in extensive data sharing) on the same
core, thereby mitigating communication overhead. Further-
more, such a placement strategy promotes cache efficiency,
as it enables the aggregation of substantial data in the cache,
subsequently accessible by multiple subtasks within the same
core. To facilitate this optimization, this work introduces the
concept of execution groups, denoted as {I'i,...,I';}, to
systematically group subtasks that benefit from co-location on
the same processing unit.

Definition 1. An execution group I'; C V is a set of subtasks
that are constrained to be executed on the same processor.

We assume that each subtask is part of at most one execution
group, that is, I';NI"; = () for all 7 # j. The set of all subtasks
which are not part of any execution group is denoted by

¥

rt ::V\UD;. )
i=1

We assume that the execution groups are known (e.g., given

by the application design).

Note that according to our definition a group may be
executed on different cores for different jobs. For instance,
the subtasks in I'; may be executed on processor 4 for the
first and on processor 3 for the second job. However, for each
job, the processor assignment of a group is fixed as soon as
its first subjob starts executing on any processor.

One exemplary DAG task with execution groups is shown
in Figure 1. In this example, subtasks vy, vs, and vg share a
lot of data and should be executed on the same core. As a
result, the execution group I'y = {v4, vs,vs} is specified.

III. SCHEDULING MECHANISM

In this section we discuss the mechanisms to schedule one
DAG task on a set of m dedicated processors. We refer to
Section IX for the extension to the scheduling mechanism
involving several DAG tasks.

The scheduling mechanism is based on the list scheduling
algorithm. In the original list scheduling algorithm, all cur-
rently ready subjobs of a DAG job are maintained in a list.
Whenever a processor runs idle, the first subjob in the list is
dispatched and executed on that processor until completion.



To account for the group execution constraints, we consider
a list scheduling algorithm with additional lists — one for
each execution group. Whenever all predecessors of a subjob
finish, the subjob is moved to the corresponding ready queue.
At each point in time, a processor executes jobs from the ready
queues according to the following description.

Definition 2 (List Scheduling with Execution Groups). For
each task instance (job), each subjob v € V is scheduled on
m dedicated processors according to the following rules:

o A subjob is ready if all preceding subjobs have executed
until completion, i.e., the subjob arrival time a, for each
subjob v is given by max{f, | (w,v) € E}. A subjob
arrives to its respective per-group ready list Queue:1'; for
i € {1,...,7} or to the ungrouped ready list Queue:T*.
An arrived but not yet finished subjob is called pending.
Subjobs from per-group ready lists are initially admitted
executing on any reservation. However, at the first time
that any subjob of a per-group ready list Queue:l'; is
executed on some of the m processors, then all subjobs
that arrive to Queue:l'; are restricted to execute on that
reservation. Once a group is restricted to a processor, it
cannot be used for another group, i.e., no two subjobs of
different groups can execute on the same processor.

Subjobs from Queue:T- are admitted to execute on any

of the m processors.

o At any time t, on each of the m processors, a group
subjob admitted for this processor is executed (if such a
job exists), otherwise a non-group subjob is executed (if
such a job exists). When a group subjob arrives that is
admitted for the processor, the execution of a non-group
subjob on that processor is preempted.

Figure 2 illustrates the proposed scheduling mechanism. The
Mapping between processors and groups is depicted as a table,
and the processor follows the rules formulated in the box.
Please note that the actual implementation of the scheduling
mechanism is specified in Section VII (including a discussion
on how the processor behavior can be ensured).

IV. RESPONSE-TIME ANALYSIS

In this section, we provide a response-time upper bound for
an arbitrary job J; of the DAG task 7 under the proposed
scheduling mechanism from Section III. In the end we argue
that the response-time bound is independent of the job num-
ber ¢ and therefore the response-time bound is an upper bound
on the worst-case response time of task 7 as well.

Let a and f be the arrival time and finishing time of job J7,
respectively, and let a,, and f, be the arrival time and finishing
time of subjob J;, respectively. Our analysis is based on the
envelope of the interval [a, f). The envelope partitions the
whole interval [a, f) into subintervals. During each of those
subintervals, one subjob of J; is pending.

Definition 3 (Envelope). We define the envelope of G as a list
intervals

[avufvl),[avzafvz)a'“a[avpafvp) (3)

(with v; € V and p € {1,2,...,|V|}) backwards in an
iterative manner as follows:
1) J;J " is the subjob of J; with the maximal finishing time.
2) Forall i € {p,p—1,...,2}, J)"7" is the subjob with
the maximal finishing time such that v;_1 € pred(v;) is
a predecessor of v;.
3) w1 is a source node, i.e., it has no predecessor.
We call mo := (J;*, J;%,...,J,") the envelope path.

We note that the definition of an envelope for a DAG job
may not be unique if there are subjobs with the same finishing
time. In that case, ties can be broken arbitrarily.

By definition, f,, = f and all envelope path subjobs are
executed one after the other, that is f,, < a,,,, for all i =
1,...,p— 1. Moreover, at each time during the interval [a, f)
there is always a subjob of the envelope path being executed,
except if (i) all processors are busy executing non-envelope
subjobs, or (ii) the envelope path subjob is delayed by the
scheduling mechanism due to the execution group constraint.
We formalize this observation.

Definition 4 (Envelope, Busy, and Delay Interval). We
partition the interval |a,f) into three disjoint subsets
I. UL, U I = a, f) as follows:
o I.: An envelope path subjob is executed.
o Iy,: All processors are busy executing jobs which are not
in the envelope path.
e 15 An envelope path subjob is delayed due to group
execution constraints, i.e., the subjob is not scheduled
although there are empty processors.

By utilizing the Lebesgue measure (length) A of the subsets,
we can formulate a response time of J; as:

f—CL:/\(IeUIduIb) )
= AIp) + AMIe) + A(1a) %)

In the remainder of this section, we construct safe upper
bounds for \(1;), A(I.) and A(I4) to derive an upper bound
on the worst-case response time. We start with the bound for
Iy.

Lemma 1 (Bound for Ij,). The measure of the set I (i.e., the
time that all processors are executing non-envelope subjobs)
is upper bounded by

vol (V) — ML) — M(1)

(6)
m
Proof. To prove this lemma, we examine the amount of
executed workload during the sets Iy, I, and I;.

e During I., envelope jobs are executed. Therefore, the
executed workload during I, is at least \(I.).

o During I;, the envelope subjob is delayed due to group
execution constraints. That means that a subjob of the
envelope path is waiting for its dedicated processor to
finish the execution of another subjob. In particular,
there is workload of at least one subjob being executed
during ;. Therefore, the executed workload during I; is
at least A(1y).

Aly) <




. Proc | Grou
Y P, | Ts

if pred(v)
finished

subjobs in WaitQ

P; executes jobs from ready lists in following priority:
Case: P; mapped to I'; | Case: P; not mapped
1) Queue:I'; 1) Any Queue:I'; which
2) Queue:T* is not mapped
2) Queue:I'*

When the first subjob of I'; is executed on a processor F;,

then map I'; to P;.

—ﬂ e o |0 @ ReadyQrl', Py Iy

: Py -
T JelRader, | |

-nnnn ReadyQ:T'* Processor-Group
Mapping

Fig. 2: Explanation of scheduling concept of a DAG job on m processors.

e During I, all m processors are busy. Therefore, the
executed workload during I, is at least m - A(Ip).
In total, the amount of executed workload during
[a, f) =T.UIyU T, is at least A1) + A(Ig) + m - M(I).
Moreover, vol(V) is an upper bound on the executed
workload during [a, f). We conclude

vol(V) > A(Le) + MLa) +m - A(Ly) ™)

which is equivalent to Equation (6). O

Second, we derive a bound on the amount of time that the
envelope is executed.

Lemma 2 (Bound for I.). The measure of the set I, (i.e., time
that the envelope is executed) is upper bounded by the volume
of the envelope subjobs v, ...,v, € w.. That is,

P

A1) < vol(me) = Zvol(vi). (8)
i=1

Proof. At each time during /. an envelope path subjob is

executed. Each subjob v; can be executed for at most its

worst-case execution time, that is, for vol(v;) time units.

In consequence, the measure of I, is upper bounded by

b vol(v;). O
Last, we determine the bound for the delay induced by the
execution groups.

Lemma 3 (Bound for 1;). The measure of 1 (i.e., when enve-
lope subjobs are delayed due to group execution constraints)
is upper bounded by A(m.) := > "_ A(v;), where

0 ’UiEFJ‘

Av;) = v €T

©))

vol(w)
weparal(v;) \ wer;
and where paral(v;) is the set of potentially parallel subjobs,
that is, paral(v;) is the set of all w € V such that there exists
no path from v; to w or from w to v;.

Proof. For each envelope subjob v; for i € {1,...,p}, if
v; € I'* then it can execute on any idle processor and thus

v; can not be delayed. Hence, the cumulative amount of time
that v; is delayed is given by A(v;) = 0.

Conversely, if v; is part of an execution group I'; that is
mapped to a processor Py, then it may be delayed while Py
is busy executing other subjobs. We distinguish the delay by
different types of “other” subjobs:

o Delay by subjobs in I'“: There is no delay by other
subjobs in 't because they are executed with lower
priority and would be delayed when the envelope path
subjob v; arrives.

« Delay by subjobs in I'j; # I';: Since I'; is mapped to
processor P, subjobs of I';; cannot be executed on F.
Hence, there is no delay by subjobs of T';/.

o Delay by subjobs in I';: Delay of subjobs of the same
group I'; is only possible if they are executed (i.e., arrived
but not already finished) during a,,. This is only possible
for subjobs of parallel subtasks.

Hence, we can upper bound the amount of delay by

Av;) = Z vol(w).

weparal(v;) \ wer;

(10)

We conclude that the delay at each subjob J,* of the envelope
path is at most A(v;) (from Equation (9)). Hence, the total
delay is at most »_°_, A(v;). O

With the results of Lemmas 1, 2 and 3, we can state the
following response time bound.
Theorem 1. The response time of J; is upper bounded by

n vol(V \;) — A(m)

vol(m) + A(m) ) (11)

where T is the path that maximizes vol(m) + A(w), and
A(m) == cr A(v) is defined as in Lemma 3.



Algorithm 1 Execution Group Merging

Algorithm 2 Adding Edges

Input: DAG task 7, group execution constraints I', number
of available processors m;
1: if |I'| > m then
2:  Sort the I'; € ' decreasingly w.r.t the utilization;
3:  Partition I' on m slots using worst-fit;
(Merge same slot groups:)

4. fori=1,...,m do

5 T, := {v € V|v in group in slot i};
6: end for

7: end if

Input: DAG G =

Fl, ey F’Y;

for v €V do
Calculate the longest path 7, from source to v;

end for

for j=1,...,7 do
Sort I'; according to vol(m,) — vol(v);
For two subsequent vertices v;, v;11 in I'; add one edge
(’Ui,’UiJrl) to E;

7: end for

(V,E) of task 7, execution groups

A A

Proof. By using Lemmas 1, 2 and 3, we obtain

ffagAUJ+A@n+vdwqfﬁf)*Mh) (12)
_ vol(V) + (m—1) - (ML) + A(1a)) (13)
< vol(V) + (m — 1) - (vol(m) + A(me)) (14)

Since by definition vol(w.) + A(w.) < wvol(w) + A(7), we
obtain:

vol(V) 4+ (m — 1) - (vol(m) + A(m))

n vol(V) — v;i(w) — A(m)

f—a< (15)

= wvol(m) + A(n) (16)

Moreover, since 7 C V, we can replace vol (V') — vol(w) with
vol(V \ ), which yields the claim. O

The response time bound formulated in Theorem 1 is inde-
pendent of the job number ¢. Since ¢ was chosen arbitrarily,
the response time bound from Theorem 1 is an upper bound
on the worst-case response time of task 7.

V. EXECUTION GROUP MERGING

The scheduling mechanism presented in Section III is only
applicable if the number of execution groups does not exceed
the number of processors, i.e., |I'| < m. However, in general
the number of execution groups might be significantly higher
than the number of processors. To address this problem, we
discuss a group merging algorithm using the worst-fit strategy.

First, we sort the execution groups according to their
decreasing total utilization. Second, we partition the execution
groups in m slots using the worst-fit strategy, that is, each
group is assigned to the slot with the lowest total utilization.
The groups are redefined in a way that execution group are
merged if they are in the same slot. After the group merging,
the response time bound from Theorem 1 can be used to check
if the execution groups allow a feasible schedule of the DAG.
The merging procedure is summarized in Algorithm 1.

After the execution group merging, the number of execution
groups is identical to the number of available processors m
and our analysis from Section IV can be applied. The runtime
of the algorithm is O(|T"|-log |T'|) to sort the groups according

to their utilization and O(|T'| - m) for the partition, where m
is the number of available processors.

VI. ADDING EDGES TO IMPROVE WCRT

In Section IV, we already introduced the response-time anal-
ysis for a given DAG task with execution group constraints.
However, the quantification of the delay I; in Lemma 3
is pessimistic since it needs to account for all different
sequentializations of potentially-parallel subtasks. As a result,
A(me) = Y7 | A(v;) in Equation (9) is overly pessimistic
if there are several parallel subtasks. To mitigate this prob-
lem, we propose a sequentialization approach to reduce this
pessimism and to tighten the analytical guarantees from Sec-
tion IV further. To that end, we first motivate our approach
intuitively and then present our solution. The improvement is
evaluated in Section VIII.

To respect the execution group constraints in the scheduling
mechanism, subjobs of the same execution group have to be
executed sequentially. However, since the sequence of the
subjobs of the same execution group is not clear, all scenarios
must be considered in the analysis. For example, in Figure 1
there is one execution group I'; with three subtasks vy, vs
and vg. We know that vg will only be released after v4 and vs
have finished. Therefore, there is no delay from the execution
group, i.e., A(vg) = 0. For the subjobs of vy and vs there
might be delay from the other subjob, respectively. That is,
vs may be delayed by the length of vy (A(vs) = 2) and
conversely (A(vy) = 1). Since it is not clear which of these
two subtasks is executed first, both delays must be considered,
although it is obvious that for this simple example only one
subjob can be delayed and therefore the total delay is in fact
at most max {1,2} = 2.

Our solution to avoid this over-approximation is to artifi-
cially sequentialize subtasks of the same execution group by
adding additional edges between execution group subjobs to
the graph G = (V, E). Please note that while adding edges
to the graph changes the structure, the graph can still fulfill
the same functionality as before since the original constraints
are still respected. Rather, adding additional edges enforces a
certain sequentialization behavior of the scheduler.

To decide where to add edges to the graph, we use the
following procedure, as summarized in Algorithm 2. For each
subtask v € V, the longest path m, from the source to



source sink

Us

Iy = {v4,v5,v8}

Fig. 3: The DAG task from Figure 1 with additional edges
(dashed blue arrows) to improve the analytical guarantees.

v is calculated. Afterwards, the execution group is ordered
according to vol(m, ) —vol(v), where ties are broken arbitrarily.
This ordering represents a likely sequence of the execution
group subtasks of the DAG task. That is, if vol(m,) — vol(v)
is shorter, then less workload must be done before the subtask
v can be released, and therefore the subjob of that subtask
will likely be executed first anyway. Finally, we achieve the
sequentialization of each execution group I'; by adding edges
(vi, vi11) between two subsequent subtasks v; and v; 41 of the
ordered I';.

For the example, in Figure 1, the execution group is ordered
as (vs,v4,vg) because:

e vol(my,) — vol(vy) =3
e vol(my; ) — vol(vs) =0
o vOl(my,) —vol(vg) =3+2+14+2=38
Therefore, the edges (vs,v4) and (v4,vs) are added to the
graph. The updated graph is illustrated in Figure 3. Please note
that the edge (v4,vg) is redundant and can safely be removed
again because there is already a path from v, to vsg.
To keep the DAG task well-defined, it must be ensured that
after this procedure there are still no cycles in the graph.

Lemma 4. After adding edges to the DAG task described by
DAG G = (V,E) according to Algorithm 2, the graph G
remains acyclic.

Proof. First, we order V' according to vol(m,) — vol(v). If
there are two vertices v,w € V with vol(m,) — vol(v) =
vol(m,, ) — vol(w), we either follow the sorting of I'; if both v
and w are in I';, or we decide the sorting arbitrarily otherwise.
Any edge e = (v,w) € E can either follow the ordering
of V, that is v appears before w in V, or it does not follow the
ordering of V. If e follows the ordering of V, then we say it
is in ‘—’-direction. Otherwise, we say it is in ‘<—’-direction.
The proof is divided in two parts:

a) In the original G there are no edges in ‘¢—’-direction.
b) Adding edges in ‘—’-direction keeps the graph acyclic.

a) In the original G there are no edges in ‘<—’-direction:
Otherwise, there exists an edge e = (v, w) € E with

vol(m,) — vol(v) > vol(my,) — vol(w). (17

Because edge e exists, we can also define a path from source
to w as 7 := (m,,w). Since 7, is the longest path from source
to w, we have vol(m,) > vol(7). Hence,

(18)
19)

vol(m,) — vol(v) > vol(my,) — vol(w)

> vol(7) — vol(w) = vol(m,)

and we achieve a contradiction vol(v) < 0 to the assumption
that vol(v) > 0 for all v € V.

b) Adding edges in ‘—’-direction keeps the graph acyclic:
We prove this by contradiction and assume that after adding
edges in ‘—’-direction there exists a cycle (v1,...,v¢) with
v1 = v¢. Since vy and ve are at the same position in V, there
must be at least one edge (v;,v;+1) in ‘< -direction. However,
there are no edges in ‘< -direction in the original G by a),
and also after adding edges in ‘—’-direction. This leads to the
contradiction.

Edges that are added by Algorithm 2 are always in
‘—’-direction due to the definition of the total ordering of V.
Hence, the graph G is still acyclic after Algorithm 2 according
to b). O

After the procedure described by Algorithm 2, the subtasks
of each execution group I'; are fully sequentialized and there
are no parallel subtasks anymore, i.e., paral(v) = ) for all
v € T';. Hence, the delay I; has measure A(I;) = 0. This
speeds up and tightens the response time analysis, as evaluated
in Section VIII. We note that this procedure does not achieve
a dominating behavior if the longest path increases by adding
edges. However, evaluation results in Figure 4 showed that it
does not have significant impact on the performance ratio.

VII. IMPLEMENTATION

This section details the implementation for the scheduling
mechanism of DAG tasks with group execution constraints (as
illustrated in Figure 2).

Task and Group Identification. Each vertex (or subjob) in
the EG-DAG task contains associated group information. This
can either be T'; for a grouped or I'" for an ungrouped vertex.

Job Queues and Management. A Global Wait Queue is
introduced to store all subjobs with pending precedence con-
straints. Additionally, n ready queues, labeled from RQ); to
RQ,, are designated for each execution group. They are
applied to store ready subjobs from their associated groups.
For ungrouped subjobs, another queue, RQL, is instantiated.

Job Scheduling Mechanism. Once all predecessors of a
subjob v; conclude their execution, the subjob is dequeued
from the global wait queue. Depending on its group affiliation:

o For Grouped Subjobs (v; € I';), they are enqueued into
the corresponding R();. A processor-group mapping table
ensures each processor’s exclusivity to one execution
group. If v; is the only subjob of an empty RQ;,
the processor-group mapping table is consulted. If RQ);
does not have a processor association, it binds with a
currently unassigned processor. In situations where no
processor remains idle, R(); associates with a processor



executing ungrouped subjobs. Herein, the new grouped
subjob preempts any executing ungrouped subjob.

o For Ungrouped Subjobs (v; € T), they are enqueued
into the RQ~. An unoccupied processor, given its specific
ready queue is also vacant, can execute a job from RQ".
However, the lower priority of ungrouped subjobs means
any incoming grouped subjob can preempt them.

Preemption and Priority Handling. Within the scheduling
mechanism, grouped subjobs naturally hold higher priority.
When processors are executing ungrouped subjobs, any incom-
ing grouped subjob can preempt their execution. This mecha-
nism not only optimizes computational resource utilization but
also guarantees task continuity and ensures data consistency,
especially for grouped subjobs.

To the best of our knowledge, most research-
oriented RTOSes and open-source RTOSes, such as
LITMUSET [5], [8], RTEMS, and FreeRTOS, do not
natively support the DAG task model. Implementing the
DAG task model within an RTOS is beyond the scope
of this work. Consequently, the most suitable approach
to implement our newly proposed EG-DAG model is to
simulate the scheduling behavior of each sub-job, and to
utilize a table-driven scheduler, a feature that is, for instance,
supported by LITMUSET, In order to avoid multiprocessor
timing anomalies, the execution time of each subjob has to
be forced to its WCET, i.e., no early completion is allowed.

VIII. EVALUATION

In this section, we present a detailed experimental evalu-
ation to assess the effectiveness of our proposed worst-case
response-time analysis introduced in Section IV. We compare
our analysis with the state-of-the-art DAG response-time anal-
yses without execution groups. Additionally, we evaluate the
performance enhancements achieved by our improvements, as
delineated in Section VI.

A. Environment Configurations

We generated 100 task sets, each with a total utilization of
640%. The number of DAG tasks n was selected uniformly at
random from [16, 32]. We applied the Dirichlet-Rescale (DRS)
algorithm [22] to determine the utilization for each of the n
tasks. Task periods T; were uniformly and randomly chosen
from the set {1,2,5,10,20, 50,100, 200,1000}, a selection
inspired by common practice in automotive systems [24], [29],
[42], [45]. We assumed implicit deadlines for all tasks, with
each task’s relative deadline D; matching its period T;.

To generate a DAG, we first randomly selected the number
of subtasks from [10, 100], and applied the DRS to generate
the utilization for each subtask. The G(n,p) algorithm [14]
was used to generate the edges between subtasks, with proba-
bility p. € {[10%, 30%)], [40%, 60%], [70%, 90%]}, where
Pe is the probability of an edge (v;,vi) € E for any pair of
subtaks (v;,vy) with j < k. For each DAG task, the probabil-
ity of a subtask being grouped was p, € {50%, 70%, 90%}.
The number of groups for each task set was randomly selected
from the ranges n, € {[4, 16],[16, 32]}. For each grouped

subtask, the exact group allocation, i.e., the group id, was
uniformly and randomly generated. We executed the generated
task sets on either {4, 8, 16} processors and recorded the
makespan for each task.

In the evaluation, we refer to the proposed approaches
as EG-DAG for the original analysis and EG-IMP for the
improved version in Section VI. We compared our approach
to the following algorithms, which do not consider group
execution constraints:

« HE: Single path approach represented by He et al. [26].

o PPP: Parallel Path Progression DAG Scheduling ap-
proach proposed by Ueter et al. [44].

o FED: Federated scheduling from Li et al. [32].

o LB: The lower bound of the makespan, which is defined
as the maximum between the WCET of the task over the
available processor and the length of its critical path, i.e.,
max{vol(7)/M, vol(n*)}.

We evaluated the makespan of different approaches based
on the performance ratio, defined as the makespan of the
dedicated DAG scheduling algorithm divided by the lower
bound, i.e., LB.

B. Evaluation Results and Discussions

We evaluated all 54 combinations under different settings.
Due to the similarity of the performance, only a subset of the
results is presented in Figure 4.

In general, our proposed approach for EG-DAG is compa-
rable with the approaches that have not taken communication
overheads into consideration when either (i) the probability of
edges between subtasks is relatively high; (ii) the number of
available processors is relatively large; or (iii) the probability
that a subtask being grouped is relatively high. We analyzed
the effect of the three parameters individually by changing:

1) pe € {[10%,30%], [40%,60%], [70%, 90%]}
(Figure 4a): For a fixed number of available processors
M = 16, a fixed number of groups n, € [4, 16], and a
fixed probability that a subtask is grouped p, = 70%,
increasing the probability of edges between subtasks
can significantly improve the performance of our new
proposed approach for EG-DAG.

2) M € {4, 8, 16} (Figure 4b): By increasing M, while
keeping a fixed probability of edges between subtasks
Pe € [70%, 90%)], a fixed number of groups n, € [4, 16],
and a fixed probability that a subtask is grouped p, =
70%, the performance of the proposed approach was
significantly improved.

3) pg € {50%, 70%,90%} (Figure 4c): Increasing the
probability that a subtask is grouped, while keeping the
number of available processors M = 16, the probability
of edges between subtasks p. € [70%, 90%], and the
number of groups n, € [4, 16], enhanced the perfor-
mance of the proposed approach.

Just considering Figure 4, while the performance of EG-

DAG is comparable, the other approaches usually perform
slightly better. However, a loss compared to the other methods



260 260 © ° 260
\o o o
S 240 2401 4 8 240
.2 220 22018 8 20{ © 2
T g 8
& 200 200 2001 5
Y 180 180 180
é 160 160 1601 ¢ °
o o
S 140 140 1401 o
o=
5 120 % 120 120 i i
& 100 A A | 100 R R T - A
EG-DAGEGIMP HE FED PPP EG-DAGEGIMP HE FED PPP EG-DAGEGIMP HE FED PPP
(a) Increasing the probability of edges between subtasks, i.e., pe € {10% — 30%, 40% — 60%, 70% — 90%}.
—~140{ ¢ 140 140
135 g : 1351 8 ° 135{ 8 8
o o
2 130 ¢ 130 g g 130 g g
& 125 125 1251 8 8
8 120 120 120
& 115 115 115
E 110 110 110
L
5 105 i 105
Q- 100 100

ié— 0 P

EG-DAGEG-IMP HE FED EG-DAGEG-IMP HE FED EG-DAGEG-IMP HE FED PPP
(b) Increasmg the number of available processors, i.e., M € {4,8,16}.

—~ 140 8 H 140 140{ © 8

2135 g g 135 8 8 135 3 3

o

= 130 ﬁ ﬁ 130 g g 1301 s

or 125 125 8 8 125

8 120 120 120

& 115 115 115

g 110 110 110

Nel

L 105 105 % 105 %

(O] ° o

2 100 = — | 100{ = = & = — |10 = = 4 = —
EG-DAGEG-IMP HE FED PPP EG-DAGEG-IMP HE FED PPP EG-DAGEG-IMP HE FED PPP

(c) Increasing the probability that a subtask is grouped, i.e., py € {50%, 70%, 90%}.

Fig. 4: Comparison of different approaches with different configurations.

was expected as the additional group execution constraints
must be respected. Recall that these group constraints ensure
that groups of tasks with a high intra-group communication
load are assigned to the same core, thus drastically reducing
the communication overhead. This communication overhead
is not considered by the other approaches.

In most configurations the median performance loss of our
approach, compared to the lower bound, is less than 5%.
Therefore, the evaluation results substantiate that our anal-
ysis accommodates communication overheads and additional
constraints with only a marginal degradation in performance.
Once non-negligible communication overheads are considered,
such as 5% of the WCET for each task, our newly proposed
approaches can outperform all other approaches in most of the
evaluated configurations.

Additionally, the improved version of the proposed approach
outperforms the original in most evaluated configurations.
However, when the probability of edges between subtasks is
relatively high, i.e., p. € [70%, 90%], and the number of
available processors is also relatively large, i.e., M = 16, the

performance difference becomes negligible. In the aforemen-
tioned configurations, these subtasks have already been con-
nected in most of the cases, adding additional edges does not
affect the structure of the considered DAG task significantly.
Therefore, the makespan does not change significantly as well.

IX. EXTENSION OF THE ANALYSIS TO SCENARIO WITH
MULTIPLE DAGS

In typical systems, not all m processors are exclusively
allocated to a single task. Therefore, in this section we discuss
how to extend our analysis to the general case with n DAG
tasks 71,...,7,. To achieve this, we have to schedule the n
tasks such that it is ensured that the subtasks with the execution
constraints execute on the same processor.

The most straightforward approach is to partition the n tasks
on m processors by assigning m; > 1 processors for task
T; exclusively while ensuring that Z?:l m; < m. However,
this approach only works if sufficient cores are available, and
especially performs very poorly if certain tasks utilize only a



fraction of their dedicated processor capacity. Therefore, we
might want to deploy a less restrictive mechanism.

We observe that the following two properties are needed
to apply our scheduling mechanism and the related analysis:
1) During execution of a task 7;, a certain amount of m;
processors is available exclusively for 7;, and 2) the processors
that are used by task 7; do not change until its job is completed.

We utilize hierarchical scheduling, a layered scheduling
approach, in which so-called reservation systems are sched-
uled on the physical processors based on the higher-level
scheduling strategy. These reservations then serve the assigned
actual tasks whenever executed on the physical processors
based on the lower-level scheduling strategy. Specifically, we
consider rigid gang scheduling on the higher level as it was
shown to have performance benefits compared to non-gang
scheduling [16], [27], and the proposed scheduling mechanism
from Section III on the lower level.

Gang scheduling achieves 1) directly. In gang scheduling,
for each DAG task T7;, a dedicated gang reservation is sched-
uled on m; dedicated processors in parallel. In our case,
m; is rigid, i.e., it is fixed and predefined offline. Inside
each reservation, the DAG tasks can be scheduled using our
proposed scheduling mechanism from Section III. There is
already a rich literature on gang scheduling [2], [13], [20],
[21], [28], [31], [34], [43].

To ensure 2), we must forbid task migration during runtime.
That is, we must either restrict the gang scheduling algorithm
in the time-domain (i.e., non-preemptive scheduling) or in the
space-domain (i.e., stationary gang scheduling). A restriction
in the time domain is achieved by non-preemptive scheduling
where each job finishes its execution before the next job can
access the processors. With non-preemptive scheduling, there
is no need for task migration. A restriction in the space domain
can be realized by stationary gang scheduling. That is, the
m; processors used for task 7; are predefined. We refer to
the literature for state-of-the art response time analyses, e.g.,
in [31] or [43], respectively.

The inherent characteristics of various gang scheduling
algorithms significantly influence the schedulability perfor-
mance of a task set, particularly when different makespan
analysis algorithms are applied on a specific number of
available processors. Therefore, in our evaluation, we focus on
assessing the makespan of different approaches across varying
numbers of available processors for each task. This approach
diverges from evaluating the performance of the entire task set
using different gang scheduling algorithms. Our objective is to
compare the performance of each makespan analysis algorithm
for a single DAG task in a more isolated manner.

X. RELATED WORK

In practice, one common example of DAG tasks with
group execution constraints are applications following the
AUTOSAR standard that are deployed on multiprocessor plat-
forms. Each task is composed of several runnables with data
dependencies; these runnables are similar to the subtasks in
this work. In order to minimize the communication overheads,

a lot of strategies have been proposed and studied. Saidi
et al. [36] presented an Integer Linear Programming (ILP)
formulation for mapping AUTOSAR runnables to a multi-core
architecture, with the aim to minimize inter-core communica-
tion and to balance the workload on available cores. Gupta
et al. [23] proposed an approach for mapping runnables to
different cores, meeting the corresponding timing and prece-
dence constraints while considering hardware dependency and
inter-core communication cost. Faragardi et al. [15] proposed a
feedback-based solution framework for component-based em-
bedded software on a multi-core processor, subject to reduce
both the inter-core communication cost and the waiting time
caused by the synchronization between dependent transactions.
However, there results consider the minimization of inter-core
communication overheads rather than taking the optimization
of schedule algorithms for given mappings of runnables with
release precedence constraints into consideration.

On the other hand, the scheduling of DAG tasks with
release precedence constraints on heterogeneous/homogeneous
multiprocessor platforms has received a lot of attention over
the years. Li et al. [32] proposed federated scheduling, where
the intra-task interference on the critical path is upper-bounded
by the workload of subjobs not belonging to the critical path
divided by the number of processors. The corresponding re-
sponse time analysis requires no information about the internal
structure of the DAG except for the total volume and the length
of the critical path. Sun et al. [38], [39] focused on OpenMP
task systems, where tied tasks must be executed on the same
thread. For an OpenMP task system, the task is defined as
a set of sequentially executed subtasks; hence, the model is
less general than the DAG task model where the order of the
subjobs is based on precedence constraints. Tessler et al. [41]
developed a cache-aware BUNDLE-scheduling algorithm for
federated scheduling of sporadic DAG task sets, which focuses
on cache affinities and allows for trade-offs. He et al. [26]
proposed a priority assignment policy for each subtask of
a DAG as well as a response time bound for DAG tasks
with arbitrary priority assignment. Ueter et al. [44] proposed
a parallel path progression scheduling algorithm with two
distinct subtask priorities, which allows to quantify the parallel
execution of a user chosen collection of complete paths in the
response time analysis. Tessler et al. [40] considered cache-
aware co-located scheduling for fork-join tasks, aiming to
improve schedulability by carefully scheduling threads to share
cached values. However, all these results do not consider the
communication overheads of subtasks with data dependencies
in DAG task systems, where execution groups are regarded as
a strict requirement.

XI. CONCLUSION

In this paper, we have enhanced the DAG task model
by introducing the concept of execution groups requiring
designated subtasks to be executed on the same processor.
This refinement aims to minimize communication overhead
within multi-core systems. To facilitate this model, we have
proposed a dedicated scheduling mechanism that ensures the



coordinated execution of subtasks within these groups while
providing a comprehensive response time analysis.

To the best of our knowledge, our work represents the
first effort to introduce a scheduling mechanism tailored for
DAG tasks with execution groups. Our evaluation results
demonstrate the competitiveness of our approach, even after
refining the DAG task model to accommodate execution
groups, compared to existing approaches that do not explicitly
consider communication overhead and group execution con-
straints. These results also suggest that our approach can offer
superior schedulability guarantees, especially when accounting
for communication overhead, such as a modest fraction (e.g.,
5%) of the corresponding task’s Worst-Case Execution Time.

ACKNOWLEDGEMENT

This result is part of a project (PropRT) that has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 865170). This work has
been supported by Deutsche Forschungsgemeinschaft (DFG),
as part of Sus-Aware (project No. 398602212).

REFERENCES

[1] A. Abel, F. Benz, J. Doerfert, B. Dorr, S. Hahn, F. Haupenthal,
M. Jacobs, A. H. Moin, J. Reineke, B. Schommer, and R. Wilhelm.
Impact of resource sharing on performance and performance prediction:
A survey. In CONCUR, volume 8052 of Lecture Notes in Computer
Science, pages 25-43. Springer, 2013.

[2] W. Ali and H. Yun. Rt-gang: Real-time gang scheduling framework for
safety-critical systems. In RTAS, pages 143-155. IEEE, 2019.

[3] S. Baruah. Federated scheduling of sporadic DAG task systems. In /[EEE
International Parallel and Distributed Processing Symposium, IPDPS,
pages 179-186, 2015.

[4] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Feasibil-
ity analysis in the sporadic dag task model. In ECRTS, pages 225-233,
2013.

[5] B. B. Brandenburg. Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, University of North Carolina, Chapel
Hill, USA, 2011.

[6] J. M. Calandrino and J. H. Anderson. Cache-aware real-time scheduling
on multicore platforms: Heuristics and a case study. In 20th Euromi-
cro Conference on Real-Time Systems, ECRTS, pages 299-308. IEEE
Computer Society, 2008.

[7] J. M. Calandrino and J. H. Anderson. On the design and implementation
of a cache-aware multicore real-time scheduler. In 21st Euromicro Con-
ference on Real-Time Systems, ECRTS, pages 194-204. IEEE Computer
Society, 2009.

[8] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. Litmus™rt : A testbed for empirically comparing real-time
multiprocessor schedulers. In Proceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS), pages 111-126. IEEE Computer Society,
2006.

[9] D. Casini, A. Biondi, G. Nelissen, and G. C. Buttazzo. Partitioned fixed-

priority scheduling of parallel tasks without preemptions. In RTSS, pages

421-433. IEEE Computer Society, 2018.

D. Casini, A. Biondi, G. Nelissen, and G. C. Buttazzo. A holistic

memory contention analysis for parallel real-time tasks under partitioned

scheduling. In RTAS, pages 239-252. IEEE, 2020.

R. Cole and V. Ramachandran. Analysis of randomized work stealing

with false sharing. In 27th IEEE International Symposium on Parallel

and Distributed Processing, IPDPS, pages 985-998. IEEE Computer

Society, 2013.

Z. Dong and C. Liu. Work-in-progress: New analysis techniques for

supporting hard real-time sporadic dag task systems on multiprocessors.

In IEEE Real-Time Systems Symposium (RTSS), pages 151-154, 2018.

Z. Dong and C. Liu. A utilization-based test for non-preemptive gang

tasks on multiprocessors. In RTSS, pages 105-117. IEEE, 2022.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

P. Erdos. On random graphs 1. Publicationes Mathematicae (Debrecen),
6:290-297, 1959.

H. R. Faragardi, B. Lisper, K. Sandstrom, and T. Nolte. A resource
efficient framework to run automotive embedded software on multi-core
ecus. Journal of Systems and Software, 139:64-83, 2018.

D. G. Feitelson and L. Rudolph. Gang scheduling performance ben-
efits for fine-grain synchronization. J. Parallel Distributed Comput.,
16(4):306-318, 1992.

J. Feljan and J. Carlson. The impact of intra-core and inter-core task
communication on architectural analysis of multicore embedded sys-
tems. In The Eighth International Conference on Software Engineering
Advances, ICSEA, pages 402-407, 2013.

J. Fonseca, G. Nelissen, and V. Nélis. Improved Response Time Analysis
of Sporadic DAG Tasks for Global FP Scheduling. In Proceedings of
the 25th International Conference on Real-Time Networks and Systems,
pages 28-37, 2017.

J. C. Fonseca, G. Nelissen, V. Nélis, and L. M. Pinho. Response time
analysis of sporadic DAG tasks under partitioned scheduling. In /1th
IEEE Symposium on Industrial Embedded Systems, SIES, pages 290—
299, 2016.

J. Goossens and V. Berten. Gang FTP scheduling of periodic and parallel
rigid real-time tasks. CoRR, abs/1006.2617, 2010.

J. Goossens and P. Richard. Optimal scheduling of periodic gang tasks.
Leibniz Trans. Embed. Syst., 3(1):04:1-04:18, 2016.

D. Griffin, I. Bate, and R. I. Davis. Generating utilization vectors for the
systematic evaluation of schedulability tests. In 41/st IEEE Real-Time
Systems Symposium, RTSS, pages 76—88. IEEE, 2020.

P. Gupta, N. P. Singh, and G. Srinivasan. An efficient approach
for mapping autosar runnables in multi-core automotive systems to
minimize communication cost. In 2019 Innovations in Power and
Advanced Computing Technologies (i-PACT), volume 1, pages 1-4,
2019.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. Commu-
nication centric design in complex automotive embedded systems. In
29th Euromicro Conference on Real-Time Systems, ECRTS, volume 76
of LIPIcs, pages 10:1-10:20. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2017.

Q. He, x. jiang, N. Guan, and Z. Guo. Intra-task priority assignment in
real-time scheduling of dag tasks on multi-cores. IEEE Transactions on
Parallel and Distributed Systems, 30(10):2283-2295, 2019.

Q. He, M. Lv, and N. Guan. Response time bounds for DAG tasks with
arbitrary intra-task priority assignment. In 33rd Euromicro Conference
on Real-Time Systems, ECRTS 2021, July 5-9, 2021, Virtual Conference,
volume 196 of LIPIcs, pages 8:1-8:21. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2021.

M. A. Jette. Performance characteristics of gang scheduling in multipro-
grammed environments. In Proceedings of the ACM/IEEE Conference
on Supercomputing, page 54. ACM, 1997.

S. Kato and Y. Ishikawa. Gang EDF scheduling of parallel task systems.
In IEEE Real-Time Systems Symposium, RTSS, pages 459-468, 2009.
S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmark for free. In 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
2015.

K. Lakshmanan, S. Kato, and R. R. Rajkumar. Scheduling parallel real-
time tasks on multi-core processors. In Proceedings of the 31st IEEE
Real-Time Systems Symposium, pages 259-268, 2010.

S. Lee, N. Guan, and J. Lee. Design and timing guarantee for non-
preemptive gang scheduling. In RTSS, pages 132-144. IEEE, 2022.

J. Li, J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah. Analysis
of federated and global scheduling for parallel real-time tasks. In 26th
Euromicro Conference on Real-Time Systems, ECRTS, pages 85-96.
IEEE Computer Society, 2014.

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo. Response-Time Analysis of Conditional DAG Tasks in
Multiprocessor Systems. In Proceedings of the 2015 27th Euromicro
Conference on Real-Time Systems, 2015.

G. Nelissen, J. M. i Igual, and M. Nasri. Response-time analysis for
non-preemptive periodic moldable gang tasks. In ECRTS, volume 231
of LIPIcs, pages 12:1-12:22. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2022.

P. Radojkovic, S. Girbal, A. Grasset, E. Quifiones, S. Yehia, and F. J.
Cazorla. On the evaluation of the impact of shared resources in



[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

multithreaded COTS processors in time-critical environments. ACM
Trans. Archit. Code Optim., 8(4):34:1-34:25, 2012.

S. E. Saidi, S. Cotard, K. Chaaban, and K. Marteil. An ILP approach
for mapping AUTOSAR runnables on multi-core architectures. In Pro-
ceedings of the 2015 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, RAPIDO@HIPEAC, pages 6:1-6:8.
ACM, 2015.

A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-Core Real-Time
Scheduling for Generalized Parallel Task Models. In Proceedings of the
32nd IEEE Real-Time Systems Symposium, pages 217-226, 2011.

J. Sun, N. Guan, X. Wang, C. Jin, and Y. Chi. Real-time scheduling
and analysis of synchronous openmp task systems with tied tasks. In
DAC, page 94. ACM, 2019.

J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi. Real-time scheduling
and analysis of openmp task systems with tied tasks. In IEEE Real-
Time Systems Symposium, RTSS, pages 92—103. IEEE Computer Society,
2017.

C. Tessler, P. P. Modekurthy, N. Fisher, A. Saifullah, and A. Murphy.
Co-located parallel scheduling of threads to optimize cache sharing. In
IEEE Real-Time Systems Symposium, RTSS, pages 251-264. IEEE, 2023.
C. Tessler, V. P. Modekurthy, N. Fisher, and A. Saifullah. Bringing
inter-thread cache benefits to federated scheduling. In IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS, pages
281-295. IEEE, 2020.

S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein. System-level
timing feasibility test for cyber-physical automotive systems. In //th
IEEE Symposium on Industrial Embedded Systems, SIES 2016, Krakow,
Poland, May 23-25, 2016, pages 121-130. IEEE, 2016.

N. Ueter, M. Giinzel, G. von der Briiggen, and J. Chen. Hard real-time
stationary gang-scheduling. In ECRTS, volume 196 of LIPIcs, pages
10:1-10:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.
N. Ueter, M. Giinzel, G. von der Briiggen, and J. Chen. Parallel path
progression DAG scheduling. IEEE Transactions on Computers, pages
1-15, 2023.

G. von der Briiggen, N. Ueter, J. Chen, and M. Freier. Parametric
utilization bounds for implicit-deadline periodic tasks in automotive
systems. In Proceedings of the 25th International Conference on Real-
Time Networks and Systems, RTNS, pages 108-117, 2017.

J. Xiao, S. Altmeyer, and A. D. Pimentel. Schedulability analysis of non-
preemptive real-time scheduling for multicore processors with shared
caches. In 2017 IEEE Real-Time Systems Symposium, RTSS, pages 199—
208. IEEE Computer Society, 2017.

M. Xu, L. T. X. Phan, H. Choi, and I. Lee. Analysis and implementation
of glenergy saving for mixed-criticalityobal preemptive fixed-priority
scheduling with dynamic cache allocation. In 2016 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
123-134. IEEE Computer Society, 2016.

H. Yun. Evaluating the isolation effect of cache partitioning on cots
multicore platforms. In OSPERT, 2015.

S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang. DAG scheduling
and analysis on multiprocessor systems: Exploitation of parallelism and
dependency. In 41st IEEE Real-Time Systems Symposium, RTSS 2020,
Houston, TX, USA, December 1-4, 2020, pages 128—140. IEEE, 2020.
M. Zini, G. Cicero, D. Casini, and A. Biondi. Profiling and controlling
i/o-related memory contention in COTS heterogeneous platforms. Softw.
Pract. Exp., 52(5):1095-1113, 2022.



