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1 Introduction

Analyzing data sets in 2 or 3 dimensions can be achieved by using a visualization tool.
We are able to count the connected components and search for holes and tunnels to
obtain an understanding of the structure of data sets. In higher dimensions we cannot

Figure 1.1: A data set with two holes and one connected component.

follow this approach since we do not have an intuition for the definition of a hole.
The tool to formalize this notion in arbitrary dimensions is the topological invariant
homology. We will state an algorithm for its computation.
The foundation for this algorithm is data in form of a finite point cloud in some

metric space as the real coordinate space Rn. For each set of k data points we add
a k-simplex if balls around the points with a given radius intersect pairwise. As a
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Figure 1.2: Simplicial complex obtained from points.

result we obtain a simplicial complex, for which its homology is defined as in [Hat02,
Section 2.1].
The constructed complex depends crucially on the prescribed radius. Increasing the

radius enlarges the complex. We store this information as a sequence of inclusions
of simplicial complexes. By going through the sequence, new holes can be formed
and holes can vanish. We capture this behavior by persistent homology, which can
distinguish whether a hole survives. Later on, we will be able to draw barcodes, which
describe the lifetimes of holes in the sequence by intervals as in Figure 1.3. In the right
picture we see one hole for radii in the interval r1,

?
5

2
q.

In this thesis we will study and implement an algorithm to compute persistent homo-
logy of such sequences of simplicial complexes. We will use it to compute the homology
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1 Introduction

degree 0 degree 1

Figure 1.3: Barcodes for Figure 1.2.

of finitely many points on a circle. In contrast to the case in [AA17] for infinitely many
points, we do not only obtain the homology classes of odd-dimensional spheres.
To get further insights into the structure of data sets, we want to localize its holes.

For this purpose, we partition the complex into smaller pieces and construct a sequence
having the local parts at its ground level and the Mayer-Vietoris blowup, which is
homotopy equivalent to the complex itself, at its highest level. By computing persistent
homology of this sequence, we obtain a good local description of the holes.
Persistent homology and localized homology are important tools in topological data

analysis. They are widely used in various scientific areas for example to analyze the
structure of proteins [XW14], for fast tumor segmentation in medicine [QTT`18] or to
improve machine learning models [GND`19].

4



2 Complexes and Homology

For this thesis a basic knowledge of algebraic topology is required. We want to recall
the most important definitions and shortly discuss our understanding of holes in higher
dimensions. At the end of this chapter we are going to study ways to make homology
an available tool for data sets. We mainly follow [Hat02] and [EH10] for foundations
on complexes and homology.

2.1 Singular Homology

Homology is a topological invariant, which can be used to describe holes of general
topological spaces. Let us consider a hole in the two dimensional real space. We can
describe it by constructing a rectangle as a sum of lines around the hole. The rectangle
defines a hole if it cannot be filled completely.

Figure 2.1: Describing a hole by a sum of lines.

We note that there might be several descriptions for this hole like a deformation
of the rectangle or another polygon. By using homology, we do not distinguish these
cases. We take a quotient that identifies all these different polygons whose pairwise
differences can be filled. A similar approach will be used in higher dimensions n, where
we work with general pn ´ 1q-simplices instead of lines. Now we put the idea into a
formal definition:

Definition 2.1 (Simplex). For all n P Zě0 we define an n-simplex ∆n Ď Rd, d P Zě0

to be the convex hull of n ` 1 affinely independent vertices. The dimension of an
n-simplex ∆n is n. There are the following standard constructions:

(1) An n-simplex can be described as a subset of Rn by taking the convex hull of
the vertices teiui“0,...,n, where e0 “ p0, . . . , 0q and ei, i ‰ 0 are the standard basis
vectors of Rn.

(2) In a similar way, we obtain an n-simplex in Rn`1 as convex hull of the basis
vectors e1, . . . , en`1.
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2 Complexes and Homology

(3) If we have an n-simplex as convex hull of the vertices tv0, . . . , vnu, then each
subset H ‰ J Ď t0, . . . ,nu defines a subsimplex of dimension |J | ´ 1 by taking
the convex hull of the vertices tvjujPJ :

ιJ : ∆J ¨̈“ convtvjujPJ ∆n

A subsimplex of dimension n´ 1 is called a face of the simplex.

We note that an 1-simplex is just a line and a 2-simplex is a triangle. For the sake
of better readability we write rns ¨̈“ t0, . . . ,nu in the following.

Definition 2.2 (Singular chain complex). Let X be a topological space. For all
n P Zě0, we define a singular n-chain to be a finite formal sum σ “

řm
i“1 λiσi of

continuous maps σi : ∆n Ñ X with coefficients λi in Z. The set of all n-chains in
X is defined by CnpXq. It is a free Z-module and has the set of all continuous maps
∆n Ñ X as basis. Furthermore, we set CnpXq ¨̈“ 0 for all n P Ză0. For each basis
element σ P CnpXq, we define its boundary as

Bnpσq “

#

0 ,n “ 0
řn
j“0p´1qjσ ˝ ιrnś tju , else

P Cn´1pXq

where ιrnś tju is the inclusion of a subsimplex as in Definition 2.1 (3). This yields a
boundary map Bn : CnpXq Ñ Cn´1pXq for all n P Z by extending linearly. We obtain
a sequence

. . . CnpXq Cn´1pXq . . . C0pXq 0 . . . ,
Bn`1 Bn Bn´1 B1 B0 B´1

which is called the singular chain complex pC‚pXq, B‚q.

We note that the rectangle from Figure 2.1 can be regarded as a singular 1-chain. It
is in kerpB1q since the endpoints of the lines cancel out, and since it cannot be filled, it
is not in the image of B2. Formalizing this leads to

Definition 2.3 (Singular homology). The n-th singular homology of a topological
space X is defined as the quotient module

HnpXq ¨̈“ kerpBnq
L

impBn`1q

for all n P Z.

Each generator of the simplicial homology HnpXq for n P Zě0 represents an n-
dimensional hole of the topological space X since it is a sum of n-simplices whose
boundary vanishes and which cannot be filled by pn ` 1q-simplices. By definition of
the singular chains we have HnpXq “ 0 for all n P Ză0.
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2 Complexes and Homology

2.2 Simplicial Homology

We already know how to describe holes in arbitrary dimensions by using singular homo-
logy. The problem is that singular chain complexes are not algorithmically computable
since their chain modules have infinitely many basis elements. We use simplicial ho-
mology to get a finite description of the chain groups.
To define simplicial homology we need a triangulation of the topological space. Since

we construct topological spaces for data sets in Section 2.4 as unions of simplices, they
are equipped with such a triangular structure.

Definition 2.4 (Simplicial complex). Let d P Zě0. We call a set K of simplices in
Rd a simplicial complex if for all simplices σ P K each face of σ is in K and for all
simplices σ, η P K their union σ X η is either empty or also in K.

Each simplex is uniquely defined by its vertices. This observation leads to the fol-
lowing

Definition 2.5 (Abstract simplicial complex). A family A of finite sets is called
an abstract simplicial complex if for all sets a P A each subset b Ď a is again in the
collection A. We call a set a P A an abstract simplex. Each subset b Ď a with cardinality
|b| “ |a| ´ 1 is a face of the abstract simplex.

An abstract simplicial complex is a simplicial complex without an associated geome-
try. We do not have to take care of intersections and it is easy to store those simplices
and compute their boundaries, which is why they are more useful for our purposes.
Every simplicial complex can be viewed as an abstract simplicial complex by replacing
each simplex by the set of its vertices. Furthermore, every finite abstract simplicial
complex with d vertices can be embedded into Rd´1 by defining each simplex as a sub-
simplex of ∆d´1 Ď Rd´1. Hence, it can be viewed as a simplicial complex. We conclude
that for finitely many simplices, the definitions of a simplicial complex and an abstract
simplicial complex are equivalent. Since we construct complexes out of finite data sets,
in many cases we will not distinguish between those two definitions.
To make a similar construction as in Definition 2.2, we have to equip the simplices

with an orientation. This can be realized by ordering each set representing an abstract
simplex and referring to them as tuples.

Definition 2.6 (Simplicial chain complex). Let K be an (abstract) simplicial com-
plex. Then CnpKq for n P Zě0 is the set of all Z-linear combinations of oriented
n-simplices in K, where similar simplices with different orientation will be identified up
to a sign in the following way: Let pv0, . . . , vnq and prv0, . . . , rvnq be oriented simplices
which differ by a permutation π. Then they are identified up to multiplication with
the signum signpπq of the permutation. Formally, we have

CnpKq ¨̈“
À

tv0,...,vnuPK
n-simplex

Z ¨pv0, . . . , vnq
L

„

where „ is the identification described above. Furthermore, for all n P Ză0 we set
CnpKq ¨̈“ 0. We can define a boundary map Bn : CnpKq Ñ Cn´1pKq by mapping each
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2 Complexes and Homology

oriented simplex pv0, . . . , vnq to

Bnpv0, . . . , vnq ¨̈“
n
ÿ

i“0

p´1qipv0, . . . , vi´1, vi`1, . . . , vnq

and extending the map linearly. The boundary map is a well-defined map on the
quotient, which can easily be checked by the reader1. We call the sequence

pC‚pKq, B‚q “ p . . . CipKq Ci´1pKq . . . C0pKq 0 . . .
Bi Bi´1 B1 B0 B´1

q

the simplicial chain complex of K.

Definition 2.7 (Singular homology). Let K be an (abstract) simplicial complex. For
all n P Z, we define its n-th simplicial homology as

HnpKq ¨̈“ kerpBnq
L

impBn`1q
,

where pC‚pKq, B‚q is the corresponding simplicial chain complex.

Definition 2.8 (Geometric realization). For a simplicial complex K we define by

|K| ¨̈“
ď

σPK

σ

its geometric realization.
If A is an abstract simplicial complex obtained from KA by replacing each simplex

by its set of vertices, we define |A| ¨̈“ |K| to be its geometric realization.

Lemma 2.9. Let X be an (abstract) simplicial complex. Then the singular homo-
logy Hnp|X|q of the geometric realization of the complex is equivalent to the simplicial
homology HnpXq of the complex for all n P Z.

Proof. We refer to [Hat02, Theorem 2.27] with A “ H.

Remark 2.10. We can define chain complexes and homology of simplicial and sin-
gular chain complexes with coefficients in a general ring or a field similarly. For our
algorithms we will use coefficients in F2, since those chains are very easy to compute.
We should be aware of the fact that this way some information gets lost as mentioned
in [Cro05, Chapter 9.2].

In the following, let all rings be commutative rings with 1 if we do not specify them
differently.

1If two oriented simplices differ by a permutation, then the permutation can be written as a compo-
sition of transpositions. It suffices to show that

Bpv0, . . . , vi, vi`1, . . . , vnq “ ´Bpv0, . . . , vi`1, vi, . . . , vnq.

8



2 Complexes and Homology

2.3 More on Homology and Chain Complexes

Singular and simplicial homology are just special cases of the general concept of homo-
logy obtained by chain complexes. We also want to introduce this general definition
shortly.

Definition 2.11 (Chain complex). We define a chain complex pA‚, B‚q as a sequence
of modules

. . . An`1 An An´1 . . .
Bn`1 Bn

over some ring together with boundary maps tBnunPZ which satisfy Bn´1 ˝ Bn “ 0 for all
n. Elements a P An are said to have degree degpaq “ n.

Definition 2.12 (Homology of a chain complex). For a chain complex pA‚, B‚q, we
define its homology as

HnpA‚q ¨̈“ kerpBnq
L

impBn`1q

for all n P Z. We note that elements in kerpBq are called cycles and elements in impBq
are called boundaries of the chain complex.

Remark 2.13. Simplicial and singular chain complexes are chain complexes in the
sense of Definition 2.11 and their homology coincides with the homology of chain
complexes:

HnpXq “ HnpC‚pXqq HnpKq “ HnpC‚pKqq

To decide whether the homology modules of two chain complexes are equal we have
to find maps between them whose composition is the identity. In the following, we
explain how to obtain induced maps on homology by maps on chain complexes and
how to decide whether these induced maps coincide.

Definition 2.14 (Chain map). A chain map f‚ : A‚ Ñ B‚ between two chain
complexes pA‚, BA‚ q and pB‚, BB‚ q is a sequence of morphisms fn : An Ñ Bn with the
property fn ˝ BAn`1 “ B

B
n ˝ fn for all n P Z.

A chain map sends kernels to kernels and images to images of the boundary maps.
Hence, we obtain an induced map on homology

pfnq˚ : HnpA‚q HnpB‚q

for all n P Z.

Definition 2.15 (Chain homotopy). Let f‚, g‚ : A‚ Ñ B‚ be chain maps.

(i) We call the sequence tDnunPZ consisting of morphisms Dn : An Ñ Bn`1 a chain
homotopy from f‚ to g‚ if and only if Dn´1B

A
n ` B

B
n`1Dn “ fn ´ gn for all n.

(ii) The chain maps f‚ and g‚ are said to be chain homotopic f‚ „ g‚ if such a chain
homotopy exists.

Lemma 2.16. If f‚, g‚ : A‚ Ñ B‚ are chain homotopic, then their maps on homology
coincide.

Proof. The proof can be found for example in [Hat02, Proposition 2.12].
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2 Complexes and Homology

2.4 Generate Simplicial Complexes from Data Sets

If we have a finite data set S “ txiuiPI Ď Rn,n P Zě0 and want to identify holes, we
need to connect the points in some way. There are two popular approaches for this,
which can be found for example in [EH10, Section III.2] or [Car09, Section 2.2].

Definition 2.17 (Čech complex). We construct the Čech complex ČpS, rq for a set
of points S Ď Rn and a prescribed radius r ě 0 as a set of abstract simplices: Each
finite subset J Ď S forms an abstract simplex of the Čech complex if and only if

č

jPJ

Brpjq ‰ H

for the closed balls Brpjq, or equivalently if there exist some x P Rn such that

‖x´ j‖2 ď r (2.1)

for all j P J .

Definition 2.18 (Vietoris-Rips complex). For a set of points S Ď Rn and a given
radius r we denote by VRpS, rq the Vietoris-Rips complex. It is an abstract simplicial
complex, where each finite subset J Ď S defines a simplex if and only if the closed balls
of radius r ě 0 and center j P J intersect pairwise, or equivalently if

‖j ´ j1‖2 ď 2r (2.2)

holds for all j, j1 P J .

For both complexes we define a corresponding boundary map as the standard bound-
ary map for simplicial chain complexes as in Definition 2.6.

Remark 2.19. Since the properties (2.1) and (2.2) are still satisfied for all subsets of
J , the faces of each simplex are again in the complex. Hence, the Čech complex and
Vietoris-Rips complex are well-defined abstract simplicial complexes.

As we will see in the following example, the Čech complex and the Vietoris-Rips
complex can differ.

Example 2.20. Let S “ ta, b, cu Ă R2 be a set containing three points of pairwise
distance 1, for example the points a “ p0, 0q, b “ p1, 0q and c “ p1

2
,
?

3
2
q.

For the construction of the Čech and Vietoris-Rips complex, intersection of balls
around the points are essential. The center of the points is M “ p1

2
, 1

2
?

3
q and each

of the points has distance 1?
3
to M . Hence, the balls intersect pairwise if their radius

is at least 1
2
and all three balls intersect for a radius of 1?

3
or higher. For r0 P r0, 1

2
q,

r1 P r
1
2
, 1?

3
q and r2 P r

1?
3
,8q we obtain the following complexes:

ČpX, r0q “ ttau, tbu, tcuu

VRpX, r0q “ ttau, tbu, tcuu

ČpX, r1q “ ttau, tbu, tcu, ta, bu, ta, cu, tb, cuu

VRpX, r1q “ ttau, tbu, tcu, ta, bu, ta, cu, tb, cu, ta, b, cuu

ČpX, r2q “ ttau, tbu, tcu, ta, bu, ta, cu, tb, cu, ta, b, cuu

VRpX, r2q “ ttau, tbu, tcu, ta, bu, ta, cu, tb, cu, ta, b, cuu

This can be seen by visualizing the distances with balls as in Figure 2.2.

10



2 Complexes and Homology

Figure 2.2: Balls at points of S with radii 0, 1
2
and 1?

3
.

Even though the complexes are different, we still have a relation between them.

Proposition 2.21. For the Čech complex and the Vietoris-Rips complex the inclu-
sions

ČpS, rq Ď VRpS, rq Ď ČpS, 2rq

hold for all r ě 0.

Proof. Let J Ď S be a simplex in ČpS, rq. By definition, there is some x P Rn such
that ‖j ´ x‖2 ď r for all j P J . By using the triangle inequality we obtain

‖j ´ j1‖2 ď ‖j ´ x‖2 ` ‖x´ j1‖2 ď 2r

for all j, j1 P J , which implies that J is also a simplex in VRpS, rq. For a simplex
I P VRpS, rq we obtain

‖i´ x‖2 ď 2r

for all i P I by setting x to be any of the points in I. Therefore I is also a simplex in
the complex ČpS, 2rq.

The Vietoris-Rips complex is much easier to compute and therefore more suitable
for our algorithm. Anyway, we will also refer to the Čech complex in Section 4.6.
Later on, we will work with filtrations of simplicial complexes, which are just se-

quences of inclusions of those complexes. The Čech complex and the Vietoris-Rips
complex yield such filtrations.

Lemma 2.22. We have inclusions ČpS, rq Ď ČpS, r1q and VRpS, rq Ď VRpS, r1q for all
radii 0 ď r ď r1.

Proof. This follows directly from the properties of the complexes in Definition 2.17
and Definition 2.18.

The complexes can only change for finitely many radii 0 “ r0 ă r1 ă r2 ă ¨ ¨ ¨ ă rn
since there are only finitely many points S to construct abstract simplices. For the
Vietoris-Rips complex we obtain a filtration

H VRpS, 0q VRpS, r1q . . . VRpS, rnq (2.3)

and analogously, we obtain one for the Čech complexes.
These inclusions yield maps on homology since they are chain maps in the sense of

Definition 2.14. In the proceeding chapter we will study how to track the change in
homology during these filtrations.

11



3 Persistent Homology

If we have a filtration as in (2.3), then its inclusions are chain maps and induce maps
on homology as in Definition 2.14. Persistent homology is a tool to track the change
in homology during this filtration. In this chapter we mainly follow [ELZ00, Section 3]
and [EH10, Section VII.1].

3.1 What Is Persistent Homology?

If we have an inclusion X Ď Y of simplicial complexes, then this yields an inclusion of
chain complexes ι : C‚pXq Ñ C‚pY q, which induces a map on homology

ι˚ : HkpXq HkpY q

for all k P Z. The homology classes that persist under the map ι˚ can be specified as
the image impι˚q.

Definition 3.1 (Persistent homology). We call impι˚q Ď HkpY q the k-th persistent
homology of the inclusion ι : X Ñ Y .

It is easy to provide a basis of the persistent homology. We take a basis of HkpXq
and apply ι˚ to each of the basis elements to obtain a list of generators for impι˚q. Then
we create a basis by removing those elements that make the list linearly dependent.
Now, we consider a filtration of simplicial complexes

H X0 X1 . . . XN
ι0 ι1 ιN´1

(3.1)

for N P Zě1, which is a sequence of simplicial complexes connected by inclusions. We
obtain a sequence in homology

0 HkpX0q HkpX1q . . . HkpXNq
ι0˚ ι1˚ ιN´1

˚ (3.2)

for any k P Z and can define persistent homology in a similar way:

Definition 3.2 (Persistent homology of a filtration). We consider that we have a
filtration as in (3.1). Let i, j P Z be integers with 0 ď i ă j ď N . For all k P Z we
define the k-th persistent homology from i to j as

H i,j
k
¨̈“ impιj´1

˚ ˝ ¨ ¨ ¨ ˝ ιi˚q Ď HkpXjq.

We want to find bases BHkpXiq for every homology HkpXiq in the sequence, such that
for all b P BHkpXiq one of the following properties is satisfied:

12



3 Persistent Homology

– ιi˚pbq “ 0

– there exists rb P BHkpXi`1q such that ιi˚pbq “ rb

If we have such bases, it is easy to state a basis for the persistent homology

BHi,j
k
“
 

b P BHkpXjq
ˇ

ˇ Db1 P BHkpXiq : ιj´1
˚ ˝ ¨ ¨ ¨ ˝ ιi˚pb

1
q “ b

(

and this enables us to track the basis elements in the sequence (3.2).
Furthermore, if we assume that the map ιl˚ : BHkpXlq Ñ BHkpXl`1q is injective for all

l P t0, . . . ,N ´ 1u, then for each basis element b P BHkpXjb q with jb P t0, . . . ,Nu and
with ιjb˚ pbq “ 0 if jb ‰ N we find a unique

B
H
ib,jb
k

Q b

such that jb ´ ib is maximal. This describes the fact that b is created at HkpXibq

and destroyed at HkpXjb`1q if jb ‰ N . The lifespans can be visualized in the form of
barcodes, where we draw one interval rib, jb ` 1q for each basis element b with ιjb˚ b “ 0
and rib,Nbs extended by a red line at the end for each basis element b in BHkpXN q.

Example 3.3. For the filtration

c d

a b

X0 X1 X2 X3 X4

we can find the following bases:

BH0pX0q “ ta, b´ a, c´ a, d´ au

BH0pX1q “ ta, b´ au

BH0pX2q “ tau “ BH0pX3q “ BH0pX4q

BH1pX3q “ tab` bd´ ad, ac` cd´ adu

BH1pX4q “ tab` bd´ adu

Therefore we can assign the barcodes

degree 0 degree 1

to the filtration.

13



3 Persistent Homology

It is neither obvious if it is possible to create a basis with the properties needed to
track the ways of the basis elements, nor if the lifetimes obtained by the choice of basis
are unique in any sense.
In the next section we discuss the concept of barcodes. We will see that, under

certain assumptions, we are always able to draw barcodes as above and that these
barcodes are unique up to reordering of the bars.

3.2 Barcodes

If we have a sequence of homology modules, then we are interested in how the sequence
changes at which steps. In this section we define barcodes, which describe this in a
unique way. They represent bases of persisting homology classes through intervals.
We want to draw barcodes for the homology of filtrations like those in Equation (2.3)
obtained from data sets.
We consider a filtration of simplicial complexes, where at each step new simplices

are added to the complex. Before we start tracking the holes through homology, at
first we want to check whether this is even a reasonable idea. We will show that it is
possible to obtain lifetimes and that they are unique up to reordering like indicated in
the last section, if we consider the homology over fields.
We start with a filtration

H X0 X1 X2 . . . Xn “ X.
ι0 ι1 ι2 ιn´1

By computing homology for an arbitrary ring R, we obtain a sequence of R-modules

0 HkpX0q HkpX1q . . . HkpXnq “ HkpXq.
pι0q˚ pι1q˚ pιn´1q˚ (3.3)

If we consider R to be a field, we get a sequence of vector spaces, which we call a
directed space. Since we assume that these vector spaces are finite dimensional, we can
decompose this directed space into a direct sum of very simple directed spaces:

Theorem 3.4. Every directed space pV , fq “
´

0 Ñ V0
f0
Ñ V1

f1
Ñ . . .

fn´1
Ñ Vn

fn
Ñ 0

¯

of
finite dimensional vector spaces Vi over a field F is isomorphic1 to a direct sum2 of
intervals

V –
s
à

i“0

Frai, bis

with ai, bi P t0, . . . ,nu, ai ď bi and s P Zě0, where

Frai, bis “

˜

0 0
0

. . . 0 F
ai

F F . . . F
bi

0 . . . 0
n

0id id id id

¸

.

The numbers underneath the vector spaces denote the positions with respect to V .

1An isomorphisms of directed spaces pV , fq and pW , gq is a sequence of isomorphisms φi : Vi Ñ Wi

such that φi`1 ˝ fi “ gi ˝ φi for all i.
2Taking the direct sum of directed spaces means taking the direct sum at each level of the sequence.
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3 Persistent Homology

Proof. The authors Zomorodian and Wang prove this theorem in [ZC05], [ZC08] and
[Wan12] by considering the directed space as a graded module

M “ V0 ‘ ¨ ¨ ¨ ‘ Vn

over the ring Frts with t ¨ pv0, . . . , vnq ¨̈“ p0, f0pv0q, . . . , fn´1pvn´1qq and using some
structure theorem for graded modules. We want to follow a more elementary approach,
tailor-made for the problem. Our strategy is to find and split off summands of the form
Frai, bis inductively. This yields the required decomposition, since V only consists of
finitely many finite dimensional vector spaces.
Without loss of generality, we can assume that V0 ‰ 0. Otherwise we would execute

the same procedure but with an index shift. Let i be the minimal index with

kerpfi ˝ ¨ ¨ ¨ ˝ f0q ‰ 0.

This condition has to be fulfilled for some i since kerpfn ˝ ¨ ¨ ¨ ˝ f0q “ V0 ‰ 0 by
assumption. For W ¨̈“ kerpfi ˝ ¨ ¨ ¨ ˝ f0q we obtain the commutative diagram

W f0pW q . . . fi´1 ˝ ... ˝ f0pW q fi ˝ ... ˝ f0pW q “ 0

V0 V1 . . . Vi Vi`1 . . . ,

f0|W
„

f1|f0pW q

„

fi´1|...
„

fi|...

f0 f1 fi´1 fi fi`1

where the maps in the upper row, except the last one, are isomorphisms of vector
spaces since f0, . . . , pfi´1 ˝ ...˝f0q are injective by the definition of i. We can prove that

ĂW “ p 0 W
loomoon

“¨̈ĂW0

. . . fi´1 ˝ ... ˝ f0pW q
loooooooomoooooooon

“¨̈ĂWi

0 q

can be decomposed into a direct sum of intervals. To do this we choose any basis
b0

1, . . . , b0
n of ĂW0. The image bj1 “ pfj´1 ˝ ... ˝ f0qpb

0
1q, . . . , b

j
n “ pfj´1 ˝ ... ˝ f0qpb

0
nq of the

basis under the first j ď i maps is a basis of ĂWj. We use this to decompose ĂW :

ĂW “

n
à

l“1

´

0 F b0
l . . . F bil 0

¯

“

n
à

l“1

Fr0, is

We want to split off ĂW from V by finding rV “
´

0 Ñ rV0 Ñ ¨ ¨ ¨ Ñ rVn Ñ 0
¯

a directed
space with

ĂW ‘ rV “ V .

By extending the basis of ĂW0 to a basis of V0 we can find a vector space rV0, which is
the linear combination of the added basis elements. It holds

V0 “ ĂW0 ‘ rV0.
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For all j ď i, we define rVj inductively in the following way. Assume that Vj´1 is of
the form ĂWj´1 ‘ rVj´1 for some rVj´1. Then the sum of ĂWj and fj´1prVj´1q is a direct
sum since fj´1 is injective for all j ď i. By extending the basis of ĂWj ‘ fj´1prVj´1q, we
obtain V 1j with

Vj “ ĂWj ‘ fj´1prVj´1q ‘ V
1
j

loooooooomoooooooon

“:rVj

.

For i ă j ď n, we define rVj ¨̈“ Vj. The maps of the sequence

0 rV0
rV1 . . . rVn 0

f0|
rV0

f1|
rV1

fn´1|
rVn´1

are well-defined morphisms since each fi|rVi has its image in rVi`1 by definition. There-
fore, the sequence is a directed space prV , f |

rV q.
In the following, we will see that the directed spaces pV , fq and pĂW ‘ rV , f |

ĂW ‘ f |rV q
coincide. Since the vector spaces in each degree are the same, it remains to show that
the maps of both sequences are equal, i.e. that the diagram

Vj Vj`1

ĂWj ‘ rVj ĂWj`1 ‘ rVj`1

fj

„ id „ id

fj |
ĂWj
‘fj |

rVj

commutes. For j ď i, we have by the linearity of fj that

fjpvq “ fjp rwq ` fjprvq

for v “ rw ` rv P Vj “ ĂWj ‘ rVj. Furthermore, the diagram

Vj Vi`1

Wj ‘ rVj
“ 0‘ Vj

Wj`1 ‘ rVj`1

“ 0‘ Vj`1

fj

„ „

0‘fj

commutes, too.
If ĂW already equals the whole directed space V , we found a decomposition as re-

quired. Otherwise we have restricted the proof to a case where rV has lower dimension.
By induction, this finishes the proof.

Proposition 3.5. The direct sum decomposition from Theorem 3.4 is unique up to
reordering of the summands.

Proof. Let V “ pV , fq “
´

0 Ñ V0
f0
Ñ V1

f1
Ñ . . .

fn´1
Ñ Vn

fn
Ñ 0

¯

be a directed space as in
Theorem 3.4. We assume that there are two different decompositions

s1
à

i“0

Frai, bis – V –
s2
à

j“0

Frcj, djs (3.4)
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with s1, s2 P Zě0, ai ď bi P t0, . . . ,nu for all i P t0, . . . , s1u and cj ď dj P t0, . . . ,nu for
all j P t0, . . . , s2u. Here, Fra, bs “ pFra, bs, f ra,bsq with

Fra, bsk “

#

F , k P ta, . . . , bu

0 , else
and f

ra,bs
k “

#

id , k P ta, . . . , b´ 1u

0 , else

is the directed space known from Theorem 3.4 for a ď b P t0, . . . ,nu.
Then for k P t0, . . . ,nu we have

dimpkerpfkqq “ dim
´

ker
´ s1
à

i“0

f
rai,bis
k

¯¯

“ | ti | bi “ ku |

and dimpkerpfkqq “ | tj | dj “ ku |. Furthermore, for l ď k P t0, . . . ,nu we obtain

dim

ˆ"

v P Vk

ˇ

ˇ

ˇ

ˇ

v P kerpfkq
v P impfk´1 ˝ ¨ ¨ ¨ ˝ flq

*˙

“ dim

˜#

v P
s1
à

i“0

Frai, bis

ˇ

ˇ

ˇ

ˇ

ˇ

v P kerp
Às1

i“0 f
rai,bis
k q

v P imp
Às1

i“0 f
rai,bis
k´1 ˝ ¨ ¨ ¨ ˝

Às1
i“0 f

rai,bis
l q

+¸

“ | ti | bi “ k, ai ď lu |

and an analog statement for the other direct sum. By using

| ti | bi “ k, ai ď lu | ´ | ti | bi “ k, ai ď l ´ 1u | “ | ti | bi “ k, ai “ lu |

if l ě 1 and by doing the same argument for the other direct sum we conclude

| ti | bi “ k, ai “ lu | “ | tj | dj “ k, cj “ lu |.

Hence, both direct sums are equal up to reordering of the summands.

Now we can define barcodes as in [ZC08, Section 3.5], [CZCG05, Section 5.3] or
[Ghr08, Section 2.3].

Definition 3.6 (Barcode). Let V be a directed space of finite dimensional vector
spaces over a field F. By Theorem 3.4, we have V “

Às
i“0 Frai, bis. The barcode for

V is defined as the tuple of intervals

prai, bisqi“0,...,s.

By Proposition 3.5, the barcode is unique up to reordering.

For each sequence of homology modules with field coefficients F as in (3.3) we obtain
a unique barcode if we extend the sequence by the map HkpXq Ñ 0.
We note that the construction and definition of a barcode work for directed spaces

with arbitrary indices 0 ă r1 ă ¨ ¨ ¨ ă rn instead of 0 ă 1 ă ¨ ¨ ¨ ă n. Moreover, we
note that for an interval rri, rjs with j ă n in the barcode, we draw rri, rj`1q as in
Example 3.3 since this describes our conception that the basis element is destroyed
at the rj`1-th level. For an interval rri, rns we draw rri, rns and extend this interval by
a red line at the end to indicate the difference to rri, rnq.
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4 Computing Persistent Homology

In the preceding chapter we defined persistent homology of a sequence of simplicial
complexes to describe the change of homology through the sequence. We learned
that if we choose the coefficients for chains and homology to be a filed F, we can
describe which elements in homology are created and destroyed through this process
by drawing barcodes. Now we want to deal with the computational aspect. We will
state an algorithm that takes a filtration of finite simplicial complexes as input and
returns a barcode together with a corresponding basis element for each interval.
The algorithm is a replication from [ZC08]. The proof is inspired by the paper [ZC05]

but for quite a few points we chose to give our own arguments. It also provides us with
the idea of the next section.

4.1 General Idea

At first we assume that we have a filtration

H “ X´1 X0 X1 . . . XN “ X (4.1)

of a finite simplicial complex X where at each inclusion Xi´1 ãÑ Xi one simplex
σi R Xi´1 is added to the complex:

Xi “ Xi´1 Y tσiu

We choose a field F as coefficients for the chain groups and homology. In the following,
we will discuss how to find a basis

BNl “ tbl1, . . . , blml , z
l
1, . . . , zlnlu

of ClpXq for all l P Zě0, such that every basis element is either a cycle or maps to
another basis element by the boundary map:

Blpz
l
iq “ 0

Blpb
l
iq “ zl´1

i

(4.2)

The non-vanishing boundaries
Blb

l
1, . . . , Blb

l
ml

are linearly independent, since they map to different basis elements in BNl´1. They form
a basis of impBlq. Those elements in BNl with vanishing boundary

zl1, . . . , zlnl
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4 Computing Persistent Homology

are a basis of the kernel kerpBlq of the boundary map. The basis BNl enables us to write
the homology of X as

HlpXq “ kerpBlq
L

impBl`1q
“ xz

l
1, . . . , zlnly

L

xBl`1b
l`1
1 , . . . , Bl`1b

l`1
ml`1

y

“ xz
l
1, . . . , zlnly

L

xzl1, . . . , zlml`1
y

“ xrzlml`1`1s, . . . , rz
l
nl
sy

and obtain a basis trzlml`1`1s, . . . , rz
l
nl
su of HlpXq for all l P Zě0. In this setting x¨y

denotes the span and r¨s are equivalence classes of the quotient. The algorithm that
we aim at yields bases BNl , l P Zě0, which can be restricted to bases Bil Ď BNl of ClpXiq

for all 0 ď i ď N . This allows us to track the basis elements and obtain barcodes. We
will discuss this further in Section 4.3.

Remark 4.1. In the algorithm we will not order the basis elements such that the first
ml elements of zl´1

1 , . . . , zl´1
nl´1

are in the image of the boundary map Bl. We did it here
for simplicity.

To achieve this representation of the basis, we use an inductive approach. Let i be
in t0, . . . ,N ´ 1u. We assume that the bases Bil “ tbl1, . . . , blml , z

l
1, . . . , zlnlu of ClpXiq

for all l P Zě0 are already of the desired form. To obtain bases of all ClpXi`1q, l P Zě0

we just have to add one basis element: If we add a k-simplex σi`1 at the inclusion
Xi ãÑ Xi`1, then

Bi`1
k
¨̈“ BikYtσi`1u

is a basis of of CkpXi`1q. For all l ‰ k P Zě0 we can adopt the basis Bi`1
l

¨̈“ Bil of
ClpXiq to obtain a basis of ClpXi`1q since both chain groups coincide.
To modify the bases Bi`1

l , l P Zě0 such that they are also in the desired form we
perform two steps. In Step 1 we modify the newly added basis element σi`1 by
adding a linear combination of the other basis elements, such that either Bkσi`1 “ 0
or we detect that the basis elements Bkbk1, . . . , Bkb

k
mk

, Bkσi`1 are linearly independent.
In the latter case we use Step 2 to modify one of the basis elements zk´1

mk`1, . . . , zk´1
nk´1

,
such that it equals Bkσi`1.

Remark 4.2. The two steps described above can be realized by using elementary
transformations of the rows and columns of a matrix as in [ZC05]. For this purpose we
consider the transformation matrix

M
Bi`1
k

Bi`1
k´1

pBkq

of the boundary map Bk for the bases as above. Each element in Bi`1
k represents a

column and each element in Bik represents a row of the matrix. Since Bil, l P Zě0 is of
the desired form (4.2), the columns represented by zk1 , . . . , zkmk have just 0-entries and
the columns represented by bk1, . . . , bknk each have one entry which is not 0.
In the first step we use Gaussian elimination for the column represented by σi`1,

until all entries of the column are 0 or we obtain a pivot element which we can not
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4 Computing Persistent Homology

eliminate by Gaussian elimination. In this case we multiply the row with a factor such
that the pivot element is 1:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 1 0

1
...

... 0
...

0
...

...
... 0

0 0 0 0 1
... 1

...
... ˚

... 0
...

...
...

0 0 0 0 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Afterwards, in step 2 we utilize the Gaussian elimination for the rows of the matrix to
generate zeros below the pivot:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 1 0

1
...

... 0
...

0
...

...
... 0

... 0
...

... 1
... 1

...
... 0

... 0
...

...
...

0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

This idea is essential for the algorithm which we will introduce in the next section.

4.2 The Algorithm

First of all, we discuss how to implement the idea from last section into an algorithm.
Then we will prove that it indeed gives us the desired basis representation.
Although one can formulate the algorithm for chains with coefficients in any field, we

state it for F2 since this makes it easier to implement the algorithm: There is no need
to take care of the sign, especially when we use the boundary map, since each simplex
has just one orientation. Furthermore, we can implement simplicial chains as sets of
basis elements and their addition and subtraction can easily be achieved by joining the
corresponding sets and removing their intersection. Another advantage is that we do
not have to pay attention to the coefficients for the Gaussian elimination but just add
the basis elements.
We consider filtration (4.1). For a simplex σ P Xm with Xm “ Xm´1 Y tσu for some

m P t0, . . . ,Nu we define its index to be indexpσq ¨̈“ m. In a list K we store all those
simplices ordered by their index. We say τ P K has a lower index than σ P K if
indexpτq ă indexpσq. Equivalently, we say that σ has a higher index than τ .

Remark 4.3. We note that the boundary Bσ of each simplex σ P K is a linear
combination of simplices τ P K with a lower index than σ since each face of σ is in the
simplicial complex Xindexpσq and the pdimpσq ´ 1q-simplices in Xindexpσq and Xindexpσq´1

coincide.
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To each simplex σ P K we assign two new variables basiselpσq and partnerpσq. The
variable basiselpσq is a simplicial chain which is a sum of σ and a linear combination
of simplices in K which have a lower index than σ:

basiselpσq “ σ `
ÿ

indexpηqăindexpσq

λη ¨ η ,λη P F2 (4.3)

Because of their form, the set

Bmk ¨̈“ tbasiselpσq | σ P Xm k-simplexu

is a basis of CkpXmq for all m P t0, . . . ,Nu and k P Zě0 at all times, which we will
prove in Remark 4.7 (3). At the beginning we define basiselpσq ¨̈“ σ for each σ P K
but we will modify these values during the algorithm. We will use a for-loop over the
simplices in K such that after iteration σ P K with indexpσq “ m the bases tBmk ukPZě0

are of the desired form (4.2). For this we consider the matrix

Mm
k
¨̈“M

Bmk
Bmk´1

pBkq

if the simplex σ with indexpσq “ m is a k-simplex and do the operations from Re-
mark 4.2. We note that in [ZC08] Zomorodian calls the basis elements cascadepσq for
σ P K since by using Gaussian elimination we add chains to the basis element and it
spreads over the complex like a cascade.
The variable partnerpσq for each σ P K is either empty or another simplex in K. It

indicates relation (4.2) in the following way at the end of the algorithm:

B basiselpσq “ basiselpηq partnerpσq “ η and indexpσq ą indexpηq (4.4)

and B basiselpσq “ 0 otherwise.
For the procedure described in Remark 4.2 it is essential to find pivot elements for

Gaussian elimination. In the algorithm we have to find the pivot of the column rep-
resented by basiselpσq in Mm

k . We consider that the rows of Mm
k are ordered such

that a row represented by basiselpτq P Bmk´1 is higher than a row represented by
basiselpηq P Bmk´1 if and only if indexpτq ą indexpηq. If we describe B basiselpσq as
linear combination

B basiselpσq “
ÿ

τPBmk´1

λτ ¨ basiselpτq ,λτ P F2

then finding basiselpτq such that τ is the simplex with the highest index in Bmk´1 with
λτ ‰ 0 is the same as finding the pivot of the column represented by basiselpσq. We
will show in Remark 4.7 (4) that since the basis elements are of the form (4.3), finding
the pivot is equivalent to finding the simplex τ with the highest index which occurs in
the chain B basiselpσq P Ck´1pXmq. This can be done by the function

youngest : ClpXmq´t0u Am
l
¨̈“ tl-simplices in Xmu Ă Xm

ξ “
ř

ηPAml
λη ¨ η τ , indexpτq “ max tindexpηq | λη ‰ 0, η P Am

l u
(4.5)
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which is defined for all m P t0, . . . ,Nu and l P Zě0. We note that each function
youngest : ClpXmq´t0u Ñ Am

l is a restriction of youngest : ClpXNq´t0u Ñ AN
l .

Before the algorithm starts, we assign partners and basis elements

partnerpσq “ H

basiselpσq “ σ

to all simplices σ in the list K. We execute the algorithm and pass the list K as
parameter to it.

Algorithm 1 Persistent homology algorithm.
1: def change_basispKq:
2: for σ P K:
3: while True: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Step 1
4: if B basiselpσq “ 0:
5: break
6: else:
7: τ “ youngestpB basiselpσqq
8: if partnerpτq “ H:
9: assign_partnerpτ ,σq
10: break
11: else:
12: basiselpσq “ basiselpσq ` basiselppartnerpτqq

13: if partnerpσq ‰ H: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Step 2
14: eliminate “ basiselppartnerpσqq ` B basiselpσq
15: while eliminate ‰ 0:
16: τ “ youngestpeliminateq
17: basiselppartnerpσqq “ basiselppartnerpσqq ` basiselpτq
18: eliminate “ eliminate` basiselpτq

In this algorithm, the break-operator terminates the superordinate while-loop. In
line 9 we use the function assign_partnerpq for two simplices τ and σ in K. It connects
the two simplices by assigning them as partners to each other by Algorithm 2.

Algorithm 2 Assigning partners.
1: def assign_partnerpτ ,σq:
2: partnerpτq “ σ
3: partnerpσq “ τ

The first step includes lines 3 to 12 and can be visualized by Figure 4.1. In line 7 we
determine the highest non-vanishing element of the column represented by basiselpσq
as described above for Gaussian elimination.
The addition in line 12 is the elementary operation for Gaussian elimination on

columns. In the proof of Properties 4.6 (1) in Lemma 4.10 we will see that basiselpσq
and basiselppartnerpτqq are chains of the same degree and therefore their addition in
this line is well-defined.
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σ1 σn σ
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τ “ youngestpB basiselpσqq

pk ´ 1q-simplices in iteration m,
sorted by index from the bottom to the top.

The basis elements in Bmk´1 representing to the rows.

`

“M
Bmk
Bmk´1

pBq

Figure 4.1: The first step of the algorithm.

There are two criterions to terminate the first step. If all entries of the column
belonging to basiselpσq in Mm

k are 0, then B basiselpσq “ 0 and the basis Bmk is of the
form (4.2). We terminate the first step in line 5 and do not need a second step. The
second criterion is partnerpτq “ H for τ “ youngestpB basiselpσqq. In this case all
entries in the row represented by basiselpτq in Mm´1

k are 0 since the bases tBm´1
k ukPZě0

are of the form (4.2) which is indicated by the assignment of partners as in (4.4). But
the column represented by basiselpσq has a non-zero entry in the row represented by
basiselpτq inMm

k . Therefore B basiselpσq is not a linear combination of the other bound-
aries B basiselpσiq with basiselpσ1q, . . . , basiselpσnq P Bm´1

k . We assign partnerpσq “ τ
and vice versa to mark the highest non-vanishing row represented by basiselpτq and
terminate step 1 in line 10.
If step 1 was terminated by the second criterion, we use step 2 in lines 13 to 18 to

obtain
basiselppartnerpσqq “ B basiselpσq. (4.6)

In Remark 4.4 we show that after each iteration of the while-loop in step 2 we have

eliminate “ basiselppartnerpσqq ` B basiselpσq

which describes the entries below the row represented by basiselppartnerpσqq in the
column basiselpσq. It is used to modify the value of basiselppartnerpσqq. If eliminate
is 0, then (4.6) holds and the second step is finished. Step 2 from Algorithm 1 is the
procedure described in step 2 of Remark 4.2: In line 16 we use the function youngestp¨q
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to find the highest row inMm
k below the row represented by basiselppartnerpσqq which is

has a non-zero entry in column represented by basiselpσq. We create a zero at this entry
by modifying the basis Bmk´1 in line 17 using the elementary operation from Gaussian
elimination on the rows. In the proof of Properties 4.6 (2) in Lemma 4.10 we show
that the additions of chains in step 2 are well-defined since all these chains have the
same degree.

Remark 4.4. Instead of the expression in line 18 we could also use

eliminate “ basiselppartnerpσqq ` B basiselpσq.

Proof. We write eliminatek, τk and basiselkppartnerpσqq for the chains defined in the
k-th iteration of the while-loop. The variables eliminate0 and basisel0ppartnerpσqq are
the ones defined before we start the while-loop. We use induction. In iteration 0,
before the while-loop starts, we have eliminate0 “ basisel0ppartnerpσqq ` B basiselpσq
because of line 14. We assume that the property holds for all iterations 0, . . . , k. If
eliminatek ‰ 0, then it is changed in line 18 at iteration k ` 1:

eliminatek`1
line 18
“ eliminatek ` basiselpτk`1q

induction
“ B basiselpσq ` basiselkppartnerpσqq ` basiselpτk`1q

loooooooooooooooooooooomoooooooooooooooooooooon

line 17
“ basiselk`1ppartnerpσqq

This proves the remark.

Remark 4.5. If we want to extend the algorithm to chains with coefficients in some
arbitrary field, we have to think about the differences of Gaussian elimination for a
matrix with coefficients in this field instead of F2.
For step 1 we need to add a multiple of the column represented by basiselppartnerpτqq

to the column represented by basiselpσq to generate a zero at the row represented by
the basis element of τ “ youngestpB basiselpσqq in Mm

k . Therefore, we have to change
line 12. Furthermore, we need to modify basiselpσq by a multiplication with a factor
after step 1 to obtain a 1 as pivot element of the column represented by basiselpσq in
the matrix Mm

k .
To make step 2 compatible for arbitrary fields, we need to change the plus in line 14

to a minus and we need to add a multiple of basiselpτq in lines 17 and 18 such that
we generate a 0 in the row represented by basiselpyoungestpeliminateqq of the column
represented by basiselpσq.

We want to give a formal proof that the algorithm indeed yields a basis of the desired
form. To do this at first we state the following properties. Later on, we will see that
these hold in every iteration σ P K of the for-loop.

Properties 4.6. For Algorithm 1 the following properties hold:

(1) We have basiselpηq ‰ 0 P CdimpηqpXq for all simplices η P K at all times.

(2) We have youngestpbasiselpηqq “ η for all simplices η P K at all times.
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(3) In step 1 of iteration σ P K only the values basiselpσq, partnerpσq and partnerpτq
for a simplex τ P K with indexpτq ă indexpσq can be modified. Simplices in K
with a higher index than σ are not even relevant for this step.

(4) If in line 9 the function assign_partnerpq is called, then we have partnerpτq “ H
and partnerpσq “ H at that time.

(5) In step 2 of iteration σ P K only the value basiselppartnerpσqq can be changed,
where partnerpσq has a lower index than σ. Simplices in K with a higher index
than σ are not even relevant for this step.

We point out that properties (1) and (2) hold at each time in the algorithm. The
properties (3) and (4) are formulated specifically for step 1 and (5) for step 2.

Remark 4.7. For Properties 4.6 we make the following observations:

(1) If property (1) holds, then youngestp¨q can be used for each basiselpηq, η P K.
This means that by property (1) we can formulate property (2).

(2) From properties (1) and (2) follows that BNk is a basis of CkpXq for all k P Zě0.

(3) Properties (1) and (2) imply that each basis element keeps its order within the
filtration in the sense that

basiselpσq P CkpXiq σ P Xi is a k-simplex.

We conclude that for all i P t0, . . . ,Nu and k P Zě0 the set Bik is a basis of CkpXiq

at all times.

(4) Let σ P Xm be a k-simplex. If we assume that properties (1) and (2) hold and
τ “ youngestpBpbasiselpσqqq is defined, then we have

B basiselpσq “ basiselpτq `
ÿ

τ 1PAm´1
k´1

indexpτ 1qăindexpτq

λτ 1 ¨ basiselpτ 1q

with coefficients λτ 1 P F2 for all τ 1 P Bmk´1. As in the definition of the function
youngestpq in (4.5) we denote by Am´1

k´1 the set of all pk ´ 1q-simplices in Xm´1.

(5) Property (4) implies that the assignment of a partner cannot be changed once it
is made during the algorithm. We have partnerpηq “ τ for η, τ P K if and only if
partnerpτq “ η.

Proof of Remark 4.7. The function youngestp¨q is defined for all chains in ClpXq´t0u
and each basiselpηq, η P K is such a chain at all times by property (1). (1)

For the proof of (2) we consider the matrix

M
ANk
ANk
pbasiselp¨qq
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and order the columns and rows by the index of the corresponding simplex. Then the
matrix is a triangular matrix with non-zero entries on the main diagonal by proper-
ties (1) and (2). We conclude that the matrix MANk

ANk
pbasiselp¨qq is invertible and the set

BNk “
 

basiselpηq
ˇ

ˇ η P AN
k

(

is a basis of CkpXq. (2)

For the proof of the direction “ñ” of (3) we let basiselpσq P CkpXiq be a k-chain. By
remark (1) we can use the function youngestp¨q. We have σ “ youngestpbasiselpσqq P Ai

k

by property (2) and therefore σ is a k-simplex in Xi. The other direction “ð” follows
directly from property (1).
To prove that Bmk is a basis of CkpXmq for k P Zě0 and m P t0, . . . ,Nu we let l

be the number of k-simplices in Xi. The set Bik Ď BNk is F2-linearly independent by
remark (2). The number of k-chains in Bik Ď CkpXiq is l by the equivalence already
proven. Hence, Bik is a basis of the l-dimensional vector space CkpXiq. (3)

Now we want to prove (4). Let σ P Xm be a k-simplex and let τ1, . . . , τl P Xm´1 be
the simplices of dimension k ´ 1 with indexpτiq ă indexpτjq for all i ă j P t1, . . . , lu.
By remark (3) we know that basiselpσq is in CkpXmq and B basiselpσq P Ck´1pXm´1q.
Let i P t0, . . . , lu such that τi “ youngestpB basiselpσqq. Also by remark (3) the set
Bm´1
k´1 “ tbasiselpτ1q, . . . , basiselpτlqu is a basis of Ck´1pXm´1q. We obtain

B basiselpσq “
l
ÿ

j“1

λj ¨ basiselpτjq

for some coefficients λj P F2. Let p “ max tj | λj ‰ 0u. Then

B basiselpσq “ 1 ¨ basiselpτpq `
p´1
ÿ

j“1

λj ¨ basiselpτjq

holds. By property (2) the simplex youngestp
řp´1
j“1 λj ¨ basiselpτjqq has a lower index

than τp, and we know that youngestpbasiselpτpqq “ τp. Hence, we conclude that

τp “ youngestpB basiselpσqq “ τi.

This proves (4). (4)

To prove remark (5), we observe that partners can only be changed in line 9. Because
of property (4), a partner can only be assigned to simplices, which do not already have
a partner. Hence, the partner cannot be changed once it is assigned to a simplex
in the algorithm. Furthermore, partners can only be assigned by using Algorithm 2.
Therefore, the equivalence holds. (5)

We conclude that the remark holds.

By using the properties from above, we will prove the following

Proposition 4.8.

(a) In every iteration of the for-loop step 1 as well as step 2 terminate at some time.

(b) After each iteration σ P K of the for-loop with m ¨̈“ indexpσq, the bases

Bmk “ basiselptη P K | dimpηq “ k, indexpηq ď muq,
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for k P Zě0 are of the desired form as in equation (4.2): Let η P K with
indexpηq ď m. If partnerpηq ‰ H and indexppartnerpηqq ă indexpηq, we have

B basiselpηq “ basiselppartnerpηqq

and otherwise we have
B basiselpηq “ 0.

The partners are pairwise different in the sense that η “ η1 for all η, η1 P K with
partnerpηq “ partnerpη1q.

Remark 4.9.

(1) Proposition 4.8 (a) causes the whole algorithm to terminate, since the list K
is finite.

(2) Assume that for some m P t0, . . . ,Nu the bases Bmk , k P Zě0 are of the form as
in Proposition 4.8 (b). Then similarly as for (4.2) the set

tB basiselpηq | basiselpηq P Bmk , B basiselpηq ‰ 0u

is a basis of impBk : CkpXmq Ñ Ck´1pXmqq and

tbasiselpηq | basiselpηq P Bmk , B basiselpηq “ 0u

is a basis of kerpBk : CkpXmq Ñ Ck´1pXmqq.

(3) If the bases BNk , k P Zě0 are of the form as described above in Proposition 4.8,
then also for each m P t0, . . . ,Nu the bases Bmk , k P Zě0 are of this form.

We want to prove the proposition inductively. To do this we first note that Pro-
perties 4.6 as well as Proposition 4.8 hold for the first iteration:
The first element σ in the list K has to be a point, since by Remark 4.3 we have

Bσ “ 0. The first step terminates directly without even looking at another simplex.
No partner is assigned and therefore step 2 is skipped. We have basiselpηq “ η for all
η P K for the whole time.
To perform the induction step, we introduce the following

Lemma 4.10. If Proposition 4.8 and Properties 4.6 hold for all iterations η P K
of the for-loop with indexpηq ď pm ´ 1q, then Properties 4.6 also hold for iteration
σ P K with indexpσq “ m.

Proof of Lemma 4.10. Let σ P K be the simplex with indexpσq “ m. We assume that
the proposition and the properties hold for all simplices with a lower index than σ.
For step 1 we prove properties (1) - (4) inductively over the while-loop. Before the

first iteration of the while-loop starts, (1) and (2) hold by induction over the for-loop.
Since we did not consider any other simplices yet and line 9 was not reached, also (3)
and (4) hold.
To do the induction step, we assume that properties (1) - (4) hold for the first

k P Zě0 iterations of the while-loop. We want to prove that they also hold for the
pk ` 1q-th iteration. Let basisellpσq and τl “ youngestpB basisell´1pσqq be the variables
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that are defined in the l-th iteration of the while-loop for l P t1, . . . , ku. Furthermore,
let basisel0pσq be the value of basiselpσq before the while-loop starts. If we set new
values for basiselpσq and τ in the pk` 1q-th iteration, we denote them by basiselk`1pσq
and τk`1.
If in the pk ` 1q-th iteration of the while-loop B basiselkpσq “ 0, nothing is changed

and properties (1) - (4) are fulfilled. In the other case B basiselkpσq ‰ 0 we have to put
in a bit more effort. We note that (1) and (2) hold by induction up to line 12 since
basis elements are not modified before in this iteration of the while-loop.
By examining each line of the algorithm we see that (3) holds. We just need that

τk`1 has a lower index than σ. Remark 4.7 (3) can be used before line 12 and yields
that basiselkpσq P CdimpσqpXmq. We obtain

B basiselkpσq P Cdimpσq´1pXmq “ Cdimpσq´1pXm´1q

and τk`1 “ youngestpB basiselkpσqq P Xm´1. Hence, indexpτk`1q ă m “ indexpσq.
To prove property (4), we consider line 9 of the algorithm. Because of line 8, we

have partnerpτk`1q “ H. The partner of σ was not changed in the first k iterations of
the while-loop since otherwise step 1 would have terminated. By using properties (3)
and (5) for all iterations given by simplices with a lower index than σ, we conclude
that partnerpσq “ H. Therefore property (4) holds.
Now we will prove property (1) for this iteration of the while-loop. We recall that

basis elements can only be changed in line 12 and therefore property (1) holds by induc-
tion up to this point. Since line 12 can only be reached if partnerpτk`1q ‰ H, we assume
that τk`1 has a partner. We know that basiselkpσq ‰ 0 and basiselppartnerpτk`1qq ‰ 0.
In the following, will show that basiselkpσq and basiselppartnerpτk`1qq have the same

degree since then

basiselk`1pσq “ basiselkpσq ` basiselppartnerpτk`1qq P CdimpσqpXq

by induction. Remark 4.7 (5) yields that the simplices τk`1 and partnerpτk`1q are
both assigned as partners to each other. The assignment must have happened in
one of the preceding iterations of the for-loop. By property (3) for this iteration,
τk`1 and partnerpτk`1q both have a lower index than σ. We want to show that
B basiselppartnerpτk`1qq “ basiselpτk`1q since then we can conclude

degpbasiselppartnerpτk`1qqq “ degpB basiselppartnerpτk`1qqq ` 1

“ dimpτk`1q ` 1

“ dimpyoungestpB basiselkpσqqq ` 1

“ degpB basiselkpσqq ` 1

“ degpbasiselkpσqq.

Since basiselkpσq is a simplicial chain, we know that B basiselkpσq P kerpBq. We can
use Remark 4.7 (4) since properties (1) and (2) hold up to line 12, to obtain a unique
representation

B basiselkpσq “ basiselpτk`1q `
ÿ

ηPAm´1
dimpσq´1

indexpηqăindexpτk`1q
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of B basiselkpσq in the basis Bm´1
dimpσq´1. Remark 4.9 (2) yields that B basiselpτk`1q “ 0.

Now we use Proposition 4.8 (b) at the iteration η P K with indexpηq “ m´ 1 of the
for-loop. Since indexpτk`1q, indexppartnerpτk`1qq ď m´1, the basis elements of τk`1 and
partnerpτk`1q are of the desired form. We obtain indexppartnerpτk`1qq ą indexpτk`1q

and B basiselppartnerpτk`1qq “ basiselpτk`1q.
It remains to show that

basiselk`1pσq “ basiselkpσq ` basiselppartnerpτk`1qq ‰ 0.

But his holds since partnerpτk`1q “ youngestpbasiselppartnerpτk`1qqq has a lower index
than σ “ youngestpbasiselkpσqq as proven above. Hence, (1) holds for this iteration of
the while-loop.
The preceding argument also shows that

youngestpbasiselk`1pσqq “ youngestpbasiselkpσq ` basiselppartnerpτk`1qqq “ σ

which proves (2) for this iteration.

It is left to show that properties (1), (2) and (5) hold for step 2. We note that step 2
terminates immediately if step 1 did not terminate after assigning partners. Hence, we
can assume partnerpσq ‰ H.
We prove the properties by induction over the while-loop. Before the while-loop

starts no value of the simplices in K is modified. Therefore (1) and (2) hold since the
basis coincides with the basis from step 1. The simplex partnerpσq has a lower index
than σ since it was assigned in step 1 and property (3) holds. Hence, also (5) holds.
We do the induction step by assuming that properties (1), (2) and (5) hold for the

first k P Zě0 iterations of the while-loop and do the proof for the pk ` 1q-th iteration.
Let τl, basisellppartnerpσqq and eliminatel be the variables which are defined in the
l-th iteration of the while-loop for l P t1, . . . , k ` 1u and let basisel0ppartnerpσqq and
eliminate0 be the values before the while-loop starts. Properties (1) and (2) hold until
line 17 by induction since the basis elements cannot be changed before.
To prove property (1) for this iteration we just have to check how the basis behaves

in line 17. If we can show that eliminatek ‰ 0 is a chain in CdimppartnerpσqqpXq, then
also basiselpτk`1q P CdimppartnerpσqqpXq since

degpbasiselpτk`1qq “ dimpτk`1q

“ dimpyoungestpeliminatekqq

“ degpeliminatekq

by property (1) before line 17. Also by property (1) we know that basiselkppartnerpσqq
is a chain in CdimppartnerpσqqpXq and therefore

basiselk`1ppartnerpσqq “ basiselkppartnerpσqq ` basiselpτk`1q P CdimppartnerpσqqpXq.

Now we show that eliminatek ‰ 0 indeed is a chain with degree dimppartnerpσqq.
By Remark 4.4 or line 14 if k “ 0 the variable eliminatek is of the form

eliminatek “ basiselkppartnerpσqq ` B basiselpσq.
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By property (1) we have:

degpbasiselkppartnerpσqqq “ dimppartnerpσqq

“ dimpyoungestpB basiselpσqqq

“ degpB basiselpσqq

Therefore, eliminatek is a chain and has the same degree as basiselkppartnerpσqq and
B basiselpσq which is dimppartnerpσqq by property (1). Furthermore, we know that
eliminatek ‰ 0 by the condition of the while-loop in line 15.
We prove basiselk`1ppartnerpσqq ‰ 0 by showing that youngestpbasiselpτk`1qq has a

lower index than youngestpbasiselkppartnerpσqqq. By property (2) before line 17 we
have youngestpbasiselkppartnerpσqqq “ partnerpσq and youngestpbasiselpτk`1qq “ τk`1.
By Remark 4.4 we have

τk`1 “ youngestpbasiselkppartnerpσqq ` B basiselpσqq.

We know that youngestpB basiselpσqq “ partnerpσq, which is the same simplex as
youngestpbasiselkppartnerpσqqq by induction. Hence, we obtain that τk`1 has a lower
index than partnerpσq. This also proves property (2)
In the algorithm we see that only basiselppartnerpσqq can be modified. To prove

property (5), we have to show that partnerpσq and τk`1 have a lower index than σ.
Since the simplex partnerpσq was assigned in step 1 of this iteration of the for-loop and
property (3) holds, it has a lower index than σ. We have already proven above that
τk`1 has a lower index than σ. This finishes the proof of the lemma.

Now, we want to prove Proposition 4.8.

Proof of Proposition 4.8. We use induction over the iterations of the for-loop. After
Remark 4.9 on page 27 we already discussed the base case. Let m P t1, . . . ,Nu. For
the induction step we assume that the proposition holds for all iterations η P K of the
for-loop with indexpηq ď m ´ 1. Let σ P K be the simplex with indexpσq “ m. By
using Lemma 4.10 we conclude that Properties 4.6 hold for all iterations η P K of
the for-loop with indexpηq ď m, i.e. they even hold for the iteration σ.
At first we want to prove (a), which states that both steps of the algorithm terminate.

We assume that step 1 does not terminate and denote by τl and basisellpσq with l P Zě1

the values of τ and basiselpσq which are defined in the l-th iteration of the while-loop.
Furthermore, we denote by basisel0pσq the value of basiselpσq before the while-loop.
We will show that

indexpτl`1q ă indexpτlq

for all l P Zě1. This contradicts the assumption that there are only finitely many
simplices in K and step 1 does not terminate.
Let k P Zě0 be an arbitrary positive integer. By its definition in line 7 and line 12

we have

τk`1 “ youngestpB basiselkpσqq

“ youngestpB basiselk´1pσq ` B basiselppartnerpτkqqq.
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In line 7 the simplex τk is defined by τk “ youngestpB basiselk´1pσqq. Furthermore, in
the proof of property (1) in Lemma 4.10 we have shown that

B basiselppartnerpτkqq “ basiselpτkq.

By property (2) we know that youngestpbasiselpτkqq “ τk. We conclude that τk`1 has
a lower index than τk.
Now we assume that step 2 does not terminate. We denote by τl and eliminatel

for l P Zě1 the values defined in the l-th iteration of the while-loop. Furthermore, let
eliminate0 be the value of eliminate before the first iteration of the while-loop. As in
step 1, we will show that

indexpτl`1q ă indexpτlq

for all l P Zě1, which contradicts our assumption.
Let k P Zě1 be some positive integer. By lines 16 and 18 we have

τk`1 “ youngestpeliminatekq

“ youngestpeliminatek´1 ` basiselpτkqq.

In line 16 τk is defined by youngestpeliminatek´1q “ τk. Furthermore, we know that
youngestpbasiselpτkqq “ τk by property (2). Hence, indexpτk`1q ă indexpτkq. (a)

Now we prove that the new basis still has the desired form like in (b). We know by
Properties 4.6 (3) and (5) that only the values of partnerpσq, partnerppartnerpσqq,
basiselpσq and basiselppartnerpσqq can be modified during the algorithm. Furthermore,
by Remark 4.7 (3) the basis elements of the simplices still form a basis.
If B basiselpσq “ 0 at the end of this iteration, then by property (5) we even have

B basiselpσq “ 0 after step 1. This means that step 1 terminated in line 5. Hence, no
other value than basiselpσq is modified. The other basis elements are in Bm´1

k , k P Zě0

and are already of the desired form by induction. In this case (b) holds.
If B basiselpσq ‰ 0 at the end of this iteration of the for-loop, then by property (5)

B basiselpσq ‰ 0 even holds after step (1). Step 1 still has to terminate by (a) which
we have proven above. It terminates in line 10 after the assignment of partners. By
property (3) and Remark 4.7 we have

indexppartnerpσqq ă indexpσq “ indexppartnerppartnerpσqqq.

Since a partner was assigned, the condition in line 13 is fulfilled and the while-loop in
step 2 is executed. Again, by using (a) we know that step 2 terminates. But this can
only happen if eliminate “ 0. By Remark 4.4 we know that

eliminate “ B basiselpσq ` basiselppartnerpσqq.

We obtain Bpbasiselpσqq “ basiselppartnerpσqq since the coefficients of the chains in this
algorithm are in F2. Furthermore, we note that the basis element partnerpσq still has
vanishing boundary since

B basiselppartnerpσqq “ BB basiselpσq “ 0.

Two different simplices η, η1 P K can not have the same partner since Remark 4.7 (5)
holds: If partnerpηq “ ξ “ partnerpη1q for some ξ P K, then η “ partnerpξq “ η1. By
induction, all bases Bmk , k P Zě0 are of the desired form. (b)

This completes the proof of the proposition.
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Remark 4.11. We stated Algorithm 1 for filtrations of simplicial complexes, but many
other complexes are also suitable to be used as input. To execute the algorithm we
actually just need a sequence of chain complexes

C0
‚ C1

‚ . . . CN
‚

f0 f1 fN´1

with the following properties: Each Ci
k is a finite dimensional vector space over F2 with

basis Bik, which can be included by the map fi into the basis of a higher level:

fi|Bik
: Bik Bi`1

k

For each i P t0, . . . ,N ´ 1u there exists ki P Zě0 and b P Bi`1
ki

such that

b R impfi|Biki
q and impfi|Biki

q Y tbu “ Bi`1
ki

(4.7)

and for all l ‰ ki
impfi|Bil

q “ Bi`1
l (4.8)

holds.

4.3 Tracking Lifetimes

Now we address the problem of figuring out at which steps of the filtration which basis
elements of the homology occur and vanish. The algorithm already yields this infor-
mation. We just have to interpret it in the right way. As noticed in Remark 4.7 (3)
we have

basiselpηq P CkpXiq indexpηq ď i, η k-simplex.

Therefore, we are able to specify a basis of the homology at every stage of the filtration

BHkpXiq “

$

&

%

basiselpηq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

η P K k-simplex, indexpηq ď i

and
"

partnerpηq “ H
or indexppartnerpηqq ą i

,

.

-

by using the basis BNk of the last chain complex CkpXNq in the filtration (4.1) from
Proposition 4.8 (b) and Remark 4.9 (2) and (3), where K is the list of all simplices
added by this filtration. We are able to specify the lifetime of each basiselpσq with
vanishing boundary in the homology-sequence of (4.1) by

„

indexpσq,
indexppartnerpσqq
or 8, if partnerpσq “ H

˙

where 8 indicates that the basis element still exists in the homology of XN . We draw
rindexpσq,N s and extend the interval by a red line instead of rindexpσq,8q.
Up to this point we always considered filtrations (4.1) where one simplex is added

at each step. Now we assume that we have a filtration

H X0 X1 . . . Xn, (4.9)
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of finite simplicial complexes where an arbitrary number of simplices can be added at
each step. We note that the indices do not need to have integer values but should have
an increasing order. Such filtrations can be obtained from data as in Section 2.4. We
still want to be able to track the lifetimes of the generators in the homology sequence.
To do this we construct a filtration where just one simplex is added at each step

H rX0
rX1 . . . rXN (4.10)

by adding the simplices of each inclusion successively ordered by their dimension.

Example 4.12. We consider the data set consisting of four points ta, b, c, du “ S Ď R2,
where a, b, c have pairwise distance 1, distpc, dq “ 1, distpa, dq ą 1 and distpb, dq ą 1:

1

1

1

1

a

b

c d

The Vietoris-Rips complexes for the radii 0 and 1
2
look like

VRpS, 0q “ ttau, tbu, tcu, tduu

VRpS, 1
2
q “ ttau, tbu, tcu, tdu, ta, bu, ta, cu, tb, cu, ta, b, cu, tc, duu .

We obtain the sequenceH ãÑ X0 “ VRpS, 0q ãÑ X1 “ VRpS, 1
2
q. At the first inclusion,

there are added tau, tbu, tcu and tdu. They all have the same dimension. Therefore,
we can add them in arbitrary order:

H rX0
rX1

rX2
rX3

addtau addtbu addtcu addtdu

The complex that we obtain for rX3 is the same as VRpS, 0q. In the second inclusion
we add the simplices

ta, bu, ta, cu, tb, cu, ta, b, cu, tc, du.

At first, we order them by their dimension and then arbitrarily:

1. ta, bu, ta, cu, tb, cu, tc, du

2. ta, b, cu

We obtain

rX3
rX4

rX5
rX6

rX7
rX8 “ VRpS, 1

2
q,

addta,bu addta,cu addtb,cu addtc,du addta,b,cu

and the whole sequence H ãÑ rX1 ãÑ ¨ ¨ ¨ ãÑ rX8 is of the form like (4.10).
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By using the algorithm for the new filtration (4.10), we obtain a basis of the form

BCkpXiq “ tbasiselpηq | η P Xi k-simplexu

for each chain group of (4.9) in each step. We assign a new value to each simplex,
which indicates its index in the original filtration (4.9):

orderpηq ¨̈“ min ti | η P Xiu

It indicates that η P Xi if and only if orderpηq ď i. This yields a basis

BHkpXiq “

$

&

%

basiselpηq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

η P K, dimpηq “ k, orderpηq ď i

and
"

partnerpηq “ H
or orderppartnerpηqq ą i

,

.

-

for the homology in each step. Instead of stating the lifetimes through indices of
filtration (4.10) we are able to specify them in terms of the order:

„

orderpσq,
orderppartnerpσqq
or 8, if partnerpσq “ H

˙

These intervals represent the lifetimes of the chains with vanishing boundary in the
homology-sequence of filtration (4.9).
We note that the construction of (4.10) is not unique, but the lifetimes in the homo-

logy of the original filtration (4.9) are going to be uniquely determined since Propo-
sition 3.5 says that barcodes of directed spaces are unique up to reordering of the
intervals. Furthermore, we want to mention that if the sequence is already of the form
(4.10) we can assign their indices as orders anyway. Therefore, it suffices to specify the
intervals only in terms of the order.

Remark 4.13. By a similar procedure we can even make the algorithm available for
sequences of vector spaces as in Remark 4.11 without properties (4.7) and (4.8). In
[ZC08, Definition 11 and Theorem 6] such a sequence of chain complexes is called based
persistence complex.

4.4 Simplification of the Algorithm

In this section we will show that we are able to omit step 2 of Algorithm 1 to draw the
barcode but save calculation time.
At first, we state the algorithm which uses only step 1 in each iteration:
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Algorithm 3 Simplified persistent homology algorithm.
1: def change_basis_without2pKq:
2: for σ P K:
3: while True: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Step 1
4: if B basiselpσq “ 0:
5: break
6: else:
7: τ “ youngestpB basiselpσqq
8: if partnerpτq “ H:
9: assign_partnerpτ ,σq
10: break
11: else:
12: basiselpσq “ basiselpσq ` basiselppartnerpτqq

Lemma 4.14. Step 1 in Algorithm 1 and in Algorithm 3 execute the exact same oper-
ations.

Proof. Let σ P K with indexpσq “ n be an arbitrary iteration of the for-loop. At
the iterations η P K with indexpηq ď n ´ 1 of Algorithm 1 step 2 changes only basis
elements with vanishing boundary of simplices with a lower index than η as stated in
Properties 4.6 (5). In step 1 of iteration σ the only simplices which have a lower
index than σ and basis elements with vanishing boundary are the simplices described
by the variable τ . But only their partner assignment is relevant in step 1.

We use this lemma to compare the algorithms with and without step 2.

Proposition 4.15. By comparing the results of Algorithm 1 and Algorithm 3, we
observe the following:

(a) For each σ P K the values of partnerpσq after using both algorithms coincide.

(b) For each σ P K with partnerpσq “ H the values of basiselpσq after using both
algorithms coincide.

(c) For each σ P K with partnerpσq ‰ H and indexppartnerpσqq ă indexpσq the
values of basiselpσq after using both algorithms coincide.

(d) For each σ P K with partnerpσq ‰ H and indexppartnerpσqq ą indexpσq the
values of basiselpσq after using both algorithms can be different.

Proof. By Lemma 4.14 both algorithms execute the same operations in step 1. In
step 2 of iteration σ P K only basiselppartnerpσqq with indexppartnerpσqq ă indexpσq
can be modified by Properties 4.6 (5). These are the basis elements described in
(d). All other variables have to coincide.

Remark 4.16. To draw barcodes of a filtration like (4.1) we just need the assignment
of the partners and the order of each simplex. Since the order cannot be changed
by Algorithm 1 and Algorithm 4 and because of Proposition 4.15 (a), Algorithm 4
suffices to draw the barcodes.
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When we use Algorithm 3 instead of Algorithm 1 only the values of basiselpσq for
σ P K with partnerpσq “ H and indexppartnerpσqq ą indexpσq do not coincide. But
they are uniquely determined by basiselppartnerpσqq since Proposition 4.8 (b) holds
for Algorithm 1. We can adjust these elements by using Algorithm 4 after Algorithm 3
to obtain the same output as Algorithm 1.

Algorithm 4 Adjust basis elements after the simplified persistent homology algorithm.
1: def adjust_basiselpKq:
2: for σ P K:
3: if partnerpσq ‰ H and indexppartnerpσqq ą indexpσq:
4: basiselpσq “ B basiselppartnerpσqq

4.5 The Implementation

The algorithm is implemented in Python3 and can be found in the appendix in Sec-
tion 6.4 and at [Gün19]. The file called simpcells.py describes the class of simplicial
cells. Each cell has the attributes basisel, partner, index, etc. as described. The file
homology.py contains the algorithms stated in Section 4.2 and 4.4.
To compute the homology of a complex with these algorithms, we at first need to

generate a list K of simplicial cells. We have to add the order and dimension of the
cells to ensure good behavior of the functions. Then we use

compute_homologypKq

from homology.py to execute Algorithm 3. Alternatively, we can add the parameter
step2 “ True to adjust the basis elements afterwards by using Algorithm 4. We can
store the barcode and the generators of the homology after using the algorithm by

bar, gen “ get_barcodespKq

from homology.py. At the end the barcodes of the d-th homology can be drawn by
using

draw_barcodepbar, d,Kq

from homology.py.
An example using this procedure for a simple simplicial complex is

Example_simple_barcodes_of_cell_list.py

which can be found at [Gün19].

4.6 Persistent Homology for Evenly Distributed
Points on a Circle

In the paper [AA17] the authors study Vietoris-Rips and Čech complexes of the circle
S1. They state that the Vietoris-Rips complex and the Čech complex yield the ho-
mology of all odd-dimensional spheres until finally the complex is contractible if the
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radius for the construction of the complexes is increased. In Definition 2.17 and
Definition 2.18 we can find the construction of those two complexes.
We want to check by an experiment if we obtain a similar result in the case of a

finite subset by studying the homology of the corresponding complexes of n evenly
distributed points on a circle. For an increasing number of points we could expect to
recognize a growing amount of odd-dimensional spheres in homology.

Definition 4.17 (Evenly distributed points). Let BBRpp0, 0qq be a circle with radius
R ą 0 in R2. Then we have a parametrization of the circle given by

φs : rs, s` 2πq BBRpp0, 0qq

t R ¨

ˆ

cosptq
sinptq

˙

.

The points x1, . . . ,xn on the circle are evenly distributed if they are evenly distributed in
each parametrization. Equivalently, they are evenly distributed in one parametrization,
where adjacent points have distance 2π

n
:

Ds P R : φ´1
s ptx1, . . . ,xnuq “

"

s`
2π

n
¨ i

ˇ

ˇ

ˇ

ˇ

i P t0, . . . ,n´ 1u

*

The points are implemented in the two dimensional real vector space R2 by using
sine and cosine. Algorithmically, we generate the Čech complex and the Vietoris-Rips
complex for these points. We can easily compute the smallest radius for a simplex
σ “ tσ0, . . . ,σku in the Vietoris-Rips complex, such that the balls centered at σ0, . . . ,σk
intersect pairwise by

rσmin “ max
 

1
2
‖σi ´ σj‖2

ˇ

ˇ σi,σj P σ
(

. (4.11)

It is more difficult to compute the Čech complex since we have to check whether all
balls intersect

k
č

i“0

Brpσiq ‰ H. (4.12)

It is not obvious how to determine the lowest radius r ě 0 with this property, therefore
we follow a numerical approach: If all balls intersect, then they also intersect pairwise.
We start with the minimal radius r from (4.11) and incrementally increase r until
the intersection property is satisfied. To check whether the property holds, we use
an algorithm from [LMDV15] and adapt it to our needs. The authors state that the
intersection of all Brpσ0q, . . . ,Brpσkq Ď R2 is not empty if and only if

(1) one ball is contained in all of the others or

(2) at least one point in the intersection set of the boundaries BBrpσiq X BBrpσjq for
i ‰ j is contained in all balls.

We note that (1) cannot happen for k ě 1, since all balls have the same radius and
different center. Since we only deal with finitely many balls, we also have only finitely
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many intersection points. For our needs it suffices to compute all intersection points
and then check successively if one of the points is contained in all balls. We know that
all balls have the same radius. Therefore, it is easy to compute their intersection points
pairwisely. Let A and B be the centers of two balls with radius r ě 0. Furthermore,
let M “ A`B

2
be the midpoint of the line between A and B.

A B

d M

h

r
e

If the distance d between A and B is bigger then 2r, we have no intersection points
for these two balls. Otherwise, we define a vector h, which is orthonormal to the vector
from A toM . By using the Pythagorean theorem we can compute e “

b

r2 ´ pd
2
q2 and

obtain the intersection points M ` e ¨ h and M ´ e ¨ h.
By implementing this approach for evenly distributed points on the circle with radius

1 we obtain the following results for complexes with different prescribed radii and
numbers of points:

(1) in the Vietoris-Rips complex:

– homology of the points

– homology of S1

– if we have 6 or more points: higher homologies but not only the odd-
dimensional spheres.

(2) in the Čech complex:

– homology of the points

– homology of S1

– many homologies only in small intervals that we cannot classify

The exact results can be found in the appendix in Section 6.1. Since the intervals for
the Čech complex are very small and even exceed 1, we can conclude that numerical
errors distort the homology crucially. To obtain more precise results we calculate the
order of the simplices analytically. For this we need to find a more precise description
for the condition with the intersections (4.12).
In the following, let x1, . . . ,xn be evenly distributed points on the circle and p1, . . . , pl

be a subset of x1, . . . ,xn consisting of l elements. The points p1, . . . , pl form an abstract
simplex in the filtration of Čech complexes. Its order is the minimal radius r for which
the property

l
č

i“1

Brppiq ‰ H (4.13)
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is fulfilled. We recall that we defined Brppiq to be closed balls for the construction of
Čech and Vietoris-Rips complexes. To describe the minimal radius such that all balls
at p1, . . . , pl P BBRpp0, 0qq intersect, we distinguish whether all points are on an open
half of the circle.

Definition 4.18. Let p1, . . . , pl P BBRpp0, 0qq be points on the circle. We define them
to be on an open half of the circle by the following equivalent properties:

(1) There exists t P r0, 2πs such that p1, . . . , pl P tpsinpxq, cospxqq | x P pt, t` πqu.

(2) There is α P r0, 2πs such that p1, . . . , pl P RαH where

Rα “

ˆ

cospαq ´ sinpαq
sinpαq cospαq

˙

is the rotation matrix for the angle α and H “
 

px, yq P R2
ˇ

ˇ y ą 0
(

.

(3) We have Rαp1, . . . ,Rαpl P H for some α P r0, 2πs.

We can directly state the following

Proposition 4.19. Let x1, . . . ,xn P BBRpp0, 0qq Ď R2 be evenly distributed points
on the circle with radius R. Furthermore, let tp1, . . . , plu be a subset of tx1, . . . ,xnu
consisting of l ě 2 elements.

(a) If all points p1, . . . , pl are on an open half of the circle, then (4.13) is fulfilled if
and only if r ě 1

2
maxi,jpdistppi, pjqq where distppi, pjq ¨̈“ ‖pi ´ pj‖2.

(b) If p1, . . . , pl are not on an open half of the circle, then (4.13) is fulfilled if and
only if r ě R.

The property (a) is the same as in the construction of the Vietoris-Rips complex.
We can prove Proposition 4.19 (a) directly:

Proof of Proposition 4.19 (a). At first we prove the direction “ñ”. We assume that
Şl
i“1Brppiq ‰ H. Then we have Brppiq X Brppjq ‰ H for all i, j P t1, . . . , lu. We

conclude distppi, pjq ď 2r for all i, j and obtain maxi,jpdistppi, pjqq ď 2r.
To prove “ð” we let p1 and pl be the left and right points of the set tp1, . . . , plu on

p1

pl

Figure 4.2: Left and right points of tp1, . . . , plu on an open half.

the open half in the following sense: If P Ď pt, t`πq represents the points on the open
half by

tp1, . . . , plu “ tpsinpxq, cospxqq | x P P Ď pt, t` πqu ,
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then p1 and pl are given by psinpxq, cospxqq for x “ minP and x “ maxP , respectively.
We define t ¨̈“ 1

2
distpp1, plq. Let r ě 1

2
maxi,jpdistppi, pjqq be an arbitrary radius. Then

we have Brpp1qXBrpplq ‰ H since the center M ¨̈“
p1`p2

2
is in the intersection of both

balls. We want to prove that even

M
!
P

l
č

i“1

Brppiq (4.14)

holds. It suffices to show that pi P BtpMq Ď BrpMq for all i.

pl

pi

p1 t M
t1

m

γ

Figure 4.3: Setting for the proof of Proposition 4.19 (a).

Let t1 be the distance from M to some point pi and m “ |M | the distance from M
to p0, 0q as in Figure 4.3. For a triangle with points a, b, c and angle γ opposite to c,
we have by the law of cosines

c2
“ a2

` b2
´ 2ab cospγq.

We can use this for our construction to obtain

R2
“ t2 `m2

R2
“ t12 `m2

´ 2t1m cospγq.

Since the angle γ is in rπ
2
, 3π

2
s, we obtain

R2
ě t12 `m2

“ t12 ´ t2 `R2

and therefore t ě t1. This proves the result.

For the second part (b), we want to prove that
č

i

Brppiq ‰ H p0, 0q P
č

i

Brppiq

if not all points pi are on an open half of the circle. To do this we state the following
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Lemma 4.20. The points p1, . . . , pl are not on an open half of the circle BBRpp0, 0qq if
and only if their convex hull contains the center of the circle:

p0, 0q P convpp1, . . . , plq

Proof. To prove “ð” indirectly, we assume that all points are on one side of the circle.
We can assume that p1, . . . , pl P H without loss of generality. But this means that also
their convex hull convpp1, . . . , plq is in H, which does not contain p0, 0q.
To prove the other direction “ñ” we assume that not all points are on an open half

of the circle. Successively, we remove points with the highest indices until all remaining
points p1, . . . , ps are on an open half. By rotating the circle and renumbering the points
we can assume that p1, . . . , ps P H and the points p1 and ps are the left and right points1
of p1, . . . , ps. In order that p1, . . . , ps`1 cannot be on one side of the circle, the property

´ps`1 P conepp1, psq “ conepp1, . . . , psq

has to hold, where conepp1, . . . , psq is the conical hull of the points p1, . . . , ps. We
can find coefficients λ1,λs ě 0, such that λ1p1 ` λsps “ ´ps`1. By adding ps`1 and
multiplying with λ “ 1

1`λ1`λs
, we obtain

p0, 0q “ λλ1p1 ` λλsps ` λps`1

with λ`λλ1`λλs “ 1 and λ,λλ1,λλs ě 0. Therefore, p0, 0q is contained in the convex
hull convpp1, ps, ps`1q Ď convpp1, . . . , plq of the points p1, . . . , pl.

Remark 4.21. In the proof of the lemma we have shown that if the point p0, 0q is in
convpp1, . . . , plq, then we can choose three points pi1 , pi2 , pi3 from p1, . . . , pl such that
p0, 0q is also contained in convppi1 , pi2 , pi3q.

We will need a particular choice of such three points pi1 , pi2 , pi3 in the proof of
Proposition 4.19 (b) with which we deal now.

Proof of Proposition 4.19 (b). To prove “ð” we consider some r ě R. We obtain
p0, 0q P Brppiq for all i and therefore p0, 0q P

Şl
i“1Brppiq. For this direction we did not

even use that p1, . . . , pl are not on an open half.
Now we prove “ñ”. Let p1, . . . , pl be points on the circle that are not on an open

half. By Remark 4.21 we are able to choose three points pi1 , pi2 , pi3 , such that

p0, 0q P convppi1 , pi2 , pi3q “¨̈ D.

Without loss of generality we can assume p1 “ pi1 , p2 “ pi2 and p3 “ pi3 .
If p0, 0q is on one of the edges of the triangle D, two points have to be opposite on

the circle. Their distance is 2R and balls at these points can only intersect if their
radius r is greater or equal R. We assume that p0, 0q is in the interior of the triangle
and consider the following problem:

Find p P Br1pp1q XBr1pp2q XBr1pp3q for a minimal r1.

1The points are left and right as described in the proof of Proposition 4.19 (a).
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If we manage to solve this, we can conclude that Brpp1q XBrpp2q XBrpp3q ‰ H if and
only if r ě maxi“1,2,3 distppi, pq. In the following we will prove that p “ p0, 0q is this
point. We reformulate the problem to: Find p P R2 such that it minimizes the function

fpxq “ maxtdistpp1,xq, distpp2,xq, distpp3,xqu.

For the origin p0, 0q, it holds fp0, 0q “ maxtR,R,Ru “ R. Since p0, 0q is in the
interior of the triangle we can write R2

t́p0, 0qu as

R2
t́p0, 0qu “

 

x P R2
ˇ

ˇ xx, p1y ă 0 or xx, p2y ă 0 or xx, p3y ă 0
(

,

where x¨, ¨y denotes the standard scalar product in R2. Let x P R2
t́p0, 0qu be some

point which is not the origin. Without loss of generality, we can assume that xx, p1y ă 0.

p0, 0q
x

p1

α
¨

By the law of cosines we obtain

distpp1,xq2 “ distpx, 0q2 ` distpp1, 0q2 ´ 2 distpx, 0q distpp1, 0q cospαq,

where α P pπ
2
, 3π

2
q since xx, p1y ă 0. The cosine is negative for α P pπ

2
, 3π

2
q. Hence, we

obtain
distpp1,xq2 ą distpx, 0q2 ` distpp1, 0q2 ą distpp1, 0q2

and therefore distpp1,xq ą distpp1, 0q. By the definition of f , we have fpxq ą fp0, 0q
and since x P R2

t́p0, 0qu was chosen arbitrarily this holds for all those x. We conclude
that p0, 0q P

Şl
i“1Brppiq Ď Brpp1q. Hence r ě R.

We use Proposition 4.19 to improve our algorithm for the construction of the
Čech complexes. By implementing the cells directly without the actual position of the
vertices and computing the distance of points only once at the beginning, we obtain
improved results for the Čech and Vietoris-Rips complex. They can be found in the
appendix in Section 6.2.
In the experiment the homology of the Čech complexes for at least 3 points is just

the homology of the single points, of S1 and of one point for different radii. We want
to verify this observation by an analytic discussion of the Čech complexes.
Let S “ tx1, . . . ,xnu be the set of n evenly distributed points on the circle with

radius R and center in the origin. We denote them in a way such that xi`1 is next to
xi for all i and x1 is next to xn. Furthermore, let ČpX, rq be the corresponding Čech
complex for the radius r as in Definition 2.17. By Proposition 4.19 we have the
following description:
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For 0 ď r ă R we know that a subset txi1 , . . . ,xilu Ď tx1, . . . ,xnu consisting of l
elements is an abstract l-simplex in ČpX, rq if and only if xi1 , . . . ,xil are on an open
half of the circle and their maximal pairwise distance maxj,j1Pti1,...,ilu distpxj,xj1q is 2r
at the most. In the case r ě R all subsets txi1 , . . . ,xilu Ď tx1, . . . ,xnu are simplices in
ČpX, rq. We have the following realization:

| ČpX,Rq| “ ∆n´1
“ convpe1, . . . , enq “

 

y P Rn
ˇ

ˇ

ř

i yi “ 1, yi ě 0
(

Ď Rn

Let r be some radius with 0 ď r ă R. Moreover, let Ar be the set of all sets
tei1 , . . . , eilu such that xi1 , . . . ,xil are on an open half of the circle and the condition
maxj,j1Pti1,...,ilu distpxj,xj1q ď 2r is satisfied. We have

∆n´1
Ě | ČpS, rq| “

ď

tei1 ,...,eiluPAr

convpei1 , . . . , eilq. (4.15)

In the following, let 0 ă r1 ă r2 ă ¨ ¨ ¨ ă rtn´1
2

u ă R be the radii at which the complex
changes. We have ri “ 1

2
distpxj,xj`iq for all j. The realization from (4.15) can be

written as

| ČpS, riq| “
n
ď

j“1

convpej, . . . , ej`iq, (4.16)

where here and in the following the indices should be understood modulo n for better
readability2. Our observations up to this point yield

| ČpS, 0 q| “
n
ž

j“1

teju

| ČpS, r1q| “

n
ď

j“1

convpej, ej`1
q (4.17)

| ČpS,Rq| “ ∆n´1.

The first complex has the homology of n distinct points and the last one is contractible.
The second complex has the homology of the 1-sphere, since it is just one connected
component and the only chains with vanishing boundary are multiples of the chain
řn
j“1pe

j, ej`1q P C1pČpX, r1qq. For the remaining complexes we state the following

Lemma 4.22. Let S and triui be defined as above. The realization of ČpS, riq like in
(4.16) is homotopy equivalent to | ČpS, r1q| for all i P t1, . . . , tn´1

2
uu:

| ČpS, riq| » | ČpS, r1q|

Hence, all those complexes have the homology of the 1-sphere.

Proof. We do the proof by induction. For i “ 1 the statement is true. We assume
that the lemma holds for all r1, . . . ri´1 and consider the complex ČpS, riq. There is an
inclusion

| ČpS, riq|
Ťn
j“1 convpej, . . . , ej`iq

| ČpS, ri´1q|
Ťn
j“1 convpej, . . . , ej`i´1q

“

“

Ď Ď

2This means that we define ej to be ej`k¨n for some k P Z, such that ej`k¨n is defined.
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of the realizations for different radii. We have a strong deformation retract3 of

r∆i
j
¨̈“ convpej, . . . , ej`i´1

q Y convpej`1, . . . , ej`iq Ď ∆i
j
¨̈“ convpej, . . . , ej`iq,

which we state on the isomorphic spaces

r∆i
j –

$

&

%

y P Ri´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ř

l yl ď 1
yl ě 0 for all l
y1 “ 0 or y2 “ 0

,

.

-

Ă

"

y P Ri´1

ˇ

ˇ

ˇ

ˇ

ř

l yl ď 1
yl ě 0 for all l

*

– ∆i
j.

It is defined by
H i
j : ∆i

j ˆ r0, 1s ∆i
j

mapping ppy1, . . . , yi´1q, tq to py1, . . . , yi´1q` t ¨minty1, y2u ¨ p´1,´1, 0, . . . , 0q. It is left
to the reader to check that indeed H i

jpy, 0q “ y, H i
jpy, 1q P r∆i

j and H i
jpa, tq “ a for all

y P ∆i
j, t P r0, 1s and a P r∆i

j. The properties
Ť

j ∆i
j “ | ČpS, riq|,

Ť

j
r∆i
j “ | ČpS, ri´1q|

and ∆i
j X ∆i

j1 Ď
r∆i
j X

r∆i
j1 for all j ‰ j1 hold. Therefore, we can define the strong

deformation retract

H i : | ČpS, riq| ˆ r0, 1s | ČpS, riq|

px, tq H i
jpx, tq, for x P ∆i

j

on the whole Čech complex. This forms a strong deformation retract from | ČpS, riq|
onto | ČpS, ri´1q|. Hence, both realizations are homotopy equivalent and their homology
coincides.

Remark 4.23. For the trick in the proof of the last lemma we did not explicitly use
that the points are evenly distributed or that the dimension of the sphere containing
the points is 1. Therefore, it should be possible to extend our results to non-evenly
distributed points on spheres in higher dimensions.

3Its definition can be found in [Hat02, Chapter 0]. There it is just called deformation retract and
the weak version is stated in exercise 4.
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5 Localizing Holes
The algorithm in the preceding chapter yields descriptions for the holes of a simplicial
complex in form of representatives of the non-vanishing homology classes. They can
be very inconvenient in the sense that they enclose points that are far away from the
hole.

Figure 5.1: Bad description of a hole.

We want to avoid that by finding better local descriptions. The idea is to partition
the complex and start searching for representatives there.

Figure 5.2: Improved description of a hole.

To do this we introduce the Mayer-Vietoris blowup in Section 5.2, which lives in the
product of the simplicial complexes X and ∆n. This product enables us to separate
local parts and glue them together at a later point. By tracking the homology through
this gluing process we obtain good local descriptions. The following statements and
proofs hold for homology modules over any commutative ring with 1.

5.1 Handling Products of Simplicial Complexes

TheMayer-Vietoris blowup, which is the key construction for the localization algorithm
and will be discussed in the next section, makes use of products of simplicial complexes.
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In this section we recall the construction of a product and explain the relation between
the chain complex of a product and the product of chain complexes.
Let X and Y be simplicial complexes. We know that the product of their realizations

|X|ˆ|Y | is also a topological space. It can be triangulated in a natural way if we assume
that the simplices of both complexes X and Y come equipped with total orderings ăX
and ăY on their vertex sets VX and VY . Note that this extra datum is also essential
in our algorithm. On the next pages we follow the construction from [ZC08].
Let the set of all 0-dimensional simplices of X and Y be the vertex sets VX and VY ,

respectively. We define a vertex set

VXˆY ¨̈“ VX ˆ VY

of the product X ˆ Y . A subset σ Ď VXˆY is defined to be an abstract simplex of
X ˆ Y if and only if there are simplices σX P X and σY P Y such that σ Ď σX ˆ σY
and the restriction of the total orderings

pp1, p2q ăXˆY pq1, q2q

p1 ăX q1 and p2 ďY q2

or
p1 ďX q1 and p2 ăY q2

forms a total ordering on σ.

Definition 5.1. For (abstract) simplicial complexes X and Y with total vertex or-
derings we define the abstract simplicial complex X ˆ Y to be

X ˆ Y ¨̈“

"

σ Ď VXˆY

ˇ

ˇ

ˇ

ˇ

σ receives a total ordering
induced by those on VX and VY

*

.

The faces of each simplex in X ˆ Y are the typical ones for abstract simplices and are
again in X ˆ Y . This makes X ˆ Y a well-defined complex.

pe0, e1q pe2, e1q

pe1, e1q

pe0, e0q pe2, e0q

pe1, e0q

Figure 5.3: Product of ∆2 and ∆1.

Remark 5.2. Let ∆k1 and ∆k2 with k1, k2 P Zě0 be two simplices. With the definition
of a product from above, we obtain that |∆k1 | ˆ |∆k2 | is a geometric realization of the
product ∆k1 ˆ∆k2 . This is a standard argument, which can be found for example in
[GZ67, Chapter 3, Section 3.4] for simplicial sets. It can be shown that this also holds
for general simplicial complexes:

|X| ˆ |Y | – |X ˆ Y |
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Next we will show that the homology of a product can be computed by the product
of the chain complexes. This is useful, as the latter is usually a much smaller complex.

Definition 5.3 (Tensor product of chain complexes). Let pV‚, BV‚ q and pW‚, B
W
‚ q be

chain complexes. Then their tensor product is defined by

pV‚ bW‚qk ¨̈“
à

p`q“k

pVp bWqq

for all k P Z with boundary maps given by Bkpab bq “ BVp ab b` p´1qdeg aab BWq b for
a P Vp and b P Wq.

We can easily verify that C‚pXqbC‚pY q is smaller than C‚pX ˆY q by constructing
an injective map from the basis set

BpC‚pXqbC‚pY qqk “

$

&

%

σ b η

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σ P Xp-simplex, η P Y q-simplex
with p` q “ k and orientation
given by total vertex ordering

,

.

-

to BCkpXˆY q “ tk-simplices of X ˆ Y u where each simplex in the basis is oriented
by the total vertex ordering, sending pσ0, . . . ,σpq b pη0, . . . , ηqq to the basis element
ppσ0, η0q, . . . , pσp, η0q, pσp, η1q, . . . , pσp, ηqqq.
To prove that both complexes yield the same homology, we compare the modules of

k-chains by the Eilenberg-Zilber theorem, which is also known as the Alexander-Whitney
theorem, as in [ZC08].

Theorem 5.4 (Eilenberg-Zilber). Let X and Y be simplicial complexes with total
vertex orderings ăX and ăY . Like in the construction above this gives rise to a product
X ˆ Y of simplicial complexes. Then we can find chain maps

C‚pX ˆ Y q C‚pXq b C‚pY q
A“AX,Y

S“SX,Y

on chain complexes, which are natural in the sense of the following remark and induce
an isomorphism on homology modules.

Remark 5.5. Having natural chain maps means that they commute with inclusions
of simplicial complexes. Formally speaking, let Ap¨, ¨q,Bp¨, ¨q P tC‚p¨ˆ ¨q,C‚p¨qbC‚p¨qu
be two maps which assign some chain complex to each pair of simplicial complexes
with total vertex orderings. For inclusions of simplicial complexes with total vertex
ordering ι0 : X ãÑ X 1 and ι1 : Y ãÑ Y 1 we have induced maps1 on the chain complexes,
which we call

ιA : ApX,Y q ApX 1,Y 1q

ιB : BpX,Y q BpX 1,Y 1q.

If we have a chain map fX,Y : ApX,Y q Ñ BpX,Y q for all simplicial complexes X
and Y with total vertex ordering, then we call f natural if for all inclusions X Ď X 1

1The induced maps for C‚p¨ ˆ ¨q and C‚p¨q b C‚p¨q are ι0 ˆ ι1 and ι0 b ι1 respectively.

47



5 Localizing Holes

and Y Ď Y 1 the diagram

ApX,Y q BpX,Y q

ApX 1,Y 1q BpX 1,Y 1q

fX,Y

ιA ιB

fX
1,Y 1

commutes.

For the Eilenberg-Zilber theorem we adapt the proof of [Bre97, Chapter 6, Section 1]
and [SZ88, Satz 12.2.6]. We will do the construction of A and S in a simpler case where
X and Y are simplices and then we will use the naturality to extend the definition to
arbitrary simplicial complexes.

Remark 5.6. Let X and Y be simplicial complexes with total vertex orderings.

(1) Let σ P X ˆ Y be a k-simplex. Then there are inclusions of simplicial complexes

∆r X and ∆s Y
ι0σ ι1σ

with r, s P Zě0 and a simplex eσ P ∆r ˆ∆s, such that pι0σ ˆ ι1σqpeσq “ σ.

(2) Let ηb τ P CppXq bCqpY q with p, q P Zě0 be a basis element. Then we can find
inclusions of simplicial complexes

∆p X and ∆q Y ,
ιη ιτ

such that pιη b ιτ q : Cpp∆
pq bCqp∆

qq Ñ CppXq bCqpY q maps ∆p b∆q to η b τ .

We note that (1) also yields a map pι0σ ˆ ι1σq : Ckp∆
r ˆ ∆sq Ñ CkpX ˆ Y q which

maps eσ to σ. Since we can describe bases of CkpX ˆ Y q and CppXq b CqpY q, we can
construct any element in those chain groups. It is not always possible to choose r and
s in part (1) of the remark such that r ` s “ k but we always have p` q “ k in (2).

Proof. For (1) let σ “ tpη0, τ0q, . . . , pηk, τkqu P X ˆ Y be any k-simplex. By removing
duplicates, we obtain simplices tηi1 , . . . , ηiru P X and tτj1 , . . . , τjsu P Y . We define the
maps ι0σ : ∆r Ñ X, et ÞÑ ηit for all t P t0, . . . , ru and ι1σ : ∆s Ñ X, et ÞÑ τit for all
t P t0, . . . , su. Let further

pη : t0, . . . , ku ti0, . . . , iru and pτ : t0, . . . , ku tj0, . . . , jsu

be the unique maps with ηl “ ηpηplq and τl “ τpτ plq for all l P t0, . . . , ku. Then we obtain
a k-simplex

eσ “ tpe
pηp0q, epτ p0qq, . . . , pepηpkq, epτ pkqqu P ∆r

ˆ∆s

with pι0σ ˆ ι1σqpeσq “ tpηpηp0q, τpτ p0qq, . . . , pηpηpkq, τpτ pkqqu “ σ. (1)

Let η “ tη0, . . . , ηpu P X and τ “ tτ0. . . . , τqu P Y be simplices. Then the simplicial
maps

ιη : ∆p X and ιτ : ∆p X

et ηt et τt
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satisfy ιηp∆pq “ η and ιτ p∆qq “ τ . We obtain a well-defined chain map

ιη b ιτ : Cpp∆
pq b Cqp∆

qq CppXq b CqpY q

with pιη b ιτ qp∆p b∆qq “ pη b τq in CppXq b CqpY q. (2)

This finishes the proof of the lemma.

Lemma 5.7. For all l P Zě1 the following homology modules vanish:

(a) HlpC‚p∆
r ˆ∆sqq “ 0 for all r, s P Zě0

(b) HlpC‚p∆
pq b C‚p∆

qqq “ 0 for all p, q P Zě0

Proof. By Remark 5.2 we know that

|∆r
ˆ∆s

| “ |∆r
| ˆ |∆s

| » tptu

is contractible. (a)

To prove part (b) of the lemma, we adapt the idea of the proof of the Künneth
theorem from [Hat02, Theorem 3B.5] and customize it for our needs. For k P Zě0 let

. . . Ci`1p∆
kq Cip∆

kq Ci´1p∆
kq . . .

Bki`1 Bki

be the simplicial chain complex. For better readability we define Bk
i
¨̈“ impBki`1q,

Zk
i
¨̈“ kerpBki q and Ck

i
¨̈“ Cip∆

kq. Furthermore, we will omit indices of the boundary
map if their domain and codomain is obvious in the context. For any k, we have chain
complexes Ck

‚ , Zk
‚ and Bk

‚ :

. . . Ck
i Ck

i´1 . . .

. . . Zk
i Zk

i´1 . . .

. . . Bk
i Bk

i´1 . . .

Bki

Bki “0

Bki “0

ĎĎ
Ď Ď

For p as in the statement of the lemma and any s P Z we obtain a short exact sequence
of modules:

0 Zp
s Cp

s Bp
s´1 0ι B

Tensoring the sequence with the free module Cq
t for any t P Z yields a sum of short

exact sequences which is a short exact sequence itself. We refer to [Rot09, Theorem 3.1
and Proposition 3.46] for a formal proof that by tensoring with Cq

t we obtain a short
exact sequence. The new short exact sequence is of the form:

0 Zp
s b C

q
t Cp

s b C
q
t Bp

s´1 b C
q
t 0

ιbid Bbid

For all i P Z, using
À

s`t“i´1

Bp
s bC

q
t “

À

s`t“i

Bp
s´1bC

q
t and the sequence from above, we

can define the following short exact sequence of modules:

0 pZp
‚ b C

q
‚qi pCp

‚ b C
q
‚qi pBp

‚ b C
q
‚qi´1 0

À

s`t“i

Zp
s b C

q
t

À

s`t“i

Cp
s b C

q
t

À

s`t“i

Bp
s´1 b C

q
t
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To prove that this even defines a short exact sequence of chain complexes we have
to check whether the maps in each degree commute with the boundary maps. We
consider the following diagram:

0 pZp
‚ b C

q
‚qi pCp

‚ b C
q
‚qi pBp

‚ b C
q
‚qi´1 0

0 pZp
‚ b C

q
‚qi´1 pCp

‚ b C
q
‚qi´1 pBp

‚ b C
q
‚qi´2 0

ιbid

B p1q

Bbid

B p2q B

ιbid Bbid

The commutativity of (1) holds, since the maps on the rows are just the inclusions
and both boundary maps coincide. To check whether (2) commutes, we take some
cb c1 P pCp

‚ b C
q
‚qi and use the maps of the diagram:

cb c1 Bcb c1

Bcb c1

`p´1q|c|cb Bc1
BBcb c1

`p´1q|Bc|Bcb Bc1

Bbid

B B

Since BBc vanishes, the diagram commutes up to a sign. This can be fixed by considering
the map

p´1qiB b id : pCp
‚ b C

q
‚qi pCp

‚ bB
q
‚qi´1

instead of B b id. We obtain a short exact sequence of chain complexes given by:

0 pZp
‚ b C

q
‚qi pCp

‚ b C
q
‚qi pBp

‚ b C
q
‚qi´1 0

ιbid p´1qiBbid

As in the Snake Lemma [HS97, Chapter III, Lemma 5.1] this yields a long exact
sequence in homology

. . . HipZ
p
‚ b C

q
‚q HipC

p
‚ b C

q
‚q Hi´1pB

p
‚ b C

q
‚q . . . ,

where the connecting homomorphism HipB
p
‚ bC

q
‚q Ñ HipZ

p
‚ bC

q
‚q is just the inclusion

ιb id multiplied with a sign. We will see this by the following diagram chase:
If we have bases BBps and BCqt for Bp

s and Cq
t , then Bp,qs,t ¨̈“

 

bb c
ˇ

ˇ b P BBps , c P BCqt
(

is a basis of Bp
s b C

q
s . Let

ÿ

bbcPBp,qs,t

λb,cbb c “
ÿ

bPB
B
p
s

bb cb

be any element in Bp
s b C

q
s . Its boundary is 0`

ř

bPB
B
p
s

p´1q|c|bb Bcb. If the boundary
vanishes, then Bcb “ 0 for all b P BBps and the summand bb cb is already a chain with
vanishing boundary. Hence, it suffices to define the map HipB

p
‚ b C

q
‚q Ñ HipZ

p
‚ b C

q
‚q

just for elements of the form c b c1 ‰ 0 P Bp
s b Cq

t with vanishing boundary. We have
c ‰ 0 and c1 ‰ 0. Since the boundaries Bpcb c1q “ Bcb c1`p´1q|c|cbBc1 and Bc vanish,
also the boundary of c1 has to vanish. The map p´1qs`t`1Bb id : Cp

s`1bC
q
t Ñ Bp

s bC
q
t
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is surjective. Hence, there exists a chain d P Cp
s`1 such that p´1qs`t`1Bpdq “ c. We

obtain:

db c1 cb c1

Bdb c1 Bdb c1 0

p´1qs`t`1Bbid

B B

Therefore, the map HipB
p
‚ b C

q
‚q Ñ HipZ

p
‚ b C

q
‚q in the long exact sequence is defined

by p´1qi`1ιb id, where i “ s` t.
We will show that the homology modules HipC

p
‚ b Cq

‚q for i ě 1 vanish, since they
are enclosed by zero maps in the long exact sequence. The map

BZpsbC
q
t

: Zp
s b C

q
t Zp

s´1 b C
q
t ‘ Z

p
s b C

q
t´1

z b c BZps z b c` p´1qpz b BCqt c “ p´1qpz b BCqt c

has its image in Zp
s b Cq

t´1 since BZps z “ 0. In the following, we write Bs,t for BZpsbCqt
and Bi for BpZp‚bCq‚ qi . Since

Bi :
À

s`t“i

Zp
s b C

q
t

À

s`t“i

Zp
s b C

q
t´1

is defined by Bs,t on each summand, we obtain

kerpBiq “
à

s`t“i

kerpBs,tq

impBi`1q “
à

s`t“i`1

impBs,tq.

We can specify how the boundary maps look like:

kerpBs,tq “ Zp
s b kerpBCqt q

impBs,tq “ Zp
s b impBCqt q

This yields

kerpBiq “
à

s`t“i

Zp
s b kerpBCqt q

impBi`1q “
à

s`t“i`1

Zp
s b impBCqt q “

à

s`t“i

Zp
s b impBCqt`1

q.

We have inclusions Zp
s b impBCqt`1

q Ď Zp
s b kerpBCqt q. By using the description for the

kernel and image and the inclusions it follows that

HipZ
p
‚ b C

q
‚q “

kerpBiq
L

impBi`1q

“
à

s`t“i

ˆ

pZp
s b kerpBCqt qq

L

pZp
s b impBCqt`1

qq

˙

.
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Tensoring with Zp
s is right exact. Hence, we conclude

HipZ
p
‚ b C

q
‚q “

à

s`t“i

Zp
s b

ˆ

kerpBCqt q
L

impBCqt`1
q

˙

“
à

s`t“i

Zp
s bHtpC

q
‚q.

By using that ∆q is contractible, we obtain that HtpC
q
‚q is the coefficient ring for t “ 0

and 0 for each other t. This yields HipZ
p
‚ b Cq

‚q “ Zp
i . The proof from above can be

copied for Bp
‚ instead of Zp

‚ to show that HipB
p
‚ b Cq

‚q “ Bp
i . We conclude that the

long exact sequence in homology is of the following form:

. . . Bp
i Zp

i HipC
p
‚ b C

q
‚q Bp

i´1 Zp
i´1 . . .

p´1qi`1ι p´1qiι

Since HipC
p
‚ q “

Zp
i

L

Bp
i
“ 0 for all i ě 1, the map from Bp

i to Zp
i is an isomorphism.

Then HipC
p
‚ b Cq

‚q is enclosed by zero-maps and we obtain HipC
p
‚ b Cq

‚q “ 0 for all
i ě 2. Furthermore, in degree zero the map Bp

0 ãÑ Zp
0 is an inclusion. Therefore we

have
Bp

1 Zp
1 H1pC

p
‚ b C

q
‚q Bp

0 Zp
0

„ 0 0

and even the homology in degree 1 of Cp
‚ b C

q
‚ vanishes. (b)

This proves the lemma.

Now we want to prove the Eilenberg-Zilber theorem. We will do so in several steps.

Proposition 5.8. For all simplicial complexes X and Y with total vertex orderings
let

φX,Y ,ψX,Y : C‚pX ˆ Y q C‚pX ˆ Y q

be two chain maps. If they are natural in the sense of Remark 5.5 and if they coincide
in degree 0, then they are chain homotopic φX,Y „ ψX,Y for all X,Y .

Proof. We follow the proof of [Bre97, Chapter VI, Theorem 1.3] but do it for simplicial
complexes. At first, we will show the statement for all X “ ∆r,Y “ ∆s with r, s P
Zě0 and then we will obtain a result for arbitrary simplicial complexes by using the
naturality and Remark 5.6.
Let φX,Y and ψX,Y be as in the statement of the proposition. We consider the chain

maps φr,s ¨̈“ φ∆r,∆s and ψr,s ¨̈“ ψ∆r,∆s for some r, s P Zě0. Inductively, we will
construct a chain homotopy

Dr,s
k : Ckp∆

r ˆ∆sq Ck`1p∆
r ˆ∆sq

such that
Dr,s
k B ` BD

r,s
k “ φr,sk ´ ψr,sk (5.1)

for all k P Zě0.
In degree 0, we define Dr,s

0
¨̈“ 0. Then property (5.1) holds

0` 0 “ φr,s0 ´ ψr,s0
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since φr,s and ψr,s coincide in degree 0 by assumption.
To define Dr,s in higher degrees, we use induction over k. Let k be in Zě1. We

consider the map
φr,sk ´ ψr,sk ´Dr,s

k´1B (5.2)

on k-chains, which is already defined by induction. The canonical basis of Ckp∆rˆ∆sq

is the set of all k-simplices equipped with the orientation given by the total vertex
ordering on ∆r ˆ∆s. It suffices to define Dr,s

k on the basis. Let σ P Ckp∆r ˆ∆sq be a
basis element. If we evaluate (5.2) at σ and use the boundary map, we obtain:

Bkpφ
r,s
k ´ ψr,sk ´Dr,s

k´1Bkqpσq “ Bkφ
r,s
k pσq ´ Bkψ

r,s
k pσq ´ BkD

r,s
k´1Bkpσq (5.3)

If Dr,s
k´2 is defined, we obtain that (5.3) is 0 since φr,s and ψr,s can be interchanged with

the boundary map and by induction

BkD
r,s
k´1 “ φr,sk´1 ´ ψ

r,s
k´1 ´D

r,s
k´2Bk´1

holds. In the case that Dr,s
k´2 is not defined we have Dr,s

k´1 “ Dr,s
0 “ 0 and φr,s0 “ ψr,s0

which also concludes that (5.3) vanishes. Hence, the chain pφr,sk ´ ψr,sk ´ Dr,s
k´1Bkqpσq

is in the kernel of Bk. Since the homology of Hkp∆
r ˆ ∆sq vanishes for all k ě 1 by

Lemma 5.7, the chain is also in the image of Bk`1. There exists some η P Ck`1p∆
rˆ∆sq

such that Bk`1η “ pφ
r,s
k ´ ψr,sk ´Dr,s

k´1Bkqpσq. We define Dr,s
k pσq “ η. Then we have

pBk`1D
r,s
k ´Dr,s

k´1Bkqpσq “ pφ
r,s
k ´ ψr,sk qpσq.

This defines Dr,s
k on all k-chains by extending linearly.

Now let X,Y be arbitrary simplicial complexes with total vertex orderings. We will
state DX,Y : C‚pX ˆ Y q Ñ C‚pX ˆ Y q by defining it on each basis element. Let
σ P X ˆ Y be a k-simplex with orientation induced by the total vertex ordering. By
Remark 5.6 there are r, s P Zě0, an oriented simplex eσ P ∆r ˆ ∆s and inclusions
ι0σ : ∆r Ñ X, ι1σ : ∆s Ñ Y such that pι0σ ˆ ι1σqpeσq “ σ. We define

DX,Y
k pσq “ DX,Y

k ppι0σ ˆ ι
1
σqpeσqq ¨̈“ pι

0
σ ˆ ι

1
σqD

r,s
k peσq.

By extending linearly, we obtain DX,Y
k .

The maps DX,Y “ tDX,Y
k ukPZě0 form indeed a chain homotopy for all simplicial

complexes X and Y , which we want to check in the following. It suffices to show that
we have

BDX,Y
`DX,Y

B “ φX,Y
´ ψX,Y

on a basis. Let σ P X ˆ Y be a k-simplex with orientation induced by the total vertex
ordering. Then we can write σ “ pι0σ ˆ ι1σqpeσq for the simplex and the inclusions
that we used for the definition of DX,Y . Since the inclusion is a chain map, we have
Bpι0σ ˆ ι

1
σq “ pι

0
σ ˆ ι

1
σqB and conclude

pBk`1D
X,Y
k `DX,Y

k´1 Bkqpι
0
σ ˆ ι

1
σqpeσq “ pι

0
σ ˆ ι

1
σqpBk`1D

r,s
k `Dr,s

k´1Bkqpeσq.

By (5.1), we have pBk`1D
r,s
k ` Dr,s

k´1Bkqpeσq “ pφ
r,s
k ´ ψr,sk qpeσq. We use the naturality

of φ and ψ to obtain

pι0σ ˆ ι
1
σqpφ

r,s
k ´ ψr,sk qpeσq “ pφ

X,Y
k ´ ψX,Y

k qpι0σ ˆ ι
1
σqpeσq “ pφ

X,Y
k ´ ψX,Y

k qpσq.

This concludes the proof.
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Remark 5.9. There is an analog statement for C‚pXqbC‚pY q instead of C‚pXˆY q,
whose proof uses the second part of Remark 5.6. We just have to do the same
construction of the chain homotopy D for all Cpp∆pq b Cqp∆

qq and then copy the
proof with the basis elements η b τ “ pιη b ιτ qp∆p b∆qq of CppXq b CqpY q instead of
σ “ pι0σ ˆ ι

1
σqpeσq.

The proposition states that the proof of the theorem can be reduced to finding the
maps A and S, which we will do in the following two lemmas.

Lemma 5.10. For all simplicial complexes X and Y with total vertex orderings there
is a map

S “ SX,Y : C‚pXq b C‚pY q C‚pX ˆ Y q

such that S

(1) is natural in the sense of Remark 5.5.

(2) is the canonical isomorphism

S0 : C0pXq b C0pY q C0pX ˆ Y q

ppp0q, pp1qq ppp0, p1qq

„

in degree 0.

Proof. The proof mainly follows [Bre97, Chapter IV, Section 16 and Chapter VI, Sec-
tion 1] and [Wei94, Section 6.5 and Section 8.5]. At first we want to decompose
∆p ˆ ∆q into a sum of simplices ∆p`q’s to define S for all p, q P Zě0. A tuple
t “ pt0, . . . , tp`qq Ď t0, . . . , pu ˆ t0, . . . , qu which is ordered in both coordinates yields
a simplex st “ tet0 , . . . , etp`qu in ∆p ˆ∆q. For the index set

Ip,q ¨̈“ Irps,rqs ¨̈“

"

t Ď t0, . . . , pu ˆ t0, . . . , qu

ˇ

ˇ

ˇ

ˇ

|t| “ p` q ` 1,
t ordered in both coordinates

*

we obtain simplices tstutPIp,q , which add up to ∆pˆ∆q. We just have to choose the cor-
rect orientation of each simplex, such that they glue together: All indices t P Ip,q have
first entry p0, 0q, last entry pp, qq and in each step a value fi “ ti´ ti´1 P tp1, 0q, p0, 1qu
is added since t P rps ˆ rqs has maximal length. We can define a permutation πt of
t1, . . . , p` qu with πtp1q ă ¨ ¨ ¨ ă πtppq and πtpp` 1q ă ¨ ¨ ¨ ă πtpp` qq such that

fπtpiq “

#

p1, 0q , i P t1, . . . , pu

p0, 1q , i P tp` 1, . . . , p` qu.

We note that these permutations are pp, qq-shuffles in the sense of [Wei94, Section 6.5]
and describe each t P Ip,q uniquely. They yield the correct orientation in form of a sign
signpπtq for each st with t P Ip,q.
To define S it suffices to do this on the basis elements η b τ P pC‚pXq b C‚pY qqk,

where η is a p-simplex in X and τ a q-simplex in Y with orientation induced by the
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total vertex ordering and p ` q “ k. At first we observe that we can define a chain
map2

Ś

: C‚pXq ˆ C‚pY q C‚pX ˆ Y q

pη, τq pιη ˆ ιτ q

˜

ř

tPIp,q

signpπtq ¨ st

¸

.

We will only give a sketch of the proof that this is indeed a chain map. We make use
of the fact that all st sum up to ∆pˆ∆q, as mentioned in Remark 5.2. Therefore the
boundary of

ř

tPIp,q
signpπtqst is a sum of the faces of ∆p ˆ∆q, which are the chains

∆rpś tiu ˆ∆q “
ř

tPIrpś tiu,rqs

signpπtqst and ∆p ˆ∆rqś tju “
ř

tPIrps,rqś tju

signpπtqst

with i P rps and j P rqs. By calculating which chains cancel out in
ř

tPIp,q
signpπtqBst

and reorder the sum one can obtain

S Bpηˆτq “ pιηˆιτ q

¨

˝

p
ÿ

i“0

p´1qi
ÿ

tPIrpś tiu,rqs

signpπtqst ` p´1qp
q
ÿ

j“0

p´1qj
ÿ

tPIrps,rqś tju

signpπtqst

˛

‚

which is equal to pιη ˆ ιτ qpB
ř

tPIp,q
signpπtqstq “ B Spη ˆ τq for all η P X p-simplices

and τ P Y q-simplices.
Since

Ś

is bilinear, we obtain a map on the tensor product

S : pC‚pXq b C‚pY qqk CkpX ˆ Y q

pη b τq pιη ˆ ιτ q

˜

ř

tPIp,q

signpπtqst

¸

,

which is also a chain map since
Ś

is.
Now we just have to check that both required properties (1) and (2) hold. The

naturality can be proven just by using the definitions: Let ι0 : X Ñ X 1 and ι1 : Y Ñ Y 1

be inclusions of simplicial complexes with total vertex orderings. Then we obtain chain
maps ι0 ˆ ι1 and ι0 b ι1. The map S commutes with the inclusion:

Spι0 b ι1qpη b τq “ Spι0pηq b ι1pτqq

“ pιι0pηq ˆ ιι1pτqq

˜

ÿ

tPIp,q

signpπtqst

¸

“ pι0 ˆ ι1qpιη ˆ ιτ q

˜

ÿ

tPIp,q

signpπtqst

¸

“ pι0 ˆ ι1qSpη b τq

To check the second property, we consider the map S in degree 0. Each basis element
in the tensor product C0pXq bC0pY q is of the form pη0q b pτ0q and is mapped by S to
ppη0, τ0qq P C0pX ˆ Y q. This is the canonical isomorphism in degree 0.

2C‚pXq ˆ C‚pY q is chain complex by pC‚pXq ˆ C‚pY qqi “
À

p`q“i CppXq ˆ CqpY q with boundary
map BCppXqˆCqpY qpη ˆ τq “ BCppXqη ˆ τ ` p´1q

pη ˆ BCqpY qτ .
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Lemma 5.11. For all simplicial complexes X and Y with total vertex orderings there
exists a chain map

A “ AX,Y : C‚pX ˆ Y q C‚pXq b C‚pY q,

such that A is

(1) a natural chain map.

(2) the canonical isomorphism

A0 : C0pX ˆ Y q C0pXq b C0pY q
„

in degree 0.

Proof. We follow [Bre97, Chapter VI, Section 1]. The same trick as in the proof of
Proposition 5.8 will be used here. At first we construct the chain maps Ar,s

“ A∆r,∆s

for r, s P Zě0 and then we use the required naturality of A to define it for arbitrary
complexes.
Let r, s P Zě0 be two non-negative integers. Inductively, we define Ar,s

k : In the base
case k “ 0 the map Ar,s

0 has to be the canonical isomorphism mapping a 0-simplex
pei, ejq to ei b ej. There is no choice, since the map has to satisfy property (2) of the
lemma.
Now we do the induction step. Let k P Zě1 be a positive integer and σ P ∆rˆ∆s be

some k-simplex oriented by the total vertex orderings. We consider the pk ´ 1q-chain
Ar,s
k´1 Bpσq. If k “ 1, then the boundary vanishes since the negative chain groups of a

simplicial complex are all 0. For k ě 2, we have

BAr,s
k´1 Bpσq “ Ar,s

k´2 BBpσq “ 0

by induction. Hence, the pk´ 1q-chain is in the kernel of the boundary map. Since the
homology Hk´1pC‚p∆

rq b C‚p∆
sqq is 0 by Lemma 5.7, the pk ´ 1q-chain is also in the

image of Bk. There exists some η P pC‚p∆rq b C‚p∆
sqqk such that

Bη “ Ar,s
k´1 Bpσq

and we define Ar,s
k pσq to be η. In the same way, we define Ar,s

k for all basis elements
σ P ∆r ˆ ∆s. We obtain a well-defined map on the whole chain group by extending
linearly.
Now let X and Y be arbitrary simplicial complexes with total vertex orderings. We

want to define AX,Y on the basis of each CkpX ˆ Y q. Let σ P X ˆ Y be any k-
simplex with orientation induced by the total vertex orderings. By Remark 5.6 we
can find a simplex eσ P Ckp∆r ˆ∆sq and an inclusion ι0σ ˆ ι1σ : ∆r ˆ∆s Ñ X ˆ Y with
σ “ pι0σ ˆ ι1σqpeσq. We define AX,Y

k pσq ¨̈“ pι0σ b ι1σqA
r,s
k peσq. By extending linearly, we

again obtain a map AX,Y on the whole chain complex.
It remains to check that A is a chain map, that it is natural and that it is the

canonical isomorphism in degree 0. Let σ P X ˆ Y be any simplex oriented by the
total vertex orderings. Then A commutes with the boundary maps since inclusions of
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simplicial complexes commute with boundary maps and on C‚p∆r ˆ∆sq the map A is
defined such that is commutes with the boundary map:

BAX,Y
pσq “ Bpι0σ b ι

1
σqAr,s

peσq “ pι
0
σ b ι

1
σqBAr,s

peσq “ pι
0
σ b ι

1
σqAr,s

Bpeσq

“ AX,Y
pι0σ ˆ ι

1
σqBpeσq “ AX,Y

Bpι0σ ˆ ι
1
σqpeσq “ AX,Y

Bpσq

Let ι0 : X Ñ X 1 and ι1 : Y Ñ Y 1 be inclusions of simplicial complexes with total
vertex orderings and σ P X ˆ Y be a simplex with pι0σ ˆ ι1σqpeσq “ σ and eσ P ∆r ˆ∆s.
By going through the proof of Remark 5.6, we see that it yields

pι0 ˆ ι1qpσq “ ppι0 ˝ ι
0
σq ˆ pι1 ˝ ι

1
σqqpeσq

as representation for pι0 ˆ ι1qpσq. Therefore, by definition we have the equation
AX 1,Y 1

ppι0 ˆ ι1qpσqq “ ppι0 ˝ ι
0
σq ˆ pι1 ˝ ι

1
σqqAr,s

peσq. We obtain:

AX 1,Y 1
pι0 ˆ ι1qpσq “ AX 1,Y 1

pι0ι
0
σ ˆ ι1ι

1
σqpeσq “ pι0ι

0
σ b ι1ι

1
σqAr,s

peσq

“ pι0 b ι1qpι
0
σ b ι

1
σqAr,s

peσq “ pι0 b ι1qAX,Y
pι0σ b ι

1
σqpeσq

“ pι0 ˆ ι1qAX,Y
pσq

The 0-simplex ppp0, p1qq P C0pX ˆ Y q is indeed mapped to pp0q b pp1q by A:

AX,Y
0 pppp0, p1qqq “ pιp0 b ιp1qA

0,0
0 pppe

0, e0
qqq “ pιp0 b ιp1qppe

0
q b pe0

qq “ ppp0q b pp1qq

Hence, A as constructed above has all required properties.

After all this preliminary work, the proof of Theorem 5.4 can be realized by gath-
ering the lemmas and proposition we already have.

Proof of Theorem 5.4. We use Lemma 5.10, Lemma 5.11 and Proposition 5.8
from above to show that

A ˝S „ id

S ˝A „ id,

where „ denotes that they are chain homotopic. We conclude that the induced maps
of A and S on homology are isomorphisms.

For our purposes we also need an Eilenberg-Zilber theorem but for relative homology.

Theorem 5.12. For all simplicial complexes X0 Ď X, Y0 Ď Y with total vertex
orderings the maps A and S induce chain maps on the relative chain complexes

C‚pX ˆ Y , pX ˆ Y0q Y pX0 ˆ Y qq C‚pX,X0q b C‚pY ,Y0q,
A

S

which again induce isomorphisms on homology modules.
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Proof. At first we want to show that A and S are well-defined in each degree k.
The expression pC‚pX,X0q b C‚pY ,Y0qqk on the right hand side is a direct sum of
all CppX,X0q b CqpY ,Y0q with p ` q “ k. We will prove that each of them can be
written as a quotient:

CppX,X0q b CqpY ,Y0q “

´

CppXq
L

CppX0q

¯

b

´

CqpXq
L

CqpX0q

¯

“ pCppXq b CqpY qq
L

pCppXq b CqpY0q ` CppX0q b CqpY qq

If we treat the modules of the chain complexes as vector spaces, this would be true
immediately since for vector spaces V “ V1 ‘ V0 and W “ W1 ‘W0 we have

pV1 ‘ V0q b pW1 bW0q “ pV1 bW1q ‘ pV1 bW0q ‘ pV0 bW1q ‘ pV0 bW0q
loooooooooooooooooooooomoooooooooooooooooooooon

“VbW0`V0bW

,

which implies

V
L

V0
b W

L

W0
“ V1 bW1 “ V bW

L

pV bW0 ` V0 bW q
.

We note that V bW0 ` V0 bW is not a direct sum, since V0 bW0 occurs two times.
The result also holds for free modules over a commutative ring R with 1 as given

in our case. We denote by
Àl

X R the direct sum where we have one copy of R
for each l-simplex in the simplicial complex X. Then we have ClpXq “

Àl
X R and

ClpXq
L

ClpX0q
“
Àl

X X́0
R. We can copy the proof from above by using

CppXq b CqpY q

“

˜

p
à

X X́0

R b
q
à

Y Ý0

R

¸

‘

˜

p
à

X X́0

R b
q
à

Y0

R

¸˜

‘

p
à

X0

R b
q
à

Y Ý0

R

¸

‘

˜

p
à

X0

R b
q
à

Y0

R

¸

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

p
Àp
X Rb

Àq
Y0
Rq`p

Àp
X0

Rb
Àq
Y Rq

.

Furthermore, we can take direct sums of quotients of modules by using the rule
À

ip
Ai
L

Bi
q –

À

iAi
L

À

iBi
to obtain

pC‚pX,X0q b C‚pY ,Y0qqk

– pC‚pXq b C‚pY qqk
L

pC‚pXq b C‚pY0qqk ` pC‚pX0q b C‚pY qqk
.

Now, since we can write both sides as quotients, we have to check that the restrictions
map to each other, explicitly that the diagram

CkpX ˆ Y0 YX0 ˆ Y q pC‚pXq b C‚pY0qqk ` pC‚pX0q b C‚pY qqk

CkpX ˆ Y q pC‚pXq b C‚pY qqk

A

A

(5.4)

and its counterpart for S commute, where the vertical maps are those induced by the
inclusions Y0 Ď Y , X0 Ď X and X ˆ Y0 Y X0 ˆ Y Ď X ˆ Y . If we manage to prove
this, we can conclude that the maps A and S are well-defined on the quotients.
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The upper left entry is a sum CkpX ˆ Y0 Y X0 ˆ Y q “ CkpX ˆ Y0q ` CkpX0 ˆ Y q,
where each summand maps to one on the right side and vice versa:

CkpX ˆ Y0q pC‚pXq b C‚pY0qqk

CkpX0 ˆ Y q pC‚pX0q b C‚pY qqk

A

S

A

S

By using the naturality of the maps A and S, we argue that the diagrams

CkpX ˆ Y0q pC‚pXq b C‚pY0qqk

CkpX ˆ Y q pC‚pXq b C‚pY qqk

A

A

CkpX0 ˆ Y q pC‚pX0q b C‚pY qqk

CkpX ˆ Y q pC‚pXq b C‚pY qqk

A

A

and their counterparts for S commute. Therefore, the whole diagrams (5.4) for A and
S commute.

Now, knowing that A and S are well defined in all degrees, we still need to show
that A and S are chain maps. Since A is a chain map on C‚pX ˆ Y q, we obtain

B ˝Aprσsq “ BprApσqsq “ rB ˝Apσqs “ rA ˝Bpσqs “ A ˝Bprσsq

for all rσs P CkpX ˆ Y q{CkpX ˆ Y0 YX0 ˆ Y q by using our definitions. We conclude
that A is a chain map on the quotient. The proof for S works analogously.
Now we will show that A and S on the quotients induce isomorphisms in homo-

logy. In the following, we will do the proof just for A, since for S we can use analog
arguments. We consider the commutative diagram

0 C‚pX Ŷ0 YX0̂ Y q C‚pX Ŷ q C‚pX Ŷ , pX Ŷ0q Y pX0̂ Y qq 0

0
C‚pXq b C‚pY0q

`C‚pX0q b C‚pY q
C‚pXq b C‚pY q C‚pX,X0q b C‚pY ,Y0q 0,

A A A

where the A in the middle is an isomorphism in homology by Theorem 5.4. If we can
show that the left one is an isomorphism in homology, we can look at the long exact
sequence in homology and deduce that all induced maps are isomorphisms by the
5-Lemma3. To use the lemma we need that the diagram in homology commutes, which
is true since both horizontal sequences are the long exact sequences of quotients and
all vertical maps are A. For the proof that the left A is an isomorphism in homology
we consider

0 C‚pX0 ˆ Y0q
C‚pX ˆ Y0q

‘C‚pX0 ˆ Y q
C‚pX ˆ Y0 YX0 ˆ Y q 0

0 C‚pX0q b C‚pY0q
C‚pXq b C‚pY0q

‘C‚pX0q b C‚pY q
C‚pXq b C‚pY0q

`C‚pX0q b C‚pY q
0,

id‘p´ idq

A

`

A‘A A

id‘p´ idq `

3The 5-Lemma can be found in [Rot09, Proposition 2.72].
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where the upper row is the Mayer-Vietoris short exact sequence as in [Hat02, Sec-
tion 2.2] but for simplicial complexes and the bottom row is also a short exact se-
quence made by a similar construction. The left and the middle vertical map are both
isomorphisms in homology by Eilenberg-Zilber. Furthermore, the diagram in homo-
logy commutes since on the rows are the same maps and the vertical maps are all A.
Again, by using the 5-Lemma, also the map on the right hand side is an isomorphism
in homology. This is what we needed to show.

We note that both maps A and S on quotients are natural in the sense that they
commute with inclusions obtained by inclusions of pairs. This can be checked by using
the naturality on the level of CkpX ˆ Y q and pC‚pXq b C‚pY qqk of A and S.

5.2 Mayer-Vietoris Blowup

In order to localize holes in a finite simplicial complex X, we consider a cover U and
look at the disjoint union XU

0 of the pieces. Taking the homology of XU
0 yields local

descriptions. We check which homology classes survive by connecting the pieces and
computing persistent homology for this process. The Mayer-Vietoris blowup XU is ob-
tained by gluing the parts together and has the same homology as the original complex
X but the parts where the subcomplexes intersect are blowed up as in Figure 5.4. In
this section we mainly follow [ZC08].
At first we formalize the notion of a cover of a simplicial complex X and perform the

construction of the blowup. For the rest of this chapter, let all simplicial complexes be
equipped with total vertex orderings since we need this property to define products.

Definition 5.13 (Simplicial subcomplex). An (abstract) simplicial subcomplex of an
(abstract) simplicial complex X is a subset of X, which is also a complex.

Definition 5.14 (Simplicial cover). Let X be an (abstract) simplicial complex. An
(abstract) simplicial cover U “ tXiuiPI for any index set I is a set of subcomplexes of
X such that their union

Ť

iPI Xi is the whole complex X.

Definition 5.15 (Filtered Mayer-Vietoris blowup). Let X be a simplicial complex
and U “ tX iuiPrn´1s be a simplicial cover, where rn ´ 1s “ t0, . . . ,n ´ 1u. For all
t P rn´ 1s we define

XU
t
¨̈“

ď

JĎrn´1s
0ă|J |ďt`1

XJ
ˆ∆J

Ď X ˆ∆n´1,

where XJ ¨̈“
Ş

jPJ X
j and ∆J Ď ∆n´1 is the simplex with vertices induced by j P J .

The Mayer-Vietoris blowup of X and U is XU “ XU
n´1. We call the family tXU

t utPrn´1s

the filtered Mayer-Vietoris blowup.

We note that since XU is contained in X ˆ ∆n´1, we have canonical projections
πX : XU Ñ X and π∆ : XU Ñ ∆n´1. The projections yield chain maps given by

πX : CipX ˆ∆n´1q CipXq

ppx0,σ0q, . . . , pxi,σiqq

"

0 , if xj “ xj1 for some j ‰ j1

px0, . . . ,xiq , else
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for all i P Zě0 and similarly for π∆.

Example 5.16. Let X “ ta, b, c, d, eu be a simplicial complex with a simplicial cover
U “ tX0,X1u containing the subcomplexes X0 “ ta, b, c, du and X1 “ tb, c, d, eu. Then
XU

0 is of the form X0 ˆ t0u YX1 ˆ t1u and the Mayer-Vietoris blowup is

XU
1 “ XU

0 Y

$

&

%

tpb, 0q, pb, 1qu, tpc, 0q, pc, 1qu, tpd, 0q, pd, 1qu, tpb, 0q, pc, 1qu,
tpc, 0q, pd, 1qu, tpb, 0q, pb, 1q, pc, 1qu, tpb, 0q, pc, 0q, pc, 1qu,
tpc, 0q, pc, 1q, pd, 1qu, tpc, 0q, pd, 0q, pd, 1qu

,

.

-

.

In Figure 5.4 we see a picture of the Mayer-Vietoris blowup XU
1 as described above.

pa, 0q pb, 0q pc, 0q pd, 0q

pb, 1q pc, 1q pd, 1q pe, 1q

Figure 5.4: Example of a Mayer-Vietoris blowup.

For the simplicial complex X “ tau we can define a cover U “ tX0,X1,X2u with
X0 “ X1 “ X2 “ tau. Then we obtain:

XU
0 “ ttpa, e0

qu, tpa, e1
qu, tpa, e2

quu

XU
1 “ XU

0 Y ttpa, e0
q, pa, e1

qu, tpa, e0
q, pa, e2

qu, tpa, e1
q, pa, e2

quu

XU
2 “ XU

1 Y ttpa, e0
q, pa, e1

q, pa, e2
quu

This filtered Mayer-Vietoris blowup is visualized in Figure 5.5.

pa, e0q pa, e1q

pa, e2q

XU
0

pa, e0q pa, e1q

pa, e2q

XU
1

pa, e0q pa, e1q

pa, e2q

XU
2

Figure 5.5: Filtered Mayer-Vietoris blowup for the cover consisting of three copies of
one point.

Lemma 5.17 (Local description). Let X be a simplicial complex with a simplicial cover
U “ tX iuiPrn´1s. For all k P Z we have

HkpX
U
0 q –

à

iPrn´1s

HkpX
i
q.
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Proof. By the definition of the filtered Mayer-Vietoris blowup, we can easily see that

XU
0 “

ď

JĎrn´1s
|J |“1

XJ
ˆ∆J

“

n´1
ď

j“0

Xj
ˆ teju,

where ej, j P rn ´ 1s are the edges of ∆n´1. This is the disjoint union of the pieces of
the cover.

Lemma 5.18 (Global description). Let X be a simplicial complex and U “ tX iuiPrn´1s

be a simplicial cover. Then for all k P Z there exists an isomorphism

HkpX
U
q – HkpXq

between the homology of XU and X given by the chain map πX .

Proof. We take the standard realization

|XU
| “

ď

H‰JĎrn´1s

|XJ
ˆ∆J

| “
ď

H‰JĎrn´1s

|XJ
| ˆ |∆J

|.

In [ZC08, Section 4.1, Lemma 1] they do not give an explicit proof but refer to the case
where they define a Mayer-Vietoris blowup for an open cover of the topological space
|X| and argue that it is homotopy equivalent to the space |X| itself. The realization
of a simplicial cover is in general not an open cover of |X| but it should be possible to
extend this proof to simplicial coverings.
Since we do not need a homotopy equivalence on the realizations, we follow a different

approach. At first, we consider a simple case, where U “ tX0,X1u is a simplicial cover
consisting of two simplicial subcomplexes. The Mayer-Vietoris blowup is of the form

|XU
| “ |X0

ˆ t0u| Y |X1
ˆ t1u| Y |pX0

XX1
q ˆ r0, 1s| Ď |X| ˆ r0, 1s.

By using π∆ : |XU | Ñ r0, 1s we define U ¨̈“ π´1
∆ pr0, 2

3
qq and V ¨̈“ π´1

∆ pp
1
3
, 1sq which

form an open cover of |XU | as in Figure 5.6.

V

U

Figure 5.6: Open cover of XU with |U | “ 2.

For the cover U of X we have a Mayer-Vietoris long exact sequence obtained by the
short exact sequence

0 C‚pX
0 XX1q C‚pX

0q ‘ C‚pX
1q C‚pXq 0

a pa,´aq

pa, bq a` b.

(5.5)
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We transfer this long exact sequence to singular homology of the realizations and
compare it with the Mayer-Vietoris long exact sequences of the cover tU ,V u of |XU |:

. . . HkpU X V q HkpUq ‘HkpV q Hkp|X
U |q . . .

. . . Hkp|X
0| X |X1|q Hkp|X

0|q ‘Hkp|X
1|q Hkp|X|q . . .

„pπXq˚ „pπXq˚‘pπXq˚ „pπXq˚

The first two vertical maps of the diagram are isomorphisms since we find homotopy
equivalences U X V » |X0 X X1| ˆ t1

2
u, U » |X0| ˆ t0u and V » |X1| ˆ t1u which

preserve the x-coordinate by contracting linearly. Using the 5-Lemma yields the third
isomorphism. This proves the simple case.
The remaining cases will be proven by induction. For U “ tX0, . . . ,Xnu we have

π∆ : |XU | |∆n|.

We consider the realization |∆n| “ convt0, e1, . . . enu Ď Rn and cover it by

U∆ ¨̈“

#

py1, . . . , ynq P |∆
n
|

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

yi ă
2
3

+

V∆ ¨̈“

#

py1, . . . , ynq P |∆
n
|

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

yi ą
1
3

+

as in Figure 5.7.

0
e2, . . . , en

e1

V∆

U∆

Figure 5.7: Open cover of XU with |U | “ n` 1.

We obtain an open cover tU ,V u with U ¨̈“ π´1
∆ pU∆q,V ¨̈“ π´1

∆ pV∆q of |XU |. As
before, we can find homotopy equivalent spaces

U X V » S ¨̈“ |XU
| X

´

|X| ˆ
!

py1, . . . , ynq
ˇ

ˇ

ˇ

ÿ

i
yi “

1
2

)¯

“ π´1
∆

´!

y
ˇ

ˇ

ˇ

ÿ

i
yi “

1
2

)¯

U » |X0
| ˆ t0u “ π´1

∆ pt0uq

V » |pX1
Y ¨ ¨ ¨ YXn

q
tX1,...,Xnu

| “ π´1
∆ p∆

t1,...,nu
q
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by retracting linearly with the following homotopies:

HU ,V : U X V ˆ r0, 1s U X V

ppx, yq, tq px, p1´ tq ¨ y ` t ¨ 1
2

y
ř

i yi
q

HU : U ˆ r0, 1s U

ppx, yq, tq px, p1´ tq ¨ y ` t ¨ 0q

HV : V ˆ r0, 1s V

ppx, yq, tq px, p1´ tq ¨ y ` t ¨ y
ř

i yi
q

Furthermore, there is an isomorphism

S T ¨̈“ π´1
∆ p|∆

t1,...,nu|q X π´1
X p|X

0|q

px, yq px, 2yq.

„

Since π´1
∆ p∆

t1,...,nuq – |pX1 Y ¨ ¨ ¨ Y XnqtX
1,...,Xnu|, we obtain that T is isomorphic to

|p
Ťn
j“1X

0XXjqtX
0XX1,...,X0XX1u|. For better readability, we define rX1 ¨̈“ X1Y¨ ¨ ¨YXn.

As in the simple case we want to find maps between the Mayer-Vietoris long exact
sequence for the cover tU ,V u of |XU | and t|X0|, | rX1|u of |X|. We have the following
isomorphisms

HkpU X V q – HkpSq – HkpT q Hkp|X
0 X rX1|q

HkpUq – Hkp|X
0| ˆ t0uq Hkp|X

0|q

HkpV q – Hkp|p rX
1qtX

1,...,Xnu|q Hkp| rX
1|q

„

pπXq˚

„

pπXq˚

„

pπXq˚

where the first and the third hold by induction. Since all isomorphisms in these three
rows preserve the x-coordinate, the whole composition in each row is the map pπXq˚
and we obtain the following commutative diagram for the Mayer-Vietoris long exact
sequences :

. . . HkpU X V q HkpUq ‘HkpUq Hkp|X
U |q . . .

. . . Hkp|X
0| X | rX1|q Hkp|X

0|q ‘Hkp| rX
1|q Hkp|X|q . . .

„pπXq˚ „pπXq˚‘pπXq˚ pπXq˚

By the 5-Lemma we obtain that

pπXq˚ : Hkp|X
U |q Hkp|X|q

„
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is an isomorphism. The simplicial chain map πX induces a map pπXq˚ which coincides
with the one from above in the sense that

HkpX
Uq HkpXq

Hkp|X
U |q Hkp|X|q

pπXq˚

„ „

pπXq˚
„

commutes. This proves the lemma.

The following lemma justifies the name of the Mayer-Vietoris blowup. The proof
is an adaption from [ZC08, Section 4.1] where the authors shortly discuss the lemma
in the singular instead of the simplicial case. We do not need this lemma for further
arguments, therefore we give the proof only in the appendix in Section 6.3.

Lemma 5.19 (Justification of the name). For a simplicial cover U “ tX0,X1u of X
consisting of two simplicial subcomplexes, we have an isomorphism from each homology
module of the Mayer-Vietoris long exact sequence to the homology module of the long
exact sequence for the pair pXU

1 ,XU
0 q shifted by one:

. . . HipX
U
0 q HipX

U
1 q HipX

U
1 ,XU

0 q . . .

. . . HipX
0q ‘HipX

1q HipXq Hi´1pX
r1sq . . .

„ „ „

Moreover, the diagram commutes.

In Definition 5.15, we already introduced the filtration

H XU
0 XU

1 . . . XU
n´1 “ XU .

Now we want to compute its persistent homology. With the tools we already dis-
cussed we would proceed as follows: We triangulate XU

t as we did at the beginning of
Section 5.1 and then compute the corresponding simplicial chain complex

C‚pX
U
qt ¨̈“ C‚pX

U
t q “

ÿ

JĎrn´1s
0ă|J |ďt`1

C‚pX
J
ˆ∆J

q.

Using the persistence algorithm from the preceding chapter, we are able to compute a
basis for the homology of XU . The intervals r0,8q in the barcode are the ones that
describe the homology classes of X which come from the local parts. It would be
possible to proceed in this way, but computationally this procedure is very expensive.

Definition 5.20. Let X be a simplicial complex and U “ tX iuiPrn´1s a simplicial
cover. We call the image of

ι˚ : HkpX
U
0 q HkpX

U
n´1q

the k-th U-localized homology of X.
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Instead of computing persistent homology of C‚pXUqt we will consider a smaller chain
complex CU

‚ pXqt, which provides the same homology. We follow [ZC08, Section 4.3].

Definition 5.21 (Filtered blowup chain complex). Let X be a simplicial complex
and U “ tX iuiPrn´1s a simplicial cover as in Definition 5.14. For t P rn´ 1s we define
the complex CU

‚ pXqt Ď C‚pXq b C‚p∆
n´1q by

CU
k pXqt ¨̈“

ÿ

JĎrn´1s
0ă|J |ďt`1

pC‚pX
J
q b C‚p∆

J
qqk

for all k P Z with the typical boundary maps Bpa b bq “ Ba b b ` p´1qdegpaqa b Bb for
the tensor product C‚pXq bC‚p∆n´1q. We call CU

‚ pXq ¨̈“ CU
‚ pXqn´1 the blowup chain

complex of X and U and the family tCU
‚ pXqtutPrn´1s the filtered blowup chain complex.

To prove that the chain complex of the filtered Mayer-Vietoris blowup and the filtered
blowup chain complex yield the same persistent homology, we make use of the maps
from the Eilenberg-Zilber theorem

C‚pX
J ˆ∆Jq C‚pX

Jq b C‚p∆
Jq

A

S

which were introduced in Theorem 5.4.

Definition 5.22. Let U be a cover of the simplicial complex X. For all k P Z we
denote by

CkpX
Uq CU

k pXq
A

S

the maps defined by applying the maps from the Eilenberg-Zilber theorem on each
summand CkpXJ ˆ∆Jq and pC‚pXJq b C‚p∆

Jqqk respectively.

Lemma 5.23. Let X be a simplicial complex with a cover U consisting of n subcom-
plexes. For the maps A and S from the preceding definition, the following properties
hold:

(a) A and S are well-defined.

(b) A and S are chain maps.

(c) We have ApCkpXUqtq Ď CU
k pXqt and SpCU

k pXqtq Ď CkpX
Uqt for all k P Z and

t P rn´ 1s.

Assuming that the lemma holds, we can consider the maps At ¨̈“ A |C‚pXU qt and
St ¨̈“ S |CU‚ pXqt between the filtered blowup chain complex and the chain complex of
the filtered Mayer-Vietoris blowup:

C‚pX
Uqt CU

‚ pXqt
At

St
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We recall

C‚pX
U
qt “

ÿ

JĎrn´1s
0ă|J |ďt`1

C‚pX
J
ˆ∆J

q Ď C‚pX
U
q “ C‚pX

U
qn´1

CU
‚ pXqt “

ÿ

JĎrn´1s
0ă|J |ďt`1

C‚pX
J
q b C‚p∆

J
q Ď CU

‚ pXq “ CU
‚ pXqn´1

from Definition 5.15 and Definition 5.21.

Proof of Lemma 5.23. At first we are going to prove (a). Let k P Z be an integer. On
each summand of CU

k pXq and CkpXUq we have the maps

CkpX
J ˆ∆Jq pC‚pX

Jq b C‚p∆
Jqqk

A

S

from Theorem 5.4. To obtain well-defined maps on the sum, we have to check that
each map coincides on the intersection of two different summands. As mentioned in
[ZC08] we make use of the intersection-formula for Ck and the naturality of A. To do
this for S too, we need its naturality and another intersection formula (5.2) for the
tensor products pC‚pXJq b C‚p∆

Jqqk.
Let I, J Ď rn´ 1s be subsets with |I|, |J | ą 0. By using the intersection-formula for

Ck we obtain

CkpX
I
ˆ∆I

q X CkpX
J
ˆ∆J

q “ CkpX
I
XXJ

ˆ∆I
X∆J

q

“ CkpX
IYJ

ˆ∆IXJ
q.

In addition, we have

pC‚pX
I
q b C‚p∆

I
qqk X pC‚pX

J
q b C‚p∆

J
qqk “ pC‚pX

IYJ
q b C‚p∆

IXJ
qqk.

The naturality of A and S yield the following commutative diagram

pC‚pX
Iq b C‚p∆

Iqqk CkpX
I ˆ∆Iq pC‚pX

Iq b C‚p∆
Iqqk

pC‚pX
IYJq b C‚p∆

IXJqqk CkpX
IYJ ˆ∆IXJq pC‚pX

IYJq b C‚p∆
IXJqqk

pC‚pX
Jq b C‚p∆

Jqqk CkpX
J ˆ∆Jq pC‚pX

Jq b C‚p∆
Jqqk

SI AI

SI,J

rιI

AI,J

ιI rιI

SJ

rιJ

AJ

ιJ rιJ

where the vertical maps are induced by inclusions. If we take for example an element
σ in the intersection CkpXIYJ ˆ∆IXJq then it is mapped by AI to

AIpιIpσqq “ rιIpAI,Jpσqq

and by AJ to
AJpιJpσqq “ rιJpAI,Jpσqq.
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Both elements in the image coincide, since they come from the same element in the
intersection. We can do this for all elements in the intersection for A and S. This
proves part (a). (a)

A and S are indeed chain maps since they are on each chain group CkpXJ ˆ∆Jq or
pC‚pX

Jq b C‚p∆
Jqqk. We have

BApσq “ BAJpσq “ AJ Bpσq “ A Bpσq
BS pσq “ BS Jpσq “ S JBpσq “ SBpσq

for the J with σ P C‚pXJ ˆ∆Jq and σ P C‚pXJq b C‚p∆
Jq, respectively. (b)

Also (c) holds since CkpXUqt and CU
k pXqt for t P rn´ 1s and k P Z are sums over the

same indices and A and S map summands with the same indices to each other. We
have the inclusions ApCkpXUqtq Ď CU

k pXqt and SpCU
k pXqtq Ď CkpX

Uqt. (c)

This proves the lemma.

In the following, we will show that the maps

C‚pX
Uqt CU

‚ pXqt
At

St

as constructed above induce an isomorphism in homology. In this case the barcodes
for the two chain complexes coincide.

Theorem 5.24. Let X be a simplicial complex and U “ tX iuiPrn´1s be a simplicial
cover of X. The chain map

S : CU
‚ pXq C‚pX

Uq

and all restrictions St induce isomorphisms in homology

pStq˚ : HkpC
U
‚ pXqtq HkpC‚pX

Uqtq
„

for all k P Z and t P rn´ 1s. Furthermore, the diagram

HkpC
U
‚ pXqtq HkpC‚pX

Uqtq

HkpC
U
‚ pXqt1q HkpC‚pX

Uqt1q

„

pStq˚

„

pSt1 q˚

(5.6)

commutes for all k P Z and t ď t1 P rn´ 1s.

The theorem also holds for the maps At instead of St as stated in [ZC08, Theorem 5].
If we assume that the theorem holds, we obtain

Corollary 5.25. Consider the coefficients for homology to be a field. For the con-
ditions as in Theorem 5.24 the barcodes of tC‚pXUqtutPrn´1s and tCU

‚ pXqtutPrn´1s co-
incide.

Proof. Both filtrations are directed spaces in the sense of Section 3.2. The maps pStq˚
for t P rn´ 1s form an isomorphism of directed spaces because of (5.6).
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Proof of Theorem 5.24. We already constructed the chain map S and it remains to
check that it fulfills the desired properties. Diagram (5.6) indeed commutes since for
all t ď t1 P rn´ 1s

CU
‚ pXqt C‚pX

Uqt

CU
‚ pXqt1 C‚pX

Uqt1

St

St1

is a commutative diagram in the category of chain complexes of modules and Hk is a
functor by [Wei94, Section 1.2] for all k P Z. Therefore, it suffices to show that the
induced maps pStq˚ on homology are isomorphisms for all t P rn ´ 1s. We will prove
this by induction over t.
For t “ 0 we have

CkpX
U
q0 “

ÿ

JĎrn´1s
|J |“1

CkpX
J
ˆ∆J

q “

n´1
ÿ

j“0

CkpX
j
ˆ tejuq

–

n´1
à

j“0

CkpX
j
q –

n´1
ÿ

j“0

pC‚pX
j
q b C‚pte

j
uqqk,

where the ej for j P rn´ 1s are distinct points. We note that Cqptejuq is the coefficient
ring of the module for q “ 0 and otherwise 0. Hence, CkpXUq0 is isomorphic to CU

k pXq0
by the canonical isomorphism S0.
Now we perform the induction step and assume that the maps S0, . . . ,St´1 induce

isomorphisms in homology. We consider the following short exact sequences of chain
complexes

0 CU
‚ pXqt´1 CU

‚ pXqt CU
‚ pXqt

L

CU
‚ pXqt´1

0

0 C‚pX
Uqt´1 C‚pX

Uqt C‚pX
Uqt

L

C‚pX
Uqt´1

0

St´1 St pSt

with maps between them, where pSt is the map induced by S on the quotient4. pSt is a
well-defined chain map since St and St´1 are well-defined chain maps. We obtain long
exact sequences in homology with maps between them by the Snake Lemma:

. . . Hi

`

CU
‚ pXqt´1

˘

Hi

`

CU
‚ pXqt

˘

Hi

´

CU
‚ pXqt

L

CU
‚ pXqt´1

¯

. . .

. . . Hi

`

C‚pX
Uqt´1

˘

Hi

`

C‚pX
Uqt

˘

Hi

´

C‚pX
Uqt

L

C‚pX
Uqt´1

¯

. . .

pSt´1q˚ pStq˚ ppStq˚

4We have CU
‚ pXqt

L

CU
‚ pXqt´1

“ . . .
B
Ñ CU

i pXqt
L

CU
i pXqt´1

B
Ñ CU

i´1pXqt
L

CU
i´1pXqt´1

B
Ñ . . . and an

analog sequence for C‚pXU qt
L

C‚pX
U qt´1

.
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The diagram commutes since the maps on the rows are equal and all vertical maps
are S. We want to prove that pStq˚ is an isomorphism by using the 5-Lemma. The
map pSt´1q˚ is an isomorphism for all i P Z by induction. To show that ppStq˚ is also
an isomorphism we need to do some work. We will find chain complexes which are
isomorphic to the domain and codomain of pSt respectively:

CU
k pXqt

L

CU
k pXqt´1

CkpX
Uqt

L

CkpX
Uqt´1

À

JĎrn´1s
|J |“t`1

pC‚pX
Jq b C‚p∆

J , B∆Jqqk
À

JĎrn´1s
|J |“t`1

CkpX
J ˆ∆J ,XJ ˆ B∆Jq

„
rσbηs

rσbηs

pSt

rσbηs rSpσˆηqs

f

rσˆηs

rσˆηs

„ (5.7)

If we assume that we already constructed the isomorphism and take f as S from the
Eilenberg-Zilber theorem for the quotient, then the diagram commutes. By using The-
orem 5.12 with X “ XJ , Y “ ∆J , X0 “ H and Y0 “ B∆

J for each J individually,
we conclude that f induces an isomorphism in homology. The vertical maps are iso-
morphisms and also yield an isomorphism in homology. Therefore, pSt has to be an
isomorphism in homology, too. In the remaining part of the proof we will construct
the vertical isomorphisms of diagram (5.7).
We start with the vertical map on the right side:

CkpX
Uqt

L

CkpX
Uqt´1

À

JĎrn´1s
|J |“t`1

CkpX
J ˆ∆J ,XJ ˆ B∆Jq

rσ ˆ ηs rσ ˆ ηs

–

In the following we denote by Iptq the set of all J Ď rn ´ 1s with 0 ă |J | ď t for
the sake of better readability. We divide the construction of the isomorphism into two
steps: Let tJ1, . . . , Jmu be the set tJ Ď rn´ 1s | |J | “ t` 1u. In the first step we show
that the sum in the bottom row of

CkpX
Uqt

L

CkpX
Uqt´1

“
ř

JPIpt`1q

CkpX
J ˆ∆Jq

L

ř

JPIptq

CkpX
J ˆ∆Jq

“

m
ÿ

i“1

¨

˝pCkpX
Ji ˆ∆Jiq `

ř

JPIptq

CkpX
J ˆ∆Jqq

L

ř

JPIptq

CkpX
J ˆ∆Jq

˛

‚

(5.8)

is a direct sum. This can be shown by proving that

CkpX
Ji ˆ∆Jiq X

ÿ

jPt1,...,mú tiu

CkpX
Jj ˆ∆Jjq

!
Ď

ÿ

JPIptq

CkpX
J
ˆ∆J

q

for all i P t1, . . . ,mu. It suffices to prove the inclusion for i “ 1 since we can reorder
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J1, . . . , Jm. We obtain

CkpX
J1 ˆ∆J1q X

m
ÿ

j“2

CkpX
Jj ˆ∆Jjq “ CkpX

J1 ˆ∆J1q X Ckp
m
ď

j“2

XJj ˆ∆Jjq

“ CkpX
J1 ˆ∆J1 X

m
ď

j“2

XJj ˆ∆Jjq

“ Ckp
m
ď

j“2

XJ1YJj ˆ∆J1XJjq

“

m
ÿ

j“2

CkpX
J1YJj ˆ∆J1XJjq “¨̈ p˚q.

There are inclusions XJ1YJj Ď XJ1XJj for all j P t2, . . . ,mu. Therefore, we have

CkpX
J1YJj ˆ∆J1XJjq Ď CkpX

J1XJj ˆ∆J1XJjq.

Since |J1 X Jj| ď t for all j P t2, . . . ,mu, we obtain

p˚q Ď

m
ÿ

j“2

CkpX
J1XJj ˆ∆J1XJjq Ď

ÿ

JPIptq

CkpX
J
ˆ∆J

q.

In the second step we will find an isomorphism for each summand

Qi ¨̈“ pCkpX
Ji ˆ∆Jiq `

ř

|J |ďt

CkpX
J ˆ∆Jqq

L

ř

|J |ďt

CkpX
J ˆ∆Jq

with i P t1, . . . ,mu from (5.8):

Qi
CkpX

Ji ˆ∆Jiq
L

CkpX
Ji ˆ B∆Jiq

rη ˆ σs rη ˆ σs

–

Let i be some element in t1, . . . ,mu. We use pA`Bq{B – A{pAXBq for the modules
A “ CkpX

Ji ˆ∆Jiq and B “
ř

JPIptqCkpX
J ˆ∆Jq. Then it remains to show that

CkpX
Ji ˆ∆Jiq X

ÿ

JPIptq

CkpX
J
ˆ∆J

q
!
“ CkpX

Ji ˆ B∆Jiq.

The inclusion “Ě” holds since

CkpX
Ji ˆ B∆Jiq “

ÿ

H‰JŁJi

CkpX
Ji ˆ∆J

q “
ÿ

H‰JŁJi

CkpX
J
ˆ∆J

q

and |Ji| “ t` 1. We prove the other inclusion “Ď” by looking at

CkpX
Ji ˆ∆Jiq X

ÿ

JPIptq

CkpX
J
ˆ∆J

q “ CkpX
Ji ˆ∆Jiq X Ckp

ď

JPIptq

XJ
ˆ∆J

q

“ CkpX
Ji ˆ∆Ji X

ď

JPIptq

XJ
ˆ∆J

q

“ Ckp
ď

JPIptq
JiXJ‰H

XJiYJ ˆ∆JiXJq.
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For all J P Iptq with Ji X J ‰ H we define rJ ¨̈“ Ji X J . It satisfies rJ P Iptq, rJ Ď Ji
and the inclusion XJiYJ ˆ∆JiXJ Ď XJiY rJ ˆ∆JiX rJ holds. Therefore, we obtain

Ckp
ď

JPIptq
JiXJ‰H

XJiYJ ˆ∆JiXJq Ď Ckp
ď

rJPIptq
rJĎJi

XJiY rJ
ˆ∆JiX rJ

q “ Ckp
ď

JPIptq
JĎJi

XJiYJ ˆ∆JiXJq.

Since Ji Y J “ Ji and Ji X J “ J for all J Ď Ji, we have

XJiYJ ˆ∆JiXJ “ XJi ˆ∆J .

The set of all J Ď Ji with 0 ă |J | ď t is the set of all H ‰ J Ł Ji since |Ji| “ t ` 1.
Hence, we obtain

Ckp
ď

JPIptq
JĎJi

XJi ˆ∆J
q “ CkpX

Ji ˆ
ď

H‰JŁJi

∆J
q

“ CkpX
Ji ˆ B∆Jiq

by using that B∆Ji “
Ť

|J |“|Ji|´1 ∆J “
Ť

H‰JŁJi
∆J . This concludes the proof of the

second step.
To show that the isomorphism is even an isomorphism of simplicial chain complexes

we need that the map commutes with the boundary operator B. But the map and B
are defined on the quotient by its counterparts on the representatives where the map
is the identity, therefore this holds.
Now we consider the domain of pSt and aim to obtain the following isomorphism:

CU
‚ pXqt

L

CU
‚ pXqt´1

À

JĎrn´1s
|J |“t`1

C‚pX
Jq b C‚p∆

J , B∆Jq

rσ ˆ ηs rσ ˆ ηs

–

We use similar arguments as in the proof for the codomain but write them down
differently. Comparing the bases of chain complexes as we will do it here was done
before by the rules C‚pXq X C‚pY q “ C‚pX X Y q and C‚pXq ` C‚pY q “ C‚pX Y Y q.
Now we are working with tensor products and we cannot use these rules anymore. We
again proceed in two steps. In the first step we want to show that the quotient

m
ÿ

i“1

¨

p̋pC‚pX
JiqbC‚p∆

Jiqqk`
ř

JPIptq

pC‚pX
JqbC‚p∆

Jqqkq
L

ř

JPIptq

pC‚pX
JqbC‚p∆

Jqqk

˛

‚ (5.9)

which is equal to CU
k pXqt

L

CU
k pXqt´1

is a direct sum. As before, to prove this it remains
to show that

pC‚pX
J1q b C‚p∆

J1qqk X

m
ÿ

i“2

pC‚pX
Jiq b C‚p∆

Jiqqk
!
Ď

ÿ

JPIptq

pC‚pX
J
q b C‚p∆

J
qqk.
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The modules A ¨̈“ pC‚pX
J1q b C‚p∆

J1qqk and B ¨̈“
řm
i“2pC‚pX

Jiq b C‚p∆
Jiqqk are

contained in pC‚pXq b C‚p∆n´1qqk, which is a free module with basis

B “
 

σ b η
ˇ

ˇ Dp, q P Zě0 : p` q “ k,σ P X p-simplex, η P ∆n´1 q-simplex
(

where the orientations of the simplices are induced by the total orderings on X and
∆n´1. Moreover, we have bases

BA “
 

σ b η P B
ˇ

ˇ σ P XJ1 , η P ∆J1
(

BB “
 

σ b η P B
ˇ

ˇ Di P t2, . . . ,mu : σ P XJi , η P ∆Ji
(

for A and B, which are both contained in B. Hence, the intersection of A and B has
the basis

BAXB “
 

σ b η P B
ˇ

ˇ Di P t2, . . . ,mu : σ P XJi XXJ1 , η P ∆Ji X∆J1
(

“ BAXBB .

We have the inclusion XJi X XJ1 “ XJiYJ1 Ď XJiXJ1 for all i P t2, . . . ,mu. Since
∆Ji X∆J1 “ ∆JiXJ1 and |Ji X J1| ď t holds, the basis BAXB is contained in

ÿ

JPIptq

pC‚pX
J
q b C‚p∆

J
qqk.

Hence, also AXB is contained in
ř

JPIptqpC‚pX
Jq b C‚p∆

Jqqk.
In the second step we want to prove that there are isomorphisms

ppC‚pX
Jiq b C‚p∆

Jiqqk `
ř

JPIptq

pC‚pX
Jq b C‚p∆

Jqqkq
L

ř

JPIptq

pC‚pX
Jq b C‚p∆

Jqqk

–

´

C‚pX
Jiq b

´

C‚p∆
Jiq
L

C‚pB∆
Jiq

¯¯

k

for each summand of (5.9). If we show that for each pair pp, qq with p` q “ k there is
an isomorphism

pCppX
Jiq b Cqp∆

Jiq `
ř

JPIptqpC‚pX
Jq b C‚p∆

Jqqkq
L

ř

JPIptqpC‚pX
Jq b C‚p∆

Jqqk

– pCppX
Jiq b Cqp∆

Jiqq
L

pCppX
Jiq b CqpB∆

Jiqq

– CppX
Jiq b

´

Cqp∆
Jiq
L

CqpB∆
Jiq

¯

,

then they sum up to an isomorphism like above. It suffices to show that

CppX
Jiq b Cqp∆

Jiq
loooooooooomoooooooooon

“¨̈A1

X
ÿ

JPIptq

pC‚pX
J
q b C‚p∆

J
qqk

looooooooooooooomooooooooooooooon

“¨̈B1

!
“ CppX

Jiq b CqpB∆
Jiq

looooooooooomooooooooooon

“¨̈C1

.

We have the inclusion C 1 Ď A1 since CqpB∆Jiq Ď Cqp∆
Jiq. Furthermore, we know that

CqpB∆
Jiq “

ř

H‰JŁJi
Cqp∆

Jq. Hence, we obtain

C 1 “ CppX
Jiq b CqpB∆

Jiq “
ÿ

H‰JŁJi

CppX
Jiq b Cqp∆

J
q

Ď
ÿ

H‰JŁJi

CppX
J
q b Cqp∆

J
q Ď B1
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and the inclusion “Ě” is proven. To show that also the inclusion “Ď” holds, we need to
compare bases as in the first step. We have the bases

BA1 “
 

σ b η P B
ˇ

ˇ σ P XJi p-simplex and η P ∆Ji q-simplex
(

BB1 “
 

σ b η P B
ˇ

ˇ DJ P Iptq : σ P XJ and η P ∆J
(

BA1XB1 “
 

σ b η P B
ˇ

ˇ DJ P Iptq : σ P XJ
XXJi p-simplex and η P ∆J

X∆Ji q-simplex
(

and we want to show that BA1XB1 is contained in C 1. We use that for all J P Iptq with
J X Ji ‰ H we have XJ XXJi “ XJYJi Ď XJi and ∆J X∆Ji “ ∆JXJi . Moreover, we
can rewrite the set tJ X Ji ‰ H | J P Iptqu as t rJ | H ‰ rJ Ł Jiu since |Ji| “ t` 1. By
using

Ť

H‰ rJŁJi
∆

rJ “ B∆Ji this yields

BA1XB1 Ď tσ b η P B | DH ‰ rJ Ł Ji : σ P XJi p-simplex and η P ∆
rJ q-simplexu

“ tσ b η P B | σ P XJi p-simplex and η P B∆Ji q-simplex u.

But this is a basis for C 1. We obtain BA1XB1 Ď C 1 and therefore A1 X B1 Ď C 1 as
desired.

5.3 The Localization Algorithm

To execute the localization algorithm we need a finite simplicial complex X together
with a simplicial cover U “ tX iuiPrn´1s. As already mentioned in this chapter, we
should keep in mind that the construction of the Mayer-Vietoris blowup requires a
total vertex ordering of X. We can compute persistent homology of the corresponding
filtered Mayer-Vietoris blowup tXU

t utPrn´1s by Algorithm 1 from Chapter 4. This yields
a description of the localized homology of X, represented by the intervals from 0 to 8
in the barcode. By considering all classes that persist until the end, we obtain a full
description of the homology of XU » X.
As we have seen in the preceding section, instead of looking at the chains C‚pXUqt

of the filtered Mayer-Vietoris blowup we can consider the chains CU
‚ pXqt, which yield

the same homology. To use the persistence algorithm we already implemented, we just
need to specify a basis for CU

‚ pXq which can be restricted to a basis for CU
‚ pXqt for all

t P rn´ 1s and understand how the boundary map for this basis looks like.

Lemma 5.26 (Basis for CU
k pXq). The set

Bk ¨̈“ tσ b∆J
| H ‰ J Ď rn´ 1s,σ P XJ , dimσ ` dim ∆J

“ ku

where the orientation of the simplices is induced by the total orderings on X and ∆n´1

is a basis for the chain module CU
k pXq for all k P Zě0.

Proof. Let k P Zě0 be some non-negative integer We already know that the filtered
blowup chain complex

CU
k pXq Ď pC‚pXq b C‚p∆

n´1
qqk

is included in the tensor product of two chain complexes. The basis for this tensor
product is

rBk “ tσ b∆I
| σ P X, dimσ ` dim ∆I

“ ku
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5 Localizing Holes

with orientations induced by the total orderings of X and ∆n´1. The set

rB
J

k “ tσ b∆I
P rBk | σ P XJ , ∆I

Ď ∆J
u

is a basis for the module pC‚pXJq b C‚p∆
Jqqk. Hence, the basis for the chain module

CU
k pXq “

ř

JĎrn´1s
0ă|J |

pC‚pX
Jq b C‚p∆

Jqqk is

Bk “
ď

H‰JĎrn´1s

rB
J

k “
ď

H‰JĎrn´1s

tσ b∆I
P rBk | σ P XJ , I Ď Ju.

If σ b∆I is in the part of the union for index J , then it is also in every part for index
J 1 Ě J . By removing duplicates, we obtain

Bk “
ď

H‰JĎrn´1s

tσ b∆J
P rBk | σ P XJ

u

“ tσ b∆J
| σ P XJ , dimσ ` dim ∆J

“ k,H ‰ J Ď rn´ 1su

with orientations induced by the total vertex orderings as stated in the lemma.

Remark 5.27. Analogously, for all k P Zě0 and t P rn´ 1s we obtain a basis

Btk ¨̈“ tσ b∆J
P Bk | |J | ď t` 1u

of CU
k pXqt.

The boundary map on CU
k pXq is the standard boundary map on tensor products

from [Hat02, Section 3.B]:

Lemma 5.28. Let σ b∆J P Bk be a basis element of CU
k pXq with k P Zě0. Then the

boundary map is given by

Bpσ b∆J
q “ Bσ b∆J

` p´1qdimσσ b B∆J

“

dimσ
ÿ

i“0

p´1qipσi b∆J
` p´1qdimσ

dim ∆J
ÿ

j“0

p´1qjσ b p∆J
j ,

where xp¨qj denotes that the j-th vertex is deleted from the sequence.

Proof. We use the typical definition of the boundary map for tensor products in the
first equation. Then we evaluate the map on each entry.

Now we discuss how to implement the construction of the filtered blowup chain
complex. As in Chapter 4 we use coefficients in F2 such that we do not need to
care about the orientation of the simplices. We consider the filtered blowup chain
complex of the simplicial complex X and its cover U . Its basis elements σ b ∆J

with σ P X and H ‰ J Ď rn ´ 1s are stored as tuples pσ, Jq. For each of those
tuples we create a cell by computing its boundary as in Lemma 5.28 and dimension
dimppσ, Jqq ¨̈“ dimpσq ` dimp∆Jq “ dimpσq ` |J | ´ 1 and add it to a list K. To each
cell pσ, Jq in K we store its order |J | ´ 1 in the sequence tCU

‚ pXqtutPrn´1s. We note
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5 Localizing Holes

that by this implementation the cell pσ, Jq is in CU
k pXqt if and only if dimppσ, Jqq “ k

and ordppσ, Jqq ď t.
Now we order the elements in the list K by their order and if they have the same

order, we order them by their dimension. By doing this, we obtain a well-defined
filtration of complexes, where in each step one cell is added. Then we can use the
persistent homology algorithm from Chapter 4 to get the barcode.
We are interested in those cells whose corresponding basis element persists in ho-

mology until the end of the sequence. Those are the cells that do not have a partner.
Since the second step of the persistence algorithm changes only the cells which have a
partner with a higher index, it is irrelevant for the localization algorithm. Hence, we
can even use Algorithm 3.
The implementation to construct the filtered blowup chain complex can be found

in blowup.py. It uses the class tuple from tuple.py to solve the technical problem that
two lists whose entries coincide are not equal by default in Python3. The code can be
found in the appendix in Section 6.4. It is also available at [Gün19], where the reader
in addition can find a simple examples for the computation of localized homology in
the files Example_Localization1.py and Example_Localization2.py.
To interpret the results, we want to transfer the homology classes of HkpC

U
‚ pXqq

with k P Z obtained by the persistence algorithm to HkpXq. Let rσs P HkpC
U
‚ pXqtq

with t P rn´ 1s be some homology class obtained from the algorithm which is mapped
by the induced map

HkpC
U
‚ pXqtq HkpC

U
‚ pXqn´1q “ HkpC

U
‚ pXqq

ι˚

of the inclusion ι : CU
‚ pXqt Ñ CUpXqn´1 to rσs ‰ 0 P HkpC

U
‚ pXqq. From Theo-

rem 5.24 we know the map

S˚ : HkpC
U
‚ pXqq HkpC‚pX

Uqq

rσs rSpσqs.

„

It preserves the persistence structure in the sense of (5.6). From Lemma 5.18 we know
that the chain map πX : CkpX

Uq Ñ CkpXq yields an isomorphism in homology. This
gives us the corresponding basis element in the homology of HkpXq:

pπXq˚ : HkpC‚pX
Uqq HkpC‚pXqq

rSpσqs rπXpSpσqqs

„

We are interested in how πXpSpσqq looks like on the chain-level. By Lemma 5.26
the module CU

k pXq has the basis

Bk ¨̈“
 

η b∆J
ˇ

ˇ H ‰ J Ď rn´ 1s, η P XJ , dim η ` dim ∆J
“ k

(

.

It suffices to describe πX ˝ S for elements of the basis Bk. Let η b∆J P Bk be a basis
element with η “ pη0, . . . , ηpq, ∆J “ pej0 , . . . , ejqq and p` q “ k. In particular, η is a p-
simplex and ∆J is a q-simplex. Let Ip,q be the set of all indices t Ď t0, . . . , puˆt0, . . . , qu
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which are ordered in both coordinates and satisfy |t| “ p` q` 1. Then S maps ηb∆J

to
pιη ˆ ι∆J qp

ÿ

tPIp,q

signpπtqstq

by its construction in Lemma 5.10. If q is at least 1, then we consider some element
t “ ppr0, r10q, . . . , prk, r

1
kqq in Ip,q. We have

pιη ˆ ι∆J pstqq “ ppηr0 , e
r10q, . . . , pηrk , e

r1kqq.

At least two indices ri, ri`1 in r0, . . . , rk coincide. Hence, also ηri and ηri`1
coincide and

πX maps ιη ˆ∆J pstq to 0. Since t was chosen arbitrarily, πX also maps Spη b∆Jq to
0. If q “ 0, then

ř

tPIp,q
signpπtqst “ spp0,0q,...,pk,0qq. Therefore,

Spη b∆J
q “ ppη0, ej0q, . . . , pηk, e

j0qq

and πXpSpη ˆ∆Jqq “ pη0, . . . , ηkq “ η.
We conclude that we can interpret our results from the algorithm by writing each

chain representing an interval rt,8q for some t in Zě0 as linear combination of basis
elements η b∆J and project them to their first entry η if |J | “ 0 and map them to 0
for |J | ą 0.
We will prove in the following lemma that those cells obtained from the algorithm

whose corresponding basis element persists form order 0 up to the end yield homology
classes of X which are in one component CkpXjq with k P Z, j P rn´1s. Therefore, this
procedure in fact provides an improved basis of the homology classes of X as described
at the beginning of this chapter.

Lemma 5.29. Let X be a simplicial complex and U “ tX iuiPrn´1s be a cover consisting
of n subcomplexes. We consider the filtered blowup chain complex tCU

‚ pXqtutPrn´1s.
The basis elements obtained by Algorithm 1 or Algorithm 3 representing a class in the
homology-sequence that persist from degree 0 until the end are chains in one component
C‚pX

jq b C‚pte
juq with j P rn´ 1s of CU

‚ pXq0.

Proof. This can be shown by induction over the index of the elements in the cell list
K used in Algorithm 1 and analogously for Algorithm 3.
The cell with index 0 in the listK is of the form tpubteju P K with j P rn´1s and p P

X a 0-simplex. Therefore, step 1 terminates directly. In Algorithm 3 basiselptpubtejuq
can not be modified again. By Properties 4.6 (3) and (5), in Algorithm 1 the basis
element of tpu b teju can only be changed again if the cell has a partner with a higher
index. In this case the corresponding basis element in the homology-sequence would
not persist from degree 0 until the end. Therefore, tpu b teju is in C‚pXjq b C‚pte

juq.
Let σ b teju P CU

‚ pXq0 be the cell in K which has the index i ą 0. We assume that
all cells with an index which is lower than i are chains in just one component. During
step 1 of the iteration σbteju of the for-loop the basis element of partnerpτqbtej

1

u can
be added to the basis element of σbteju. The basis element of partnerpτq b tej

1

u is of
the form ηb tej

1

u for η P C‚pXjq by induction. By the definition of partnerpτq b tej
1

u,
its basis element and the basis element of σ b teju have a coinciding element τ b tej1u
in their boundary. Therefore, we obtain j “ j1. The new basis element obtained by
adding the basis element of partnerpτq b teju to the basis element of σ b teju still
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has only teju as its second entry. If the corresponding basis element of σ b teju after
step 1 persists until the end in the homology-sequence, then it can not be modified by
the algorithm once again by the same reason as in the base case. Hence, it is in the
component C‚pXjq b C‚pte

juq.
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6 Appendix

6.1 Experiment – Naive Approach

These are the results of the experiment discussed in Section 4.6. We use a MacBook
Air 2016 with an Intel Core i5, 1.8 GHz processor. The evenly distributed points are
implemented in R2 by using the classes and functions of

points_to_complex.py

which can be found in the next section or at [Gün19]. We construct complexes for
these points by Vietoris-Rips and Čech. Then we use functions from

homology.py

to compute their homology and draw their barcodes. We test up to an radius of 1.1
and all classes that still persist at this point are labeled with a red line at the end of
the interval. The cases for up to 3 points are trivial and we exclude them from our
observations. For 6 and more points interesting behavior can be observed. All files
mentioned in the remaining part of this section can be found at [Gün19].
At first we consider the Vietoris-Rips complexes. The file

Example_points_on_circle_VR_numeric.py

is used for the construction of the following barcodes. For 9 points the barcodes are
portrayed in Figure 6.1.

9 points, degree 0 9 points, degree 1 9 points, degree 2

Figure 6.1: Barcodes of the Vietoris-Rips complex for 9 points in degree 0, 1 and 2.

For up to 12 points we always see the homology of distinct points, the 1-sphere and
one point in degree 0 and 1 as in the figure for 9 points. The other results are displayed
in Figure 6.2.
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6 points, degree 2 8 points, degree 3 10 points, degree 4

11 points, degree 3 12 points, degree 2 12 points, degree 5

Figure 6.2: More barcodes obtained for Vietoris-Rips complexes.

Now we consider the barcodes obtained by using the Čech complex. They can be
reconstructed by using the file

Example_points_on_circle_CECH_numeric.py.

For each cell we start with the radius of the Vietoris-Rips complex and increase it
incrementally by the value

precision “ 0.001

until the radius satisfies the condition for the Čech complex. For up to 5 points the
behavior of the barcodes is not really interesting since they are again just composed by
the intervals representing the points and the 1-sphere. If we consider barcodes for the
Čech complexes of at least 6 points we see intervals which exceed the 1, for example
the three small intervals in degree 4 in Figure 6.3. Moreover, there are many other
small intervals in the barcodes which indicate numerical errors. The biggest numerical
errors can be found in degree 1 as seen in Figure 6.4.

6 points, degree 1 6 points, degree 3 6 points, degree 4

Figure 6.3: Barcodes of Čech complex for 6 points in degree 1, 3 and 4.
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7 points, degree 1 8 points, degree 1 9 points, degree 3

10 points, degree 1 11 points, degree 1 12 points, degree 1

Figure 6.4: More barcodes of Čech complexes with errors.

6.2 Experiment – More Precise Approach

If we implement the simplicial cells immediately and omit the representation of points
in R2 as described at the end of Section 4.6, we obtain the following results. The Čech
complex yields just barcodes consisting of intervals representing the distinct points, a
circle and one point. There are no barcodes in higher degrees. This can be tested by
the reader by executing the file

Example_points_on_circle_CECH_improved.py.

The barcodes for the Vietoris-Rips complexes are more interesting. They can be
computed by using the functions from the file

Example_points_on_circle_CECH_improved.py.

We used

Experiment_VR.py

to start the algorithm and store the barcodes in a .txt file automatically. The results
can be found in Table 6.1 for up to 16 points. We did not include the barcodes for
the zeroth or first degree since there we always see the homology of the points, of the
1-sphere and of one point. The column time 1 denotes the time to create the cells and
time 2 denotes the time to compute the persistent homology. The number in front of
each interval describes how often this interval appears in the barcode.
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# points # cells interesting barcodes time 1 time 2
6 63 deg 2: 1 ¨ r0.8660, 1.0q 0.00s 0.00s
7 127 – 0.02s 0.00s
8 255 deg 3: 1 ¨ r0.9238, 1.0q 0.12s 0.01s
9 511 deg 2: 2 ¨ r0.8660, 0.9848q 0.41s 0.02s
10 1023 deg 4: 1 ¨ r0.9510, 1.0q 1.85s 0.04s
11 2047 deg 3: 1 ¨ r0.9096, 0.9898q 7.78s 0.09s
12 4095 deg 2: 3 ¨ r0.8660, 0.9659q 35.63s 0.34s

deg 5: 1 ¨ r0.9659, 1.0q
13 8191 deg 3: 1 ¨ r0.9350, 0.9927q 153.49s 0.80s
14 16383 deg 3: 1 ¨ r0.9010, 0.9749q 654.06s 2.97s

deg 6: 1 ¨ r0.9749, 1.0q
15 32767 deg 2: 4 ¨ r0.8660, 0.9511q 3068.06s 7.91s

deg 4: 2 ¨ r0.9511, 0.9945q
16 65535 deg 3: 1 ¨ r0.9239, 0.9808q 12559.12s 26.86s

deg 7: 1 ¨ r0.9808, 1.0q

Table 6.1: The results of the improved approach to compute barcodes for the Vietoris-
Rips complexes.

In the table we see equally many interesting barcodes in odd degrees as in even
degrees. The main part of the computation time is used for the construction of the
simplicial complex. An improvement there could enable us to compute further barcodes
quickly and obtain new insights. Two possible approaches would be to use multipro-
cessing or a better sorting algorithm to speed up the assignment of boundaries.

6.3 Justification of the Name of the Mayer-Vietoris
Blowup

In the following we give the proof of Lemma 5.19 from Section 5.2:

Lemma (Justification of the name). For a simplicial cover U “ tX0,X1u of X con-
sisting of two simplicial subcomplexes, we have an isomorphism from each homology
module of the Mayer-Vietoris long exact sequence to the homology module of the long
exact sequence for the pair pXU

1 ,XU
0 q shifted by one:

. . . HipX
U
0 q HipX

U
1 q HipX

U
1 ,XU

0 q . . .

. . . HipX
0q ‘HipX

1q HipXq Hi´1pX
r1sq . . .

„ „ „

Moreover, the diagram commutes.

Proof. For better readabilty, we denote U “ X0 and V “ X1. It holds X “ U Y V ,
XU

0 “ U ˆ t0u Y V ˆ t1u and XU
1 “ XU

0 Y pU X V q ˆ r0, 1s. We have the short exact
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sequences of simplicial chain complexes

0 C‚pX
U
0 q C‚pX

U
1 q

C‚pX
U
1 q
L

C‚pX
U
0 q

0

0 C‚pU X V q C‚pCq ‘ C‚pV q C‚pU Y V q 0

where the first one is the short exact sequence for the pair pXU
1 ,XU

0 q given by the
canonical inclusion and projection and the second one is the Mayer-Vietoris short
exact sequence. The induced long exact sequence of the pair pXU

1 ,XU
0 q is given by the

maps

. . . HipX
U
0 q HipX

U
1 q HipX

U
1 ,XU

0 q Hi´1pX
U
0 q . . .

rσs rσs rσs rBσs.

rσs rσs

The long exact sequence for Mayer-Vietoris is

. . . HipU X V q HipUq ‘HipV q HipXq Hi´1pU X V q . . .

rσs prσs, r´σsq

prτ s, rηsq rτ ` ηs,

δ

where δ : HipXq Ñ Hi´1pU X V q maps rσs with σ “ γ ` γ1, γ P CipUq, γ1 P CipV q
to rBγs. This can be checked by going through the proof of the Snake Lemma as in
[HS97, Chapter III, Lemma 5.1]. We have an isomorphism

HipX
U
0 q HipU ˆ t0uq ‘HipV ˆ t1uq HipUq ‘HipV q

rσs “ rpr0pσq ` pr1pσqs prpr0pσqs, rpr1pσqsq prπXppr0pσqqs, rπXppr1pσqqsq,

„ „

where the chain prjpσq is the part of σ which lies in XU
0 X pX ˆ tjuq. The map πX

is the chain map defined at the beginning of Section 5.1. Furthermore, we have the
isomorphism

HipX
U
1 q HipXq

rσs rπXpσqs

„

by Lemma 5.18. For the setting

. . . HipX
U
0 q HipX

U
1 q HipX

U
1 ,XU

1 q Hi´1pX
U
0 q . . .

. . .
HipUq
‘HipV q

HipXq Hi´1pU X V q
Hi´1pUq
‘Hi´1pV q

. . .

(A) (B) fi (C)

we want to construct a map fi such that the whole diagram commutes.
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In the following we will use Excision as in [Hat02, Theorem 2.20] to construct the
map. By [Hat02, Theorem 2.27], we have an isomorphism between the relative homo-
logy of simplicial complexes and their realizations:

HipX
U
1 ,XU

0 q Hip|X
U
1 |, |X

U
0 |q

„

Let W “ U X V be the intersection of U and V . We want to use Excision to obtain

Hip|X
U
1 |, |X

U
0 |q Hip|W | ˆ r0, 1s, |W | ˆ t0, 1uq

pĎq˚

„ (6.1)

but we cannot use it directly since the open sets |XU
0 |
o and p|W | ˆ r0, 1sqo do not cover

|XU
1 | in general. We consider the homotopy

H : r0, 1s ˆ r0, 1s r0, 1s

ps, tq s` signps´ 1
2
q ¨ t ¨mints, |s´ 1

2
|, 1´ su.

It yields isomorphisms on homology

Hip|X
U
1 |, |X

U
1 | XX ˆ pr0, 1

4
s Y r3

4
, 1sqq Hip|X

U
1 |, |X

U
0 |q

Hip|W | ˆ r0, 1s, |W | ˆ pr0, 1
4
s Y r3

4
, 1sqq Hip|W | ˆ r0, 1s, |W | ˆ t0, 1uq

„

pidˆHp¨,1qq˚

„

pidˆHp¨,1qq˚

which can be proven by the 5-Lemma of the long exact sequences of pairs with maps
pidˆHp¨, 1qq˚ between them. Now we can use Excision and obtain the commutative
diagram

Hip|W | ˆ r0, 1s, |W | ˆ t0, 1uq Hip|X
U
1 |, |X

U
0 |q

Hip|W | ˆ r0, 1s, |W | ˆ pr0, 1
4
s Y r3

4
, 1sqq Hip|X

U
1 |, |X

U
1 | XX ˆ pr0, 1

4
s Y r3

4
, 1sqq.

pĎq˚

„pidˆHp¨,1qq˚

pĎq˚

„

„pidˆHp¨,1qq˚

Hence, even (6.1) is an isomorphism as desired.
Now we consider the long exact sequence of the pair p|W |ˆr0, 1s, |W |ˆt0, 1uq. Since

hi : Hip|W |ˆt0, 1uq “ Hip|W |ˆt0uq‘Hip|W |ˆt1uq Ñ Hip|W |ˆr0, 1sq is the inclusion
and |W | ˆ r0, 1s is homotopy equivalent to |W | ˆ t0u, the map is surjective and the
next map in the long exact sequence is the zero-map. We obtain

. . . Hip|W | ˆ r0, 1s, |W | ˆ t0, 1uq Hi´1p|W | ˆ t0, 1uq . . .

rσs rBσs,

0 gi hi´1

where gi, i P Z denote the connecting homomorphisms of the long exact sequence in
homology. By the exactness of the sequence, gi is injective and we have

Hip|W | ˆ r0, 1s, |W | ˆ t0, 1uq impgiq “ kerphi´1q.
gi
„
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The kernel of hi´1 is of the form kerphi´1q “ tpras, r´asq P Hi´1p|W | ˆ t0, 1uqu. We
define isomorphisms

kerphi´1q Hi´1p|W | ˆ t0uq Hi´1p|W |q Hi´1pW q
ppr0q˚
„

pπXq˚ „

where pr0 is the projection of C‚p|W | ˆ t0uq ‘ C‚p|W | ˆ t1uq to C‚p|W | ˆ t0uq. By
combining all these maps we obtain the required map

fi : HipX
U
1 ,XU

0 q HipW ˆ r0, 1s,W ˆ t0, 1uq Hi´1pW q

rσs rπXppr0pBσqqs.

pĎq˚

„

„

(6.2)

We want to check whether the diagram with this map commutes. The square (A) is
commutative, since rπXppr0pσqq ` πXppr1pσqqs “ rπXppr0pσq ` pr1pσqqs “ rπXpσqs for
σ P HipX

U
0 q.

To prove the commutativity of (B), let rσs “ rα ` β ` τ s P HipX
U
1 q with α P

CipU ˆ t0uq, β P CipV ˆ t0uq and τ P CipW ˆ r0, 1sq be an arbitrary homology class.
In HipX

U
1 ,XU

0 q we have rσs “ rτ s and by the right part of (B), we obtain

HipX
U
1 q HipX

U
1 ,XU

0 q Hi´1pW q

rσs rπXppr0pBτqqs.

Furthermore, we know that πXpαq P CipUq and πXpβ ` τq P CipV q. Therefore, the
maps on the left part of the square yield

HipX
U
1 q HipXq Hi´1pW q

rσs rBπXpαqs.

We have to show that rBπXpαqs and rπXppr0pBτqqs coincide. Since pr0pBβq “ 0, it holds
pr0pBαq ` pr0pBτq “ pr0pBpα` β ` τqq. This is zero since Bpα` β ` τq “ 0. We obtain
rπXppr0pBτqqs “ r´πXppr0pBαqqs “ r´πXpBαqs. The square commutes up to a sign
since πX is a chain map. By multiplying those vertical maps which map to a homology
with even degree we make the diagram commutative1.
It remains to prove, that the square (C) commutes. Consider rσs P HipX

U
1 ,XU

0 q. By
using the maps from the right and left part of the square, we obtain

rBσs rpπXppr0pBσqq, πXppr1pBσqqqs

rσs

rπXppr0pBσqqs rpπXppr0pBσqq,´πXppr0pBσqqqs.

To decide whether the maps coincide, we need to check if

rπXppr1pBσqqs “ r´πXppr0pBσqqs.

1Alternatively, one could multiply the bottom map of the square (B) with p´1q. This also preserves
the property of being a long exact sequence and we obtain a commutative diagram.
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We know that rσs is in the kernel of CipXU
1 q
L

CipX
U
0 q
Ñ Ci´1pX

U
1 q
L

Ci´1pX
U
0 q

. It holds
ppr0` pr1qpBσq “ Bσ since Bσ P Ci´1pX

U
0 q. We conclude

πXppr1pBσqq ` πXppr0pBσqq “ πXpBσq “ BπXpσq.

Hence, the difference of πXppr1pBσqq and ´πXppr0pBσqq is in the image of B.

6.4 Source Code

The entire source code including some examples is uploaded to github at [Gün19] to
make it easily available to the reader. Nevertheless, the most important files can also
be found here.

simpcells.py
1
2
3 c l a s s c e l l :
4 """ S imp l i c i a l c e l l s .
5
6 Args :
7 name : Name o f the c e l l .
8 boundary ( l i s t ) : The boundary c e l l s .
9

10 Att r ibute s :
11 name : Name o f the c e l l .
12 boundary ( l i s t ) : L i s t o f boundary c e l l s .
13 partner : Partner c e l l .
14 b a s i s e l : Corresponding ba s i s element .
15 order : Order o f the c e l l .
16 dimension : Dimension o f the c e l l .
17 index : Index o f the c e l l in the f i l t r a t i o n .
18 """
19
20 de f __init__( s e l f , name , boundary ) :
21 s e l f . name = name
22 s e l f . boundary = boundary
23 s e l f . partner = None
24 s e l f . b a s i s e l = [ s e l f , ]
25 s e l f . order = None
26 s e l f . dimension = None
27 s e l f . index = None
28
29 de f __repr__( s e l f ) :
30 """Return the s t r i n g o f a c e l l . """
31 # return ’name : ’+ s t r ( s e l f . name) + ’ , boundary : ’+ s t r ( s e l f . boundary )
32 return s t r ( s e l f . name)
33
34
35 de f boundary ( l i s t ) :
36 """Computes the boundary o f a chain .
37
38 Args :
39 l i s t ( l i s t ) : A l i s t o f c e l l s r ep r e s en t i ng a chain in F2 .
40
41 Returns :
42 l i s t : A l i s t o f c e l l s r ep r e s en t i ng the boundary in F2 .
43 """
44 boundary_list = [ ]
45 f o r k in l i s t :
46 f o r j in k . boundary :
47 i f j in boundary_list :
48 boundary_list . remove ( j )
49 e l s e :
50 boundary_list . append ( j )
51 return boundary_list
52
53
54 de f add_chains (A, B) :
55 """ Addition o f two cha ins in F2 .
56
57 Args :
58 A( l i s t ) : L i s t o f c e l l s .
59 B( l i s t ) : l i s t o f c e l l s .
60
61 Returns :
62 l i s t : The add i t i on o f A and B.
63 """
64 C = A. copy ( )
65 f o r b in B:
66 i f b in C:
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67 C. remove (b)
68 e l s e :
69 C. append (b)
70 return C

homology.py
1 import s impc e l l s as sc
2
3
4 de f change_basis (K) :
5 """Algorithm 1 .
6
7 Args :
8 K( l i s t ) : L i s t o f c e l l s r ep r e s en t i ng the f i l t r a t i o n .
9 """

10 i = 0 # number o f i t e r a t i o n
11 f o r k in K:
12 # STEP 1
13 whi le True :
14 boundary_of_basisel = sc . boundary (k . b a s i s e l ) # compute boundary
15 i f l en ( boundary_of_basisel ) == 0 :
16 break
17 e l s e :
18 tau = youngest ( boundary_of_basisel )
19 i f tau . partner i s None :
20 ass ign_partner ( tau , k )
21 break
22 e l s e :
23 k . b a s i s e l = sc . add_chains (k . b a s i s e l , tau . partner . b a s i s e l )
24 # STEP 2
25 partner = k . partner # For be t t e r r e a d ab i l i t y
26 i f partner i s not None :
27 e l im ina t e = sc . add_chains ( partner . b a s i s e l , sc . boundary (k . b a s i s e l ) )
28 whi le l en ( e l im ina t e ) != 0 :
29 tau = youngest ( e l im ina t e )
30 partner . b a s i s e l = sc . add_chains ( partner . b a s i s e l , tau . b a s i s e l )
31 e l im ina t e = sc . add_chains ( e l iminate , tau . b a s i s e l )
32 # pr in t number to track the prog r e s s f o r long l i s t s :
33 i f i % 100 == 0 :
34 pr in t ( i )
35 i += 1
36
37
38 de f youngest ( l i s t_o f_ c e l l s ) :
39 """Find the youngest c e l l in a l i s t o f c e l l s .
40
41 Notes :
42 Every c e l l s needs to have an index .
43
44 Args :
45 l i s t_o f_ c e l l s ( l i s t ) : L i s t o f c e l l s to search f o r youngest .
46
47 Returns :
48 c e l l : Youngest c e l l in l i s t_o f_ c e l l s .
49 """
50 min = None
51 min_index = None
52 f o r k in l i s t_o f_ c e l l s :
53 i f min i s None :
54 min = k
55 min_index = k . index
56 e l s e :
57 i f min_index < k . index :
58 min = k
59 min_index = k . index
60 return min
61
62
63 de f ass ign_partner ( c e l l 1 , c e l l 2 ) :
64 """Algorithm 2 .
65
66 Args :
67 c e l l 1 ( c e l l ) : Ce l l to a s s i gn the other c e l l as partner .
68 c e l l 2 ( c e l l ) : Ce l l to a s s i gn the other c e l l as partner .
69 """
70 c e l l 1 . partner = c e l l 2
71 c e l l 2 . partner = c e l l 1
72
73
74 de f change_basis_without2 (K) :
75 """Algorithm 3 .
76
77 Args :
78 K( l i s t ) : L i s t o f c e l l s r ep r e s en t i ng the f i l t r a t i o n .
79 """
80 i = 0 # number o f i t e r a t i o n
81 f o r k in K:
82 whi le True :
83 boundary_of_basisel = sc . boundary (k . b a s i s e l ) # compute boundary
84 i f l en ( boundary_of_basisel ) == 0 :
85 break
86 e l s e :
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87 tau = youngest ( boundary_of_basisel )
88 i f tau . partner i s None :
89 ass ign_partner ( tau , k )
90 break
91 e l s e :
92 k . b a s i s e l = sc . add_chains (k . b a s i s e l , tau . partner . b a s i s e l )
93 # pr in t number to track the prog r e s s f o r long l i s t s :
94 i f i % 100 == 0 :
95 pr in t ( i )
96 i += 1
97
98
99 de f ad ju s t_bas i s e l (K) :

100 """Algorithm 4 .
101
102 Args :
103 K( l i s t ) : L i s t o f c e l l s r ep r e s en t i ng the f i l t r a t i o n .
104 """
105 i = 0 # number o f i t e r a t i o n
106 f o r k in K:
107 partner = k . partner # For be t t e r r e a d ab i l i t y
108 i f partner i s not None and partner . index > k . index :
109 k . b a s i s e l = sc . boundary ( partner . b a s i s e l )
110 # pr in t number to track the prog r e s s f o r long l i s t s :
111 i f i % 100 == 0 :
112 pr in t ( i )
113 i += 1
114
115
116 de f compute_homology (K, step2=False ) :
117 """Compute homology with Algorithm 3 ( and Algorithm 4) .
118
119 Args :
120 K( l i s t ) : L i s t o f c e l l s r ep r e s en t i ng the f i l t r a t i o n .
121 step2 ( boolean , op t i ona l ) : Decide whether to execute step 2 or not .
122 De fau l t s to Fal se .
123 """
124 add_indices (K) # Add i nd i c e s to the c e l l s in the l i s t
125 pr in t ( ’ ´́ change ba s i s without step 2 ´́ ’ )
126 change_basis_without2 (K)
127 i f s tep2 :
128 pr in t ( ’ ´́ adjus t ba s i s e lements ´́ ’ )
129 ad ju s t_bas i s e l (K)
130
131
132 de f add_indices (K) :
133 """Adds i nd i c e s to the c e l l s with r e s p r e c t to the l i s t .
134
135 Args :
136 K( l i s t ) : L i s t o f a l l c e l l s .
137 """
138 i = 0
139 f o r k in K:
140 k . index = i
141 i += 1
142
143
144 de f get_barcodes (K, max_value=None ) :
145 """Get the barcodes o f c e l l s by partner assignment .
146
147 Notes :
148 The func t i on compute_homology ( ) should habe beeen used be fo r e .
149 The order o f each s imp l i c i a l c e l l has to be de f ined .
150
151 Args :
152 K( l i s t ) : L i s t o f c e l l s .
153 max_value ( op t i ona l ) : Value that should be used as r i gh t entry o f the
154 i n t e r v a l . De fau l t s to None .
155
156 Returns :
157 l i s t : L i s t o f i n t e r v a l s .
158 l i s t : L i s t o f corresponding gene ra to r s .
159 """
160 max_dimension = 0
161 f o r k in K:
162 i f k . dimension > max_dimension :
163 max_dimension = k . dimension
164
165 l i s t = [ ]
166 l i s t 2 = [ ]
167 f o r i in range (max_dimension+1) :
168 l i s t . append ( [ i , [ ] ] )
169 l i s t 2 . append ( [ i , [ ] ] )
170
171 f o r k in K:
172 i f k . partner i s None :
173 l i s t [ k . dimension ] [ 1 ] . append ( [ k . order , max_value ] )
174 l i s t 2 [ k . dimension ] [ 1 ] . append (k )
175 e l i f k . partner . order > k . order :
176 l i s t [ k . dimension ] [ 1 ] . append ( [ k . order , k . partner . order ] )
177 l i s t 2 [ k . dimension ] [ 1 ] . append (k )
178
179 return l i s t , l i s t 2
180
181
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182 de f draw_barcode ( l i s t , dimension , K, max_value=None ) :
183 """Draw a barcode .
184
185 Notes :
186 The func t i on uses the module matp lo t l ib .
187
188 Args :
189 l i s t ( l i s t ) : L i s t o f i n t e r v a l s obtained from get_barcodes ( ) that should
190 be drawn .
191 dimension ( i n t ) : Dimension o f the homology that should be drawn .
192 K: L i s t where the barcode comes from . We need t h i s to compute the
193 maximal value o f the i n t e r v a l s to dec ide where to end the diagram .
194 max_value ( op t i ona l ) : Value where to cut the diagram . I f t h i s argument
195 i s given , K can be s e t to an a rb i t r a r y value l i k e None .
196 """
197
198 i f max_value i s None :
199 max_value = 0
200 f o r k in K:
201 i f k . order > max_value :
202 max_value = k . order
203
204 i f dimension > len ( l i s t )´1:
205 pr in t ( ’ no homology in t h i s dimension ’ )
206 return
207
208 import matp lo t l ib . pyplot as p l t
209
210 item = l i s t [ dimension ]
211 pr in t ( item )
212 index = 0
213 f i g , ax = p l t . subp lo t s ( )
214 f o r i n t e r v a l in item [ 1 ] :
215 i f i n t e r v a l [ 1 ] i s None :
216 ax . arrow ( i n t e r v a l [ 0 ] , index , max_value´i n t e r v a l [ 0 ] , 0 ,
217 c o l o r=’ black ’ , width =0.02 , head_width=0, head_length=0)
218 ax . arrow (max_value , index , 0 .1∗max_value , 0 ,
219 c o l o r=’ r ’ , width =0.02 , head_width=0, head_length=0)
220 e l s e :
221 ax . arrow ( i n t e r v a l [ 0 ] , index , i n t e r v a l [1]´ i n t e r v a l [ 0 ] , 0 ,
222 c o l o r=’ black ’ , width =0.02 , head_width=0, head_length=0)
223 index = index + 1
224 ax . s e t_yt i cks ( [ ] )
225 ax . set_ylim (´1 , index )
226 ax . set_xlim (0 , max_value+1)
227 p l t . show ( )

tuple.py
1
2
3 c l a s s tup l e :
4 """A gene ra l tup l e .
5
6 Notes :
7 I f t h e i r e n t r i e s co inc ide , they should be equal . I f we j u s t compare
8 l i s t s i t s e l f in python , they do not co i n c i d e in gene ra l i f t h e i r
9 e n t r i e s c o i n c i d e .

10
11 Args :
12 l i s t_o f_po in t s ( l i s t ) : A l i s t o f po in t s r ep r e s en t i ng a tup le .
13
14 Att r ibute s :
15 tup le ( l i s t ) : The tup le
16 """
17
18 de f __init__( s e l f , l i s t ) :
19 s e l f . tup l e = l i s t
20
21 de f without ( s e l f , number ) :
22 """Returns a new tup le without item with index ’ number ’ . """
23 t = s e l f . tup l e [ : number]+ s e l f . tup l e [ number+1: ]
24 return tup le ( t )
25
26 de f __eq__( s e l f , other ) :
27 """ Decide whether two po int s c o i n c i d e by =."""
28 i f l en ( s e l f . tup l e ) != len ( other . tup l e ) :
29 return False
30 token = True
31 f o r i in range ( l en ( s e l f . tup l e ) ) :
32 i f s e l f . tup l e [ i ] != other . tup l e [ i ] :
33 token = False
34 return token
35
36 de f __repr__( s e l f ) :
37 """Return the s t r i n g o f a tup le . """
38 return s t r ( s e l f . tup l e )
39
40 de f __getitem__( s e l f , i i ) :
41 """Get a l i s t item . """
42 return s e l f . tup l e [ i i ]
43
44
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45 de f a l l_ i nd i c e s (k , m) :
46 """ Yie ld a l l ordered l i s t s o f l ength k with pa i rw i s e d i f f e r e n t e n t r i e s
47 in { 0 , . . . ,ḿ 1} .
48
49 Notes :
50 Yie ld i s used in t h i s func t i on . I t behaves l i k e return but i t r e tu rns a
51 generator over which we can i t e r a t e .
52
53 Args :
54 k ( i n t ) : Number o f e n t r i e s in the s u b l i s t s we want to generate .
55 m( in t ) : Length o f the l i s t that we want to choose from .
56 """
57
58 # y i e l d the f i r s t s u b l i s t :
59 l i s t e = [ ]
60 f o r i in range (k ) :
61 l i s t e . append ( i )
62 y i e l d l i s t e
63
64 # funct i on to modify the s u b l i s t :
65 de f moveentry ( j , l i s t ) :
66 # i f no element in the s u b l i s t can be changed return the empty l i s t
67 i f j == ´1:
68 return [ ]
69 # in c r e a s e the j´th element and minimize a l l f o l l ow ing e n t r i e s
70 i f l i s t [ j ]+1 < m and l i s t [ j ]+1 not in l i s t :
71 new_list = l i s t [ : j ]
72 f o r i in range ( l en ( l i s t )´l en ( new_list ) ) :
73 new_list . append ( l i s t [ j ]+1+ i )
74 return new_list
75 # i f the j´th entry can not be increased , t ry the ( j´1)́ th
76 e l s e :
77 return moveentry ( j ´1, l i s t )
78
79 # y i e l d a s u b l i s t and change change i t by the func t i on from above :
80 whi le True :
81 l i s t e = moveentry ( l en ( l i s t e )´1, l i s t e )
82 i f l i s t e == [ ] : # qu i t i f the l i s t can not be changed anymore
83 break
84 e l s e :
85 y i e l d l i s t e

points_to_complex.py
1 import s impc e l l s as sc
2 import tup l e as tup
3 import numpy as np # fo r square and square root
4
5
6 c l a s s po int :
7 """ Points in the r e a l d imens ional space .
8
9 Notes :

10 We want to save po int s as l i s t s and do i t as ob j e c t f o r the same reason
11 as f o r tup l e .
12
13 Args :
14 l i s t ( l i s t ) : L i s t o f va lues r ep r e s en t i ng a point in a f i n i t e d imens ional
15 r e a l vecot r space .
16
17 Att r ibute s :
18 coo rd ina t e s ( l i s t ) : Coordinates o f the po int in form of a l i s t .
19 dimension ( i n t ) : Dimension des Punktes .
20 """
21
22 de f __init__( s e l f , l i s t ) :
23 s e l f . c oo rd ina t e s = l i s t
24 s e l f . dimension = len ( l i s t )
25
26 de f d i s t ance ( s e l f , other_point ) :
27 """ Distance to another po int . """
28 x = 0
29 f o r i in range ( s e l f . dimension ) :
30 x = x + np . square ( s e l f . c oo rd ina t e s [ i ] ´ other_point . coo rd ina t e s [ i ] )
31 return np . sq r t ( x )
32
33 de f add ( s e l f , other_point ) :
34 """Return the sum of the point and the other po int . """
35 l i s t = [ ]
36 f o r i in range ( s e l f . dimension ) :
37 l i s t . append ( s e l f . c oo rd ina t e s [ i ] + other_point . coo rd ina t e s [ i ] )
38 p = point ( l i s t )
39 return p
40
41 de f s ca la rmul t ( s e l f , s c a l a r ) :
42 """Return the mu l t i p l i c a t i o n with a s c a l a r . """
43 l i s t = [ ]
44 f o r i in range ( s e l f . dimension ) :
45 l i s t . append ( s c a l a r ∗ s e l f . c oo rd ina t e s [ i ] )
46 p = point ( l i s t )
47 return p
48
49 de f absolute_value ( s e l f ) :

90



6 Appendix

50 """Compute the abso lute value o f the point . """
51 x = 0
52 f o r i in range ( s e l f . dimension ) :
53 x = x + np . square ( s e l f . c oo rd ina t e s [ i ] )
54 return np . sq r t ( x )
55
56 de f __eq__( s e l f , other_point ) :
57 """ Decide whether two po int s c o i n c i d e by =."""
58 i f s e l f . dimension != other_point . dimension :
59 return False
60 token = True
61 f o r i in range ( s e l f . dimension ) :
62 i f s e l f . c oo rd ina t e s [ i ] != other_point . coo rd ina t e s [ i ] :
63 token = False
64 return token
65
66 de f __repr__( s e l f ) :
67 """Return the s t r i n g o f a po int . """
68 return s t r ( s e l f . c oo rd ina t e s )
69
70 de f __getitem__( s e l f , i i ) :
71 """Get a coord inate . """
72 return s e l f . c oo rd ina t e s [ i i ]
73
74
75 de f points_to_cells_VR ( l i s t_of_po ints , max_radius ) :
76 """Compute the V i e t o r i s Rips complex f o r a l i s t o f po in t s .
77
78 Args :
79 l i s t_o f_po in t s ( l i s t ) : L i s t o f a l l po in t s .
80 max_radius : p r e s c r i b ed rad ius f o r the cons t ruc t i on .
81
82 Returns :
83 l i s t : L i s t o f c e l l s a l r eady ordered in the r i gh t way .
84 """
85
86 l i s t_o f_ c e l l s = [ ] # l i s t o f a l l c e l l s
87 l i s t_of_ce l l s_by_len = [ [ ] ] # s t o r e by dimension o f c e l l s
88 index_l i s t = [ [ ] ] # queue o f l i s t s o f i n d i c e s
89 number_of_points = len ( l i s t_o f_po in t s )
90
91 pr in t index = 0
92
93 whi le l en ( index_l i s t ) != 0 : # whi le there are l i s t s in the queue
94 last_index = index_l i s t . pop (0) # take the l a s t element
95 max_last_index = max( last_index ) i f l en ( last_index ) != 0 e l s e ´1
96 f o r i in range ( max_last_index+1, number_of_points ) :
97 i n d i c e s = last_index + [ i ] # c r ea t e new l i s t o f i n d i c e s
98 # cr ea t e tup le o f po in t s f o r t h i s l i s t o f i n d i c e s :
99 l ist_some_points = [ ]

100 f o r i in i n d i c e s :
101 l ist_some_points . append ( l i s t_o f_po in t s [ i ] )
102 tuple_some_points = tup . tup l e ( l i st_some_points )
103 # compute boundary :
104 boundary_some_points = [ ]
105 f o r i in i n d i c e s : # loop over a l l e lements in the boundary
106 new_boundary = [ ]
107 f o r j in i n d i c e s :
108 i f i != j :
109 new_boundary . append ( l i s t_o f_po in t s [ j ] )
110 new_boundary_tuple = tup . tup l e ( new_boundary )
111 # search f o r c e l l s in r i gh t dimension :
112 f o r c in l i s t_of_ce l l s_by_len [ l en ( new_boundary_tuple . tup l e ) ´1]:
113 i f c . name == new_boundary_tuple :
114 boundary_some_points . append ( c ) # append boundary
115 # cr ea t e a c e l l us ing the tup le as name and the computed boundary :
116 new_cell = sc . c e l l ( tuple_some_points , boundary_some_points )
117 # add dimension :
118 new_cell . dimension = len ( i n d i c e s )´1
119 # add order to the c e l l :
120 new_cel l_distance = 0
121 f o r k1 in range ( l en ( i n d i c e s ) ) :
122 f o r k2 in range ( k1+1, l en ( i n d i c e s ) ) :
123 d i s t = tuple_some_points . tup l e [ k1 ] . d i s t ance (
124 tuple_some_points . tup l e [ k2 ] )
125 i f d i s t > new_cel l_distance :
126 new_cel l_distance = d i s t
127 new_cell . order = new_cel l_distance /2
128 # add c e l l to the l i s t i f i t does not exceed the maximal rad ius
129 i f new_cel l_distance /2 <= max_radius :
130 l i s t_o f_ c e l l s . append ( new_cell ) # add to c e l l l i s t
131 index_l i s t . append ( i n d i c e s ) # add l i s t o f i n d i c e s to queue
132 i f l en ( new_cell . name . tup l e )´1 >= len ( l i s t_of_ce l l s_by_len ) :
133 l i s t_of_ce l l s_by_len . append ( [ ] )
134 l i s t_of_ce l l s_by_len [ l en ( new_cell . name . tup l e ) ´1]. append ( new_cell )
135 i f p r in t index % 100 == 0 :
136 pr in t ( p r in t index )
137 pr in t index += 1
138 # At th i s po int the c e l l s are ordered by dimension . We order them at f i r s t
139 # by th e i r order and then by t h e i r dimension .
140 l i s t_o f_ c e l l s = sort_by_order ( l i s t_o f_ c e l l s )
141
142 return l i s t_o f_ c e l l s
143
144
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145 de f sort_by_order ( l i s t_o f_ c e l l s ) :
146 """ Sort a l i s t o f c e l l s at f i r s t by order and then by t h e i r dimension .
147
148 Notes :
149 The algor i thm ju s t s o r t s the elements that are not a l ready ordered .
150 Therefore , i f the l i s t i s ordered be fo r e by dimension , then a f t e r t h i s
151 procedure i t i s ordered at f i r s t by the order o f the c e l l s and then by
152 t h e i r dimension .
153
154 Args :
155 l i s t_o f_ c e l l s ( l i s t ) : A l i s t o f c e l l s which we want to order .
156
157 Returns :
158 l i s t : A new l i s t conta in ing a l l c e l l s o f l i s t_o f_ c e l l s but ordered by
159 t h e i r order .
160 """
161 new_l i s t_of_ce l l s = [ ]
162 f o r c in l i s t_o f_ c e l l s :
163 i = len ( new_l i s t_of_ce l l s ) # we begin s ea r ch in on the r i gh t s i d e
164 whi le True :
165 # i f we a r r i v e at 0 , we add the c e l l the re :
166 i f i == 0 :
167 new_l i s t_of_ce l l s . i n s e r t ( i , c )
168 break
169 # i f the order o f the next one i s s t i l l h igher , we go one step
170 e l i f new_l i s t_of_ce l l s [ i ´1] . order > c . order :
171 i = i´1
172 # i n s e r t c e l l i f the next one has at most the same order
173 e l s e :
174 new_l i s t_of_ce l l s . i n s e r t ( i , c )
175 break
176
177 return new_l i s t_of_ce l l s
178
179
180 de f points_to_cells_Cech ( l i s t_of_po ints , max_radius , p r e c i s i o n =0.01) :
181 """Compute the Cech complex f o r a l i s t o f po in t s .
182
183 Notes :
184 This a lgor i thm can j u s t be used f o r po in t s in two dimens ional space
185 s i n c e the func t i on ve r i f i c a t i on_fo r_cech ( ) i s j u s t implemented f o r
186 two dimensions .
187
188 Args :
189 l i s t_o f_po in t s ( l i s t ) : L i s t o f a l l po in t s .
190 max_radius : p r e s c r i b ed rad ius f o r the cons t ruc t i on .
191 p r e c i s i o n ( f l o a t , op t i ona l ) : The value by which we en la rge the rad ius in
192 each step .
193
194 Returns :
195 l i s t : L i s t o f c e l l s a l r eady ordered in the r i gh t way .
196 """
197
198 ’ ’ ’
199 ACHTUNG: wir muessen draw_barcode mit e i n e r t o l e r an c e benutzen , damit n i cht
200 j ed e r k l e i n e s t r i c h angeze i g t wird , der von den v i e l l e i c h t n i cht ganz
201 genauen punkten stammt .
202 ’ ’ ’
203 # compute c e l l s by Vi e to r i s´Rips :
204 c e l l _ l i s t = points_to_cells_VR ( l i s t_of_po ints , max_radius )
205
206 # en la rge the rad ius f o r each c e l l u n t i l i t s a t i s f i e s the property f o r Cech
207 rad ius = 0
208 f o r c in c e l l _ l i s t :
209 rad ius = c . order # s t a r t with rad ius from VR
210 whi le True :
211 i f v e r i f i c a t i on_fo r_cech ( c . name . tuple , rad ius ) : # check
212 c . order = rad ius # se t order
213 break
214 e l s e :
215 rad ius = rad ius + p r e c i s i o n
216
217 # order c e l l s :
218 c e l l _ l i s t = sort_by_order ( c e l l _ l i s t )
219
220 return c e l l _ l i s t
221
222
223 de f v e r i f i c a t i on_fo r_cech ( candidate_points , rad ius ) :
224 """Check whether a l l b a l l s with p r e s r i b ed rad ius at the po int s i n t e r s e c t .
225
226 Args :
227 candidate_points ( l i s t ) : L i s t o f the po in t s .
228 rad ius ( f l o a t ) : Radius o f the b a l l s .
229
230 Returns :
231 boolean : True i f a l l b a l l s at the po int s i n t e r s e c t .
232 """
233 # cr ea t e l i s t o f a l l pa i rw i s e i n t e r s e c t i o n po in t s :
234 i n t e r s e c t i on_po in t s = [ ]
235 h = len ( candidate_points )
236 f o r i in range (h) :
237 f o r j in range ( i +1, h) :
238 c1 = candidate_points [ i ]
239 c2 = candidate_points [ j ]

92



6 Appendix

240 f o r k in i n t e r s e c t i o n ( c1 , c2 , rad ius ) :
241 i n t e r s e c t i on_po in t s . append ( [ i , j , k ] )
242
243 # i f there are l e s s then two b a l l s then they a l l i n t e r s e c t :
244 i f h < 2 :
245 return True
246
247 # check whether one i n t e r s e c t i o n point i s in a l l b a l l s :
248 v e r i = False
249 f o r i n t e r in i n t e r s e c t i on_po in t s :
250 # Note that i n t e r [ 0 ] and i n t e r [ 1 ] are i n d i c e s o f the po in t s o f the
251 # cente r o f the b a l l s and i n t e r [ 2 ] i s one o f t h e i r i n t e r s e c t i o n po int s .
252 v e r i = True
253 f o r k in range (h) :
254 i f k != i n t e r [ 0 ] and k != i n t e r [ 1 ] :
255 po int_in_al l_bal l s = True
256 f o r p in candidate_points :
257 i f p . d i s t ance ( i n t e r [ 2 ] ) > rad ius :
258 point_in_al l_bal l s = False
259 i f not po int_in_al l_bal l s :
260 v e r i = False
261 break
262 i f v e r i :
263 break
264 return v e r i
265
266
267 de f i n t e r s e c t i o n (p1 , p2 , rad iu s ) :
268 """Compute the i n t e r s e c t i o n o f two b a l l s .
269
270 Args :
271 p1 , p2 ( po int ) : Centers o f the b a l l s .
272 rad ius ( f l o a t ) : Radius o f the b a l l s .
273
274 Returns :
275 boolean : True i f a l l b a l l s at the po int s i n t e r s e c t .
276 """
277 # no i n t e r s e c t i o n i f t h e i r rad ius i s sma l l e r than 1/2 o f t h e i r d i s t ance :
278 d i s t ance = p1 . d i s t ance ( p2 )
279 i f rad ius < d i s t ance / 2 . 0 :
280 return [ ]
281
282 # compute i n t e r s e c t i o n po int s :
283 vector_p1_to_p2 = p2 . add (p1 . s ca la rmul t (´1) )
284 cente r = p1 . add ( vector_p1_to_p2 . s ca la rmul t ( 0 . 5 ) )
285 ortho = orthonormal ( vector_p1_to_p2 )
286 h = np . sq r t (np . square ( rad ius ) ´ np . square ( d i s t ance /2 . 0 ) )
287 i f h == 0 :
288 i n t e r s e c t i o n l i s t = [ cente r ]
289 e l s e :
290 i n t e r s e c t i o n l i s t = [ ]
291 i n t e r s e c t i o n l i s t . append ( cente r . add ( ortho . s ca la rmul t (h) ) )
292 i n t e r s e c t i o n l i s t . append ( cente r . add ( ortho . s ca la rmul t (´h) ) )
293
294 return i n t e r s e c t i o n l i s t
295
296
297 de f orthonormal (p) :
298 """Compute orthonormal vector .
299
300 Notes :
301 This func t i on works only f o r two dimensions .
302
303 Args :
304 p( po int ) : A vector o f dimension 2 .
305
306 Returns :
307 point : A vector which i s orthonormal to p .
308 """
309 orthogona l = point ( [ p . coo rd ina t e s [ 1 ] , ´1 ∗ p . coo rd ina t e s [ 0 ] ] )
310 orthonormal = orthogona l . s ca la rmul t (1/ orthogonal . absolute_value ( ) )
311
312 return orthonormal

blowup.py
1 import s impc e l l s as sc
2 import tup l e as tup
3
4
5 de f construct_mv_blowup ( c e l l_ l i s t , cover ) :
6 """ Construct the Mayer´Vi e t o r i s blowup f o r a given cover .
7
8 Args :
9 c e l l _ l i s t ( l i s t ) : A l i s t o f c e l l s d e s c r i b i ng the s imp l i c i a l complex .

10 cover ( l i s t ) : A l i s t o f c e l l l i s t s , d e s c r i b i ng the cover by
11 subcomplexes .
12
13 Returns :
14 l i s t : A new l i s t o f c e l l s d e s c r i b i ng the complex o f the Mayer´Vi e t o r i s
15 blowup .
16 """
17 n = len ( cover ) # number o f subcomplexes in the cover
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18 new_ce l l_l i s t = [ ]
19
20 # compute gene ra to r s f o r the blowup and s a f e them as pa i r s :
21 f o r i in range (n) : # cons ide r i´th i n t e r s e c t i o n s
22 f o r l in tup . a l l_ i nd i c e s ( i +1, n) : # J from the end o f Chapter 5
23 l_cover = [ ]
24 f o r j in l :
25 l_cover . append ( cover [ j ] )
26 i n t e r = i n t e r s e c t i o n ( l_cover ) # compute i n t e r s e c t i o n
27 f o r c in i n t e r : # sigma from the end o f Chapter 5
28 # cr ea t e c e l l f o r the pa i r ( sigma , J ) :
29 new_cell = sc . c e l l ( tup . tup l e ( [ c , tup . tup le ( l ) ] ) , [ ] )
30 new_ce l l_l i s t . append ( new_cell ) # append c e l l to new_ce l l_l i s t
31
32 # so r t by #J and then by dim( sigma ) :
33 new_ce l l_l i s t = sort_for_loc ( new_ce l l_l i s t )
34
35 # compute and s e t boundary
36 f o r c in new_ce l l_l i s t :
37 boundary_list = [ ]
38 sigma = c . name . tup l e [ 0 ]
39 # the part where we take the boundary o f sigma :
40 J = c . name . tup l e [ 1 ]
41 f o r b in sigma . boundary :
42 # search f o r boundary in new_ce l l_l i s t :
43 f o r i in new_ce l l_l i s t :
44 i f i . name . tup l e [ 0 ] == b and i . name . tup l e [ 1 ] == J :
45 boundary_list . append ( i )
46 break
47 # the part where we take the boundary o f J
48 i f l en ( J . tup l e ) > 1 : # otherwi se the boundary forms no c e l l
49 f o r j in range ( l en ( J . tup le ) ) :
50 new_J = J . without ( j )
51 f o r i in new_ce l l_l i s t :
52 i f i . name . tup l e [ 0 ] == sigma and i . name . tup l e [ 1 ] == new_J :
53 boundary_list . append ( i )
54 break
55 # s to r e the boundary l i s t in the c e l l
56 c . boundary = boundary_list
57
58 # se t dimension
59 f o r c in new_ce l l_l i s t :
60 d = c . name . tup l e [ 0 ] . dimension + len ( c . name . tup l e [ 1 ] . tup l e )´1
61 c . dimension = d
62
63 # se t order
64 f o r c in new_ce l l_l i s t :
65 o = len ( c . name . tup l e [ 1 ] . tup l e )´1
66 c . order = o
67
68 return new_ce l l_l i s t
69
70
71 de f i n t e r s e c t i o n ( l i s t_ o f_ l i s t s ) :
72 """Compute the i n t e r s e c t i o n o f s e v e r a l l i s t s .
73
74 Args :
75 l i s t_ o f_ l i s t s ( l i s t ) : A l i s t , which conta in s a l l l i s t s , that we want to
76 i n t e r s e c t .
77
78 Returns :
79 l i s t : The i n t e r s e c t i o n o f a l l l i s t s in l i s t_ o f_ l i s t s .
80 """
81 new_list = [ ]
82 # take elements in the f i r s t l i s t :
83 f o r i in l i s t_ o f_ l i s t s [ 0 ] :
84 token = True
85 # check i f they are in a l l other l i s t s :
86 f o r l in l i s t_ o f_ l i s t s [ 1 : ] :
87 i f i not in l :
88 token = False
89 break
90 # i f they are in a l l other l i s t s , add them to the i n t e r s e c t i o n :
91 i f token :
92 new_list . append ( i )
93 return new_list
94
95
96 de f sort_for_loc ( l i s t_o f_ c e l l s ) :
97 """ Sort the l i s t f o r the Mayer´V i e r t o r i s blowup . """
98 new_l i s t_of_ce l l s = sort_by_dimension_of_sigma ( l i s t_o f_ c e l l s )
99 new_l i s t_of_ce l l s = sort_by_len_of_J ( new_l i s t_of_ce l l s )

100 return new_l i s t_of_ce l l s
101
102
103 de f sort_by_dimension_of_sigma ( l i s t_o f_ c e l l s ) :
104 """ Sort the l i s t f o r the Mayer´V i e r t o r i s blowup by dimension o f sigma . """
105 # i n s e r t i o n s o r t
106 new_l i s t_of_ce l l s = [ ]
107 f o r c in l i s t_o f_ c e l l s :
108 i = len ( new_l i s t_of_ce l l s )
109 token = True
110 whi le token :
111 i f i == 0 :
112 new_l i s t_of_ce l l s . i n s e r t ( i , c )
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113 token = False
114 e l i f ( new_l i s t_of_ce l l s [ i ´1] .name . tup l e [ 0 ] . dimension
115 > c . name . tup l e [ 0 ] . dimension ) :
116 i = i´1
117 e l s e :
118 new_l i s t_of_ce l l s . i n s e r t ( i , c )
119 token = False
120
121 return new_l i s t_of_ce l l s
122
123
124 de f sort_by_len_of_J ( l i s t_o f_ c e l l s ) :
125 """ Sort the l i s t f o r the Mayer´V i e r t o r i s blowup by length o f J . """
126 # i n s e r t i o n s o r t
127 new_l i s t_of_ce l l s = [ ]
128 f o r c in l i s t_o f_ c e l l s :
129 i = len ( new_l i s t_of_ce l l s )
130 token = True
131 whi le token :
132 i f i == 0 :
133 new_l i s t_of_ce l l s . i n s e r t ( i , c )
134 token = False
135 e l i f ( l en ( new_l i s t_of_ce l l s [ i ´1] .name . tup l e [ 1 ] . tup l e )
136 > len ( c . name . tup le [ 1 ] . tup l e ) ) :
137 i = i´1
138 e l s e :
139 new_l i s t_of_ce l l s . i n s e r t ( i , c )
140 token = False
141
142 return new_l i s t_of_ce l l s
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