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1 Introduction

Analyzing data sets in 2 or 3 dimensions can be achieved by using a visualization tool.
We are able to count the connected components and search for holes and tunnels to
obtain an understanding of the structure of data sets. In higher dimensions we cannot
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Figure 1.1: A data set with two holes and one connected component.

follow this approach since we do not have an intuition for the definition of a hole.
The tool to formalize this notion in arbitrary dimensions is the topological invariant
homology. We will state an algorithm for its computation.

The foundation for this algorithm is data in form of a finite point cloud in some
metric space as the real coordinate space R". For each set of k£ data points we add
a k-simplex if balls around the points with a given radius intersect pairwise. As a

Figure 1.2: Simplicial complex obtained from points.

result we obtain a simplicial complez, for which its homology is defined as in [Hat(2,
Section 2.1].

The constructed complex depends crucially on the prescribed radius. Increasing the
radius enlarges the complex. We store this information as a sequence of inclusions
of simplicial complexes. By going through the sequence, new holes can be formed
and holes can vanish. We capture this behavior by persistent homology, which can
distinguish whether a hole survives. Later on, we will be able to draw barcodes, which
describe the lifetimes of holes in the sequence by intervals as in Figure [I.3] In the right
picture we see one hole for radii in the interval [1, */75)

In this thesis we will study and implement an algorithm to compute persistent homo-
logy of such sequences of simplicial complexes. We will use it to compute the homology
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degree 0 degree 1

Figure 1.3: Barcodes for Figure .

of finitely many points on a circle. In contrast to the case in [AA17] for infinitely many
points, we do not only obtain the homology classes of odd-dimensional spheres.

To get further insights into the structure of data sets, we want to localize its holes.
For this purpose, we partition the complex into smaller pieces and construct a sequence
having the local parts at its ground level and the Mayer-Vietoris blowup, which is
homotopy equivalent to the complex itself, at its highest level. By computing persistent
homology of this sequence, we obtain a good local description of the holes.

Persistent homology and localized homology are important tools in topological data
analysis. They are widely used in various scientific areas for example to analyze the
structure of proteins [XW14], for fast tumor segmentation in medicine |[QTT18] or to
improve machine learning models [GND™19].



2 Complexes and Homology

For this thesis a basic knowledge of algebraic topology is required. We want to recall
the most important definitions and shortly discuss our understanding of holes in higher
dimensions. At the end of this chapter we are going to study ways to make homology
an available tool for data sets. We mainly follow [Hat02] and [EH10] for foundations
on complexes and homology.

2.1 Singular Homology
Homology is a topological invariant, which can be used to describe holes of general
topological spaces. Let us consider a hole in the two dimensional real space. We can

describe it by constructing a rectangle as a sum of lines around the hole. The rectangle
defines a hole if it cannot be filled completely.

O

Figure 2.1: Describing a hole by a sum of lines.

We note that there might be several descriptions for this hole like a deformation
of the rectangle or another polygon. By using homology, we do not distinguish these
cases. We take a quotient that identifies all these different polygons whose pairwise
differences can be filled. A similar approach will be used in higher dimensions n, where
we work with general (n — 1)-simplices instead of lines. Now we put the idea into a
formal definition:

DEFINITION 2.1 (Simplex). For all n € Zs, we define an n-simplez A™ € R?, d € Z,
to be the convex hull of n + 1 affinely independent vertices. The dimension of an
n-simplex A" is n. There are the following standard constructions:

(1) An n-simplex can be described as a subset of R" by taking the convex hull of
the vertices {e'}i—o__n, where €” = (0,...,0) and €’,7 # 0 are the standard basis
vectors of R".

(2) In a similar way, we obtain an n-simplex in R"™ as convex hull of the basis

vectors el, ... e"tl.
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(3) If we have an n-simplex as convex hull of the vertices {vy,...,v,}, then each
subset @ # J < {0,...,n} defines a subsimplex of dimension |J| — 1 by taking
the convex hull of the vertices {v;}e,:

vyt A7 = conv{v;}jes —— A"

A subsimplex of dimension n — 1 is called a face of the simplex.

We note that an 1-simplex is just a line and a 2-simplex is a triangle. For the sake
of better readability we write [n] := {0,...,n} in the following.

DEFINITION 2.2 (Singular chain complex). Let X be a topological space. For all
n € Zso, we define a singular n-chain to be a finite formal sum o = ", A\;o; of
continuous maps o; : A" — X with coefficients \; in Z. The set of all n-chains in
X is defined by C,(X). It is a free Z-module and has the set of all continuous maps
A" — X as basis. Furthermore, we set C,,(X) := 0 for all n € Z_,. For each basis
element o € C,(X), we define its boundary as

0 n=>0
On(0) = . ’ e Ch_1(X
(U) {Z?_o(—l)”a O lnj(jy else )

where ¢[,}; is the inclusion of a subsimplex as in DEFINITION (3). This yields a
boundary map 0, : C,,(X) — C,_1(X) for all n € Z by extending linearly. We obtain
a sequence

O O0(X) = O (X)) I op(X) — 2 0

which is called the singular chain complex (Co(X), ).

We note that the rectangle from Figure [2.1| can be regarded as a singular 1-chain. It
is in ker(0;) since the endpoints of the lines cancel out, and since it cannot be filled, it
is not in the image of d,. Formalizing this leads to

DEFINITION 2.3 (Singular homology). The n-th singular homology of a topological
space X is defined as the quotient module

Ha(X) = ket o, )
for all n € Z.

Each generator of the simplicial homology H,(X) for n € Z-, represents an n-
dimensional hole of the topological space X since it is a sum of n-simplices whose
boundary vanishes and which cannot be filled by (n + 1)-simplices. By definition of
the singular chains we have H,(X) = 0 for all n € Z_.
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2.2 Simplicial Homology

We already know how to describe holes in arbitrary dimensions by using singular homo-
logy. The problem is that singular chain complexes are not algorithmically computable
since their chain modules have infinitely many basis elements. We use simplicial ho-
mology to get a finite description of the chain groups.

To define simplicial homology we need a triangulation of the topological space. Since
we construct topological spaces for data sets in Section as unions of simplices, they
are equipped with such a triangular structure.

DEFINITION 2.4 (Simplicial complex). Let d € Zso. We call a set K of simplices in
R? a simplicial complex if for all simplices o € K each face of ¢ is in K and for all
simplices 0,1 € K their union o n 7 is either empty or also in K.

Each simplex is uniquely defined by its vertices. This observation leads to the fol-
lowing

DEFINITION 2.5 (Abstract simplicial complex). A family A of finite sets is called
an abstract simplicial complex if for all sets a € A each subset b < a is again in the
collection A. We call a set a € A an abstract simplex. Each subset b € a with cardinality
|b| = |a| — 1 is a face of the abstract simplex.

An abstract simplicial complex is a simplicial complex without an associated geome-
try. We do not have to take care of intersections and it is easy to store those simplices
and compute their boundaries, which is why they are more useful for our purposes.
Every simplicial complex can be viewed as an abstract simplicial complex by replacing
each simplex by the set of its vertices. Furthermore, every finite abstract simplicial
complex with d vertices can be embedded into R*"! by defining each simplex as a sub-
simplex of A% < R?!. Hence, it can be viewed as a simplicial complex. We conclude
that for finitely many simplices, the definitions of a simplicial complex and an abstract
simplicial complex are equivalent. Since we construct complexes out of finite data sets,
in many cases we will not distinguish between those two definitions.

To make a similar construction as in DEFINITION we have to equip the simplices
with an orientation. This can be realized by ordering each set representing an abstract
simplex and referring to them as tuples.

DEFINITION 2.6 (Simplicial chain complex). Let K be an (abstract) simplicial com-
plex. Then C,(K) for n € Zs¢ is the set of all Z-linear combinations of oriented
n-simplices in K, where similar simplices with different orientation will be identified up
to a sign in the following way: Let (vg,...,v,) and (9y,...,?,) be oriented simplices
which differ by a permutation m. Then they are identified up to multiplication with
the signum sign(m) of the permutation. Formally, we have

On(’C) = @ Z'(UOP"’UR)/N
{UO"’,”U"I}EIC
n-simplex

where ~ is the identification described above. Furthermore, for all n € Z_, we set
Cr(K) := 0. We can define a boundary map 0, : C,,(K) — C,,_;(K) by mapping each
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oriented simplex (vg, ..., v,) to

n
an(/UOJ s >Un> = Z<_1)i(U07 cos Vi1, Uig1,y - - - 7U7L>
i=0

and extending the map linearly. The boundary map is a well-defined map on the
quotient, which can easily be checked by the readeIE]. We call the sequence

(Cu(K),00) = (... — Ci(K) 2 Ciy(K) 23 .0 Go(k) 205 )

the simplicial chain complex of K.

DEFINITION 2.7 (Singular homology). Let K be an (abstract) simplicial complex. For
all n € Z, we define its n-th simplicial homology as

H, (K) = ker(@u) oy

where (C,(K), d,) is the corresponding simplicial chain complex.

DEFINITION 2.8 (Geometric realization). For a simplicial complex K we define by

K=o

ceK

its geometric realization.
If A is an abstract simplicial complex obtained from K4 by replacing each simplex
by its set of vertices, we define |A| := |K| to be its geometric realization.

LEMMA 2.9. Let X be an (abstract) simplicial complex. Then the singular homo-
logy H,(|X|) of the geometric realization of the complex is equivalent to the simplicial
homology H,(X) of the complex for all n € Z.

Proof. We refer to [Hat02, Theorem 2.27| with A = (. O

REMARK 2.10. We can define chain complexes and homology of simplicial and sin-
gular chain complexes with coefficients in a general ring or a field similarly. For our
algorithms we will use coefficients in Fy, since those chains are very easy to compute.
We should be aware of the fact that this way some information gets lost as mentioned
in [Cro05l, Chapter 9.2].

In the following, let all rings be commutative rings with 1 if we do not specify them
differently.

If two oriented simplices differ by a permutation, then the permutation can be written as a compo-
sition of transpositions. It suffices to show that

a(Uo,...7UZ‘,’l)i+1,. ..,’Un) = 76(1}03'"avi+17vi7"'7vn)~
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2.3 More on Homology and Chain Complexes

Singular and simplicial homology are just special cases of the general concept of homo-
logy obtained by chain complexes. We also want to introduce this general definition
shortly.

DEFINITION 2.11 (Chain complex). We define a chain complex (A.,d.) as a sequence

of modules
On

an+1
—— A > A, y A —— ...

over some ring together with boundary maps {0, }nez which satisfy 0,1 0 d,, = 0 for all
n. Elements a € A,, are said to have degree deg(a) = n.

DEFINITION 2.12 (Homology of a chain complex). For a chain complex (A.,d.), we
define its homology as

H,(A,) := ker(an)/im(a

n-‘rl)
for all n € Z. We note that elements in ker(0) are called cycles and elements in im(0)
are called boundaries of the chain complex.

REMARK 2.13. Simplicial and singular chain complexes are chain complexes in the
sense of DEFINITION and their homology coincides with the homology of chain
complexes:

Hy(X) = Hy(Cu(X)) H,(K) = Ha(Cu(K))

To decide whether the homology modules of two chain complexes are equal we have
to find maps between them whose composition is the identity. In the following, we
explain how to obtain induced maps on homology by maps on chain complexes and
how to decide whether these induced maps coincide.

DEFINITION 2.14 (Chain map). A chain map f. : A. — B. between two chain
complexes (A,, 07 and (B,, 0?) is a sequence of morphisms f, : A, — B, with the
property f, 002, = 0P o f, for all n € Z.

A chain map sends kernels to kernels and images to images of the boundary maps.
Hence, we obtain an induced map on homology

(fn)* : Hn(A.) — Hn(B.)

for all n € Z.
DEFINITION 2.15 (Chain homotopy). Let f., g : Ae — B, be chain maps.

(i) We call the sequence {D, },ez consisting of morphisms D,, : A, — B,41 a chain
homotopy from f, to g. if and only if D, 102 + 05, D, = f,, — g, for all n.

(ii) The chain maps f. and g, are said to be chain homotopic f, ~ g. if such a chain
homotopy exists.

LEMMA 2.16. If f,, 9. : Ae — B, are chain homotopic, then their maps on homology
coincide.

Proof. The proof can be found for example in [Hat02, Proposition 2.12]. ]
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2.4 Generate Simplicial Complexes from Data Sets

If we have a finite data set S = {2'};c; € R",n € Z>o and want to identify holes, we
need to connect the points in some way. There are two popular approaches for this,
which can be found for example in [EHI0, Section III.2| or [Car09, Section 2.2].

DEFINITION 2.17 (Cech complex). We construct the Cech complez C(S,r) for a set
of points S = R" and a prescribed radius r > 0 as a set of abstract simplices: Each
finite subset J < S forms an abstract simplex of the Cech complex if and only if

()B:() » &
jedJ
for the closed balls B,.(j), or equivalently if there exist some = € R" such that
lz = jll, <7 (2.1)
for all j € J.
DEFINITION 2.18 (Vietoris-Rips complex). For a set of points S € R" and a given
radius r we denote by VR(S,r) the Vietoris-Rips complex. 1t is an abstract simplicial

complex, where each finite subset J < S defines a simplex if and only if the closed balls
of radius = 0 and center j € J intersect pairwise, or equivalently if

17 =7l <2r (2.2)
holds for all 7,7’ € J.

For both complexes we define a corresponding boundary map as the standard bound-
ary map for simplicial chain complexes as in DEFINITION

REMARK 2.19. Since the properties (2.1)) and are still satisfied for all subsets of
J, the faces of each simplex are again in the complex Hence, the Cech complex and
Vietoris-Rips complex are well-defined abstract simplicial complexes.

As we will see in the following example, the Cech complex and the Vietoris-Rips
complex can differ.
EXAMPLE 2.20. Let S = {a,b,c¢} = R? be a set containing three points of pairwise
distance 1, for example the points a = (0,0), b = (1,0) and ¢ = (3, */75)

For the construction of the Cech and Vietoris-Rips complex, intersection of balls

around the points are essential. The center of the points is M = (2, 5 f) and each
of the points has distance \/Lg to M. Hence, the balls intersect pairwise if their radius
is at least % and all three balls intersect for a radius of \/ig or higher. For r( € [0, %),
r1 €[5, 5) and 73 € [ 5, 0) we obtain the following complexes:

X,ro) = {{a}, {b}, {c}}
VR(X, 7o) = {{a}, {b}, {c}}

vr1) = Hal, {0}, {c}, {a, 0}, {a, ¢}, {b, ¢}}

vr1) = Hal, {0}, {c} {a, 0, {a, ¢}, {b, ¢}, {a, b, c}}
X, 1) = {{a}, {b}, {c}, {a, b}, {a, ¢}, {b, ¢}, {a, b, ¢}}
VR(X,r2) = {{a}, {0}, {¢}, {a, b}, {a, ¢}, {b, c}, {a, b, c}}

This can be seen by visualizing the distances with balls as in Figure [2.2]

C(X,r
(X
C(x

VR(X
(T
(

10
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Figure 2.2: Balls at points of .S with radii 0, % and \/ig

Even though the complexes are different, we still have a relation between them.

PROPOSITION 2.21. For the Cech complex and the Vietoris-Rips complex the inclu-
S10MS

C(S,r) € VR(S,r) < C(S, 2r)
hold for all r = 0.

Proof. Let J < S be a simplex in C(S,r). By definition, there is some 2 € R" such
that ||j — ||, < r for all j € J. By using the triangle inequality we obtain

17 =3l < 17 = lly + [l =5l < 2r

for all j,j" € J, which implies that J is also a simplex in VR(S,r). For a simplex
I € VR(S,r) we obtain

li =l < 2r

forall v e I by setting = to be any of the points in I. Therefore I is also a simplex in
the complex C(S,2r). O

The Vietoris-Rips complex is much easier to compute and therefore more suitable
for our algorithm. Anyway, we will also refer to the Cech complex in Section .

Later on, we will work with filtrations of simplicial complexes, which are just se-
quences of inclusions of those complexes. The Cech complex and the Vietoris-Rips
complex yield such filtrations.

LEMMA 2.22. We have inclusions C(S,r) < C(S,7") and VR(S,r) < VR(S, ') for all

radin 0 < r <.

Proof. This follows directly from the properties of the complexes in DEFINITION
and DEFINITION T8 O

The complexes can only change for finitely many radii 0 = rg <1y <ro < --- <1,
since there are only finitely many points S to construct abstract simplices. For the
Vietoris-Rips complex we obtain a filtration

& — VR(S,0) — VR(S,71) — ... — VR(S, ) (2.3)

and analogously, we obtain one for the Cech complexes.

These inclusions yield maps on homology since they are chain maps in the sense of
DEFINITION [2.14] In the proceeding chapter we will study how to track the change in
homology during these filtrations.

11



3 Persistent Homology

If we have a filtration as in , then its inclusions are chain maps and induce maps
on homology as in DEFINITION [2.14] Persistent homology is a tool to track the change
in homology during this filtration. In this chapter we mainly follow [ELZ00, Section 3|
and [EH10, Section VIL.1]|.

3.1 What Is Persistent Homology?

If we have an inclusion X € Y of simplicial complexes, then this yields an inclusion of
chain complexes ¢ : Co(X) — Co(Y), which induces a map on homology

for all k € Z. The homology classes that persist under the map ¢, can be specified as
the image im(¢y).

DEFINITION 3.1 (Persistent homology). We call im(¢,) € Hp(Y') the k-th persistent
homology of the inclusion ¢ : X — Y.

It is easy to provide a basis of the persistent homology. We take a basis of Hy(X)
and apply ¢4 to each of the basis elements to obtain a list of generators for im(¢,). Then
we create a basis by removing those elements that make the list linearly dependent.

Now, we consider a filtration of simplicial complexes

1 N—-1

LO L L
G e— Xg— X —— ... — Xy (3.1)

for N € Z~4, which is a sequence of simplicial complexes connected by inclusions. We
obtain a sequence in homology

1 N-—1

Lg L* L*
0 —— Hp(Xo) —— Hi(Xy) > > Hp(Xy) (3.2)

for any k € Z and can define persistent homology in a similar way:

DEFINITION 3.2 (Persistent homology of a filtration). We consider that we have a
filtration as in (3.1). Let i,j € Z be integers with 0 < i < j < N. For all k € Z we
define the k-th persistent homology from i to j as

H = i o0 ) € Hi(X)).

We want to find bases By, (x,) for every homology Hj(X;) in the sequence, such that
for all b € By, (x,) one of the following properties is satisfied:

12



3 Persistent Homology

— there exists b € B, (x,,,) such that i (b) = b

If we have such bases, it is easy to state a basis for the persistent homology
Byyis = {b€ Bu,x,) | W' € Buyixy 71 000y (b) = b}

and this enables us to track the basis elements in the sequence (3.2)).
Furthermore, if we assume that the map ¢ : B Hy(x)) — Bry(x,.,) is injective for all
[ € {0,...,N — 1}, then for each basis element b € By (x;,) with jy € {0,...,N} and

with ¢ (b) = 0 if j, # N we find a unique

B ipyd 5b
Hkbb

such that j, — 4, is maximal. This describes the fact that b is created at Hy(X;,)
and destroyed at Hy(Xj,4+1) if j» # N. The lifespans can be visualized in the form of
barcodes, where we draw one interval [iy, j, + 1) for each basis element b with b = 0
and [ip, V] extended by a red line at the end for each basis element b in B H(Xy)-

EXAMPLE 3.3. For the filtration

a b
(] (] (]
(] (]
c d
Xo X1 X2 X3 X4

we can find the following bases:

Bry(xo) = {a,b—a,c—a,d—a}
Bhy(x,) = {a,b—a}

Bry(xy) = {a} = Bry(xs) = Bro(xs)
B, (xs) = {ab + bd — ad, ac + cd — ad}
B, (xy) = {ab + bd — ad}

Therefore we can assign the barcodes

degree 0 degree 1

to the filtration.

13



3 Persistent Homology

It is neither obvious if it is possible to create a basis with the properties needed to
track the ways of the basis elements, nor if the lifetimes obtained by the choice of basis
are unique in any sense.

In the next section we discuss the concept of barcodes. We will see that, under
certain assumptions, we are always able to draw barcodes as above and that these
barcodes are unique up to reordering of the bars.

3.2 Barcodes

If we have a sequence of homology modules, then we are interested in how the sequence
changes at which steps. In this section we define barcodes, which describe this in a
unique way. They represent bases of persisting homology classes through intervals.
We want to draw barcodes for the homology of filtrations like those in Equation
obtained from data sets.

We consider a filtration of simplicial complexes, where at each step new simplices
are added to the complex. Before we start tracking the holes through homology, at
first we want to check whether this is even a reasonable idea. We will show that it is
possible to obtain lifetimes and that they are unique up to reordering like indicated in
the last section, if we consider the homology over fields.

We start with a filtration

L

0 L1 L2 ln—1
O — Xy —— X © y X,y < s — X, = X.

By computing homology for an arbitrary ring R, we obtain a sequence of R-modules

0 —— Hy(Xo) 2% muxy) 2 % g(x,) = Hi(X). (3.3)

If we consider R to be a field, we get a sequence of vector spaces, which we call a
directed space. Since we assume that these vector spaces are finite dimensional, we can
decompose this directed space into a direct sum of very simple directed spaces:

THEOREM 3.4. Fvery directed space (V, f) = (O - W £} Vi EE |78 I ) of

finite dimensional vector spaces V; over a field F is isomorphicﬂ to a direct suwﬁ of
intervals

V =~ @]F[al,bz]
i=0
with a;,b; € {0,....,n}, a; < b; and s € Z=q, where

F[ai,bi]z<O—>(3—>...—>0—>]FE>IF'—>]F'—>...E>]l?’—>0—>...—>0—>0>.

a; i n

The numbers underneath the vector spaces denote the positions with respect to V.

! An isomorphisms of directed spaces (V, f) and (W, g) is a sequence of isomorphisms ¢; : V; — W;
such that ¢; 11 o f; = g; o ¢; for all 4.
2Taking the direct sum of directed spaces means taking the direct sum at each level of the sequence.

14



3 Persistent Homology

Proof. The authors Zomorodian and Wang prove this theorem in [ZC05|, [ZC08| and
[Wan12| by considering the directed space as a graded module

M=We &V,

over the ring F[t] with ¢ - (vo,...,v,) = (0, fo(vo), ..., fu—1(vn—1)) and using some
structure theorem for graded modules. We want to follow a more elementary approach,
tailor-made for the problem. Our strategy is to find and split off summands of the form
Fla;, b;] inductively. This yields the required decomposition, since V' only consists of
finitely many finite dimensional vector spaces.

Without loss of generality, we can assume that V) # 0. Otherwise we would execute
the same procedure but with an index shift. Let ¢ be the minimal index with

ker(fio---o fo) # 0.

This condition has to be fulfilled for some i since ker(f, o ---o fy) = Vo # 0 by
assumption. For W := ker(f; o --- o fy) we obtain the commutative diagram

fl‘ i—1 i
W ) ) Sl e o o fo ) L fo o fu(W) =0

L] | [

| /LN ) A BN fit Ly Ji >Vi+1L>...,

where the maps in the upper row, except the last one, are isomorphisms of vector
spaces since fy, ..., (fi_10..0 fy) are injective by the definition of i. We can prove that

~

::WO —'Wi

can be decomposed into a direct sum of intervals. To do this we choose any basis
b(l), . 7b2 Of Wo. The image bjl = (fj*l O ..0 0)(()?)7 e b‘zl = (fj*l O0..0 f0)<b2) Of the

~ ~

basis under the first j < ¢ maps is a basis of W;. We use this to decompose W:

W=@<O—>Fb?—>...—>IFb§—>O>
=1
= DF[0,i]
=1

We want to split off W from V by finding V= (O — % — s> \N/n — 0> a directed

space with

WoV="V.

By extending the basis of V[N/O to a basis of Vj we can find a vector space ‘70, which 1is
the linear combination of the added basis elements. It holds

VOZWO@%-

15



3 Persistent Homology

For all 7 < i, we define 17] inductively in the following way. Assume that V;_; is of
the form W;_; @ V,_; for some V;_;. Then the sum of W, and fj 1(Viz1) is a direct

sum since f;_; is injective for all j < i. By extending the basis of W @ fi- 1(
obtain V} with

_1), we

Vi=W;® fia(Vi) @V
7,
For 7 < j < n, we define \N/j := V. The maps of the sequence
~ fo‘~ ~ fllN f” 1| ~
0 > Vo M, V4 LS ik U v > 0

are well-defined morphisms since each fi‘ffi has its image in XN/iH by definition. There-

fore, the sequence is a directed space (YN/, fli)-

In the following, we will see that the directed spaces (V, f) and (W eV, [l @ fly)
coincide. Since the vector spaces in each degree are the same, it remains to show that
the maps of both sequences are equal, i.e. that the diagram

fi

Vi

> Vi1

i

Zlid
~ f]'W @fj|v ~
WeV, ——2 W@V

commutes. For j < 7, we have by the linearity of f; that

fi(v) = fj(w) + f;(9)
forv=w+veV; = I/IN/J- ® 17] Furthermore, the diagram
I3
Vi > Vit

| |

W, @V, @f Wi @V
—
=0®V;] =080V

commutes, too.

If W already equals the whole directed space V', we found a decomposition as re-
quired. Otherwise we have restricted the proof to a case where V' has lower dimension.
By induction, this finishes the proof. m

PROPOSITION 3.5. The direct sum decomposition from THEOREM 1S unique up to
reordering of the summands.

Proof. Let V = (V, f) = (oevo LU VALY
THEOREM [3.4, We assume that there are two different decompositions

S1 S2
@F[az,bl] >~V x @F[Cj,d]]
i=0 §=0

st V, = I O) be a directed space as in

(3.4)
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3 Persistent Homology

with s1,89 € Zso, a; < b; €{0,...,n} forallie {0,...,s;} and ¢; < d; € {0,...,n} for
all j € {0,...,s,}. Here, Fla,b] = (F[a,b], fl**) with

F ,k;e{a,...,b} [a,b] id ,k:e{a,...,b—l}
]:F ,b = d ’ =
L, 8] { 0 ,else and fy 0 ,else

is the directed space known from THEOREM fora <be{0,...,n}.
Then for k € {0,...,n} we have

dim(ker(f,)) = dim (ker (@ f,gai’bi]» = (i | bi = k)|
i=0
and dim(ker(fx)) = |{j | d; = k} |. Furthermore, for [ < k € {0,...,n} we obtain
: v € ker(fy)
dim ({U € Vi v e im(f:_1 o---0f) })

. 51 ve ker(@i f[ai,bi])
=d e P Fla;, b; =0k N
m ({U 2.63 [ai, bi] v e im(@io lga_l,lbz] 6.0 @fio l[al,bl])
=|{i|b; =k,a; <l}|

and an analog statement for the other direct sum. By using
[{i | bj=k,a; <U}|—=|{i|bi=k,a;<l—=1}|=|{i | bi=k,a; =1}
if [ > 1 and by doing the same argument for the other direct sum we conclude
(i b= koai =] = | (| d; = koey = 1},
Hence, both direct sums are equal up to reordering of the summands. O]

Now we can define barcodes as in [ZC08, Section 3.5|, [CZCGOH, Section 5.3| or
[Ghr08|, Section 2.3].

DEFINITION 3.6 (Barcode). Let V' be a directed space of finite dimensional vector
spaces over a field F. By THEOREM [3.4, we have V' = @_, F[a;, b;]. The barcode for
V' is defined as the tuple of intervals

By PROPOSITION [3.5] the barcode is unique up to reordering.

For each sequence of homology modules with field coefficients F as in (3.3|) we obtain
a unique barcode if we extend the sequence by the map Hy(X) — 0.

We note that the construction and definition of a barcode work for directed spaces
with arbitrary indices 0 < r; < --- < r, instead of 0 < 1 < --- < n. Moreover, we
note that for an interval [r;,r;] with j < n in the barcode, we draw [r;,7;41) as in
EXAMPLE [3.3| since this describes our conception that the basis element is destroyed
at the r;1-th level. For an interval [r;, r,| we draw [r;, 7,] and extend this interval by
a red line at the end to indicate the difference to [r;,r,).

17



4 Computing Persistent Homology

In the preceding chapter we defined persistent homology of a sequence of simplicial
complexes to describe the change of homology through the sequence. We learned
that if we choose the coefficients for chains and homology to be a filed F, we can
describe which elements in homology are created and destroyed through this process
by drawing barcodes. Now we want to deal with the computational aspect. We will
state an algorithm that takes a filtration of finite simplicial complexes as input and
returns a barcode together with a corresponding basis element for each interval.

The algorithm is a replication from [ZC08|. The proof is inspired by the paper [ZC05)|
but for quite a few points we chose to give our own arguments. It also provides us with
the idea of the next section.

4.1 General Idea

At first we assume that we have a filtration

g =X_; « » X < s X« s Xy =X (4.1)

of a finite simplicial complex X where at each inclusion X; ; — X; one simplex
o; ¢ X,;_1 is added to the complex:

Xi = Xi,1 U {Uz}

We choose a field F as coefficients for the chain groups and homology. In the following,
we will discuss how to find a basis

N _ gl Lo I
B ={by,... b, 20 2, )

of C)(X) for all | € Z, such that every basis element is either a cycle or maps to
another basis element by the boundary map:
(4.2)
The non-vanishing boundaries

ab, ..., b,

are linearly independent, since they map to different basis elements in B;* ;. They form
a basis of im(¢;). Those elements in B;' with vanishing boundary

18



4 Computing Persistent Homology

are a basis of the kernel ker(d;) of the boundary map. The basis BIN enables us to write
the homology of X as

I I
H/(X) = ker(al)/im(ﬁlﬂ) = {2y, Zm>/<al+1bl1+1, Dbt

mi4+1
= Zl . Zl
< 1 ) m>/<2’l1,...,27lnl+l>
= <[Z7lnl+1+1]7 ctt [Z7l’ll]>

and obtain a basis {[z},  1],...,[2,]} of Hi(X) for all | € Zzo. In this setting (-)
denotes the span and [] are equivalence classes of the quotient. The algorithm that
we aim at yields bases va,l € Zo, which can be restricted to bases B: va of Ci(X5)
for all 0 < ¢ < N. This allows us to track the basis elements and obtain barcodes. We

will discuss this further in Section [4.3]

REMARK 4.1. In the algorithm we will not order the basis elements such that the first
my elements of 271, ... z=1 are in the image of the boundary map ¢;. We did it here

7Ny
for simplicity.

To achieve this representation of the basis, we use an inductive approach. Let ¢ be
in {0,...,N —1}. We assume that the bases B} = {b},... b, 21,..., 2} } of C1(X;)

for all [ € Z~q are already of the desired form. To obtain bases of all Ci(Xiz1),l € Zxo
we just have to add one basis element: If we add a k-simplex o;,; at the inclusion

Xz‘ — Xi+1, then
B =By u{oin}

is a basis of of Cy(X;41). For all [ # k € Z-y we can adopt the basis Bf“ = B! of
Ci(X;) to obtain a basis of Cj(X;,1) since both chain groups coincide.

To modify the bases Bj*',l € Z-, such that they are also in the desired form we
perform two steps. In STEP 1 we modify the newly added basis element ;1 by
adding a linear combination of the other basis elements, such that either dyo; 1 = 0

or we detect that the basis elements 0,0, ..., OxbF, , Or0is1 are linearly independent.
In the latter case we use STEP 2 to modify one of the basis elements zfil_kfrl, N AT

such that it equals dpo;, 1.

REMARK 4.2. The two steps described above can be realized by using elementary
transformations of the rows and columns of a matrix as in [ZC05]. For this purpose we
consider the transformation matrix
Bi+l
My (91)

of the boundary map J; for the bases as above. Each element in BL™' represents a
column and each element in Bj represents a row of the matrix. Since B}, € Zs is of
the desired form (4.2)), the columns represented by zf, ..., z,’jlk have just O-entries and
the columns represented by b¥, ..., b’;k each have one entry which is not 0.

In the first step we use Gaussian elimination for the column represented by o;,1,
until all entries of the column are 0 or we obtain a pivot element which we can not
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4 Computing Persistent Homology

eliminate by Gaussian elimination. In this case we multiply the row with a factor such
that the pivot element is 1:

O 0 O 1 0

1 0

0o : 0

O 0 0 0 1
1 *

: 0 : : :

O 0 0 O s

Afterwards, in step 2 we utilize the Gaussian elimination for the rows of the matrix to
generate zeros below the pivot:

1 0

0 0
0 1
1 0

: 0 : : :

0O 0 0 0 O

This idea is essential for the algorithm which we will introduce in the next section.

4.2 The Algorithm

First of all, we discuss how to implement the idea from last section into an algorithm.
Then we will prove that it indeed gives us the desired basis representation.

Although one can formulate the algorithm for chains with coefficients in any field, we
state it for [Fy since this makes it easier to implement the algorithm: There is no need
to take care of the sign, especially when we use the boundary map, since each simplex
has just one orientation. Furthermore, we can implement simplicial chains as sets of
basis elements and their addition and subtraction can easily be achieved by joining the
corresponding sets and removing their intersection. Another advantage is that we do
not have to pay attention to the coefficients for the Gaussian elimination but just add
the basis elements.

We consider filtration (4.1)). For a simplex o € X,,, with X,,, = X,,_; U {0} for some
m € {0,..., N} we define its index to be index(o) := m. In a list K we store all those
simplices ordered by their index. We say 7 € K has a lower inder than o € K if
index(7) < index(o). Equivalently, we say that o has a higher index than .

REMARK 4.3. We note that the boundary do of each simplex ¢ € K is a linear
combination of simplices 7 € K with a lower index than o since each face of ¢ is in the
simplicial complex Xipgex(s) and the (dim(o) — 1)-simplices in Xingex(o) and Xindex(o)—1
coincide.
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4 Computing Persistent Homology

To each simplex o € K we assign two new variables basisel(o) and partner(c). The
variable basisel(o) is a simplicial chain which is a sum of ¢ and a linear combination
of simplices in K which have a lower index than o:

basisel(c) = o + Z Apon Ay €y (4.3)

index(n)<index(o)
Because of their form, the set
B} := {basisel(0) | o € X,,, k-simplex}

is a basis of Ci(X,,) for all m € {0,...,N} and k € Zs, at all times, which we will
prove in REMARK [4.7] (3). At the beginning we define basisel(c) := o for each 0 € K
but we will modify these values during the algorithm. We will use a for-loop over the
simplices in K such that after iteration o € K with index(o) = m the bases {B}' }rez.,
are of the desired form (4.2). For this we consider the matrix

m By?
My" = MBfgl(ﬁk)

if the simplex o with index(c) = m is a k-simplex and do the operations from RE-
MARK [4.2] We note that in [ZC08] Zomorodian calls the basis elements cascade(o) for
o € K since by using Gaussian elimination we add chains to the basis element and it
spreads over the complex like a cascade.

The variable partner(o) for each o € K is either empty or another simplex in K. It
indicates relation (4.2)) in the following way at the end of the algorithm:

0 basisel(o) = basisel(n) <= partner(c) = n and index(c) > index(n) (4.4)

and 0 basisel(c) = 0 otherwise.

For the procedure described in REMARK it is essential to find pivot elements for
Gaussian elimination. In the algorithm we have to find the pivot of the column rep-
resented by basisel(o) in M;". We consider that the rows of M]" are ordered such
that a row represented by basisel(t) € Bj', is higher than a row represented by
basisel(n) € By, if and only if index(7) > index(n). If we describe 0 basisel(o) as
linear combination

0 basisel(o) = Z A, - basisel(T) A, € Fy

m
TeBL |

then finding basisel(7) such that 7 is the simplex with the highest index in Bj' ; with
A; # 0 is the same as finding the pivot of the column represented by basisel(c). We
will show in REMARK[4.7] (4) that since the basis elements are of the form ([4.3)), finding
the pivot is equivalent to finding the simplex 7 with the highest index which occurs in
the chain dbasisel(o) € Cy_1(X,,). This can be done by the function

youngest : Cj(X,,,) —{0} — A" := {l-simplices in X,,} < X,,

E= > N\ -n+—— 71 ,index(7) = max {index(n) | A, # 0,1 € A"} (4:5)
ne A"
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4 Computing Persistent Homology

which is defined for all m € {0,..., N} and | € Z-o. We note that each function
youngest : Cy(X,,) — {0} — A" is a restriction of youngest : Cy(Xy)—{0} — AV.
Before the algorithm starts, we assign partners and basis elements

partner(c) =
basisel(c) = o

to all simplices ¢ in the list K. We execute the algorithm and pass the list K as
parameter to it.

Algorithm 1 Persistent homology algorithm.
1. def change basis(K):

2: for o € K:

3: while True:. .. ... ... STEP 1
4: if 0basisel(c) = 0:

5: break

6: else:

7 T = youngest (0 basisel (o))

8: if partner(r) = &:

9: assign _partner(7, o)

10: break

11: else:

12: basisel(o) = basisel(o) + basisel(partner(r))

13: if partner(o) # I oo STEP 2
14: eliminate = basisel(partner(o)) + 0 basisel(o)

15: while eliminate # 0:

16: T = youngest(eliminate)

17: basisel(partner(c)) = basisel(partner(o)) + basisel(7)

18: eliminate = eliminate + basisel(T)

In this algorithm, the break-operator terminates the superordinate while-loop. In
line |§] we use the function assign partner() for two simplices 7 and ¢ in K. It connects
the two simplices by assigning them as partners to each other by Algorithm

Algorithm 2 Assigning partners.

1: def assign partner(r,0):
2: partner(7) = o
3: partner(c) = 7

The first step includes lines [3 to [12] and can be visualized by Figure In line [7] we
determine the highest non-vanishing element of the column represented by basisel(o)
as described above for Gaussian elimination.

The addition in line is the elementary operation for Gaussian elimination on
columns. In the proof of PROPERTIES [4.6] (1) in LEMMA [£.10] we will see that basisel(o)
and basisel(partner(7)) are chains of the same degree and therefore their addition in
this line is well-defined.
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partner(7)
Op convnnnenns @ ........... On O

basisel(cy) -+ -+ -

----- basisel(o,,) basisel (o)

| |

7 basisel(n) = 0 0 0 [i) 0 0 0
- 0
(Dpmremremdrmnnaeeef I S B 0D
T = youngest (0 basisel (o O+ 0 H ™
( ( ) 1 L. 0o - |= Ml%_l(a)
0 O 1
1 0
(.) .
71 basisel(r;) — | 0 0 0 0 0o 0 )

w
& The basis elements in B} ; representing to the rows.

(k — 1)-simplices in iteration m,
sorted by index from the bottom to the top.

Figure 4.1: The first step of the algorithm.

There are two criterions to terminate the first step. If all entries of the column
belonging to basisel(c) in M]" are 0, then 0 basisel(c) = 0 and the basis BJ' is of the
form . We terminate the first step in line |5 and do not need a second step. The
second criterion is partner(r) = ¢ for 7 = youngest(d basisel(¢)). In this case all
entries in the row represented by basisel(7) in M;" ! are 0 since the bases {B}" ' }rez.,
are of the form which is indicated by the assignment of partners as in . But
the column represented by basisel(o) has a non-zero entry in the row represented by
basisel(7) in M. Therefore 0 basisel(o) is not a linear combination of the other bound-
aries 0 basisel(o;) with basisel(ay), ..., basisel(c,,) € By*"'. We assign partner(c) = 7
and vice versa to mark the highest non-vanishing row represented by basisel(7) and
terminate step 1 in line [I0]

If step 1 was terminated by the second criterion, we use step 2 in lines [13] to [I§] to
obtain

basisel(partner(o)) = 0 basisel(o). (4.6)

In REMARK [4.4] we show that after each iteration of the while-loop in step 2 we have
eliminate = basisel(partner(c)) + ¢ basisel(o)

which describes the entries below the row represented by basisel(partner(c)) in the
column basisel(c). It is used to modify the value of basisel(partner(o)). If eliminate
is 0, then holds and the second step is finished. Step 2 from Algorithm (1| is the
procedure described in step 2 of REMARK[L.2} In line[16] we use the function youngest(-)
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4 Computing Persistent Homology

to find the highest row in M}" below the row represented by basisel(partner(o)) which is
has a non-zero entry in column represented by basisel(c). We create a zero at this entry
by modifying the basis B} ; in line |17| using the elementary operation from Gaussian
elimination on the rows. In the proof of PROPERTIES [4.6] (2) in LEMMA we show
that the additions of chains in step 2 are well-defined since all these chains have the
same degree.

REMARK 4.4. Instead of the expression in line [I8 we could also use
eliminate = basisel(partner(o)) + 0 basisel(o).

Proof. We write eliminatey, 7, and basiseli(partner(c)) for the chains defined in the
k-th iteration of the while-loop. The variables eliminatey and basisely(partner(c)) are
the ones defined before we start the while-loop. We use induction. In iteration 0,
before the while-loop starts, we have eliminate, = basisely(partner(c)) + 0 basisel(o)
because of line [[4 We assume that the property holds for all iterations 0,..., k. If
eliminatey # 0, then it is changed in line 18] at iteration &k + 1:

.. line[I® ,. . .
eliminatey1 = eliminatey + basisel(7y41)

Ao o hasisel (o) + basisely,(partner(a)) + basisel(;11)

"

line

:E:z'basiselk+1 (partner(c))
This proves the remark. O

REMARK 4.5. If we want to extend the algorithm to chains with coefficients in some
arbitrary field, we have to think about the differences of Gaussian elimination for a
matrix with coefficients in this field instead of Fs.

For step 1 we need to add a multiple of the column represented by basisel(partner(r))
to the column represented by basisel(o) to generate a zero at the row represented by
the basis element of 7 = youngest(d basisel(c)) in M}]". Therefore, we have to change
line . Furthermore, we need to modify basisel(c) by a multiplication with a factor
after step 1 to obtain a 1 as pivot element of the column represented by basisel(o) in
the matrix M;".

To make step 2 compatible for arbitrary fields, we need to change the plus in line
to a minus and we need to add a multiple of basisel(7) in lines |17] and [18| such that
we generate a 0 in the row represented by basisel(youngest(eliminate)) of the column
represented by basisel(c).

We want to give a formal proof that the algorithm indeed yields a basis of the desired
form. To do this at first we state the following properties. Later on, we will see that
these hold in every iteration o € K of the for-loop.

PROPERTIES 4.6. For Algorithm [1| the following properties hold:
(1) We have basisel(n) # 0 € Caim(y) (X) for all simplices n € K at all times.

(2) We have youngest(basisel(n)) = n for all simplices n € K at all times.
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(3) In step 1 of iteration o € K only the values basisel(c), partner(c) and partner(r)
for a simplex 7 € K with index(7) < index(o) can be modified. Simplices in K
with a higher index than ¢ are not even relevant for this step.

(4) If in line [9] the function assign_ partner() is called, then we have partner(7) = &
and partner(c) = J at that time.

(5) In step 2 of iteration o € K only the value basisel(partner(o)) can be changed,
where partner(o) has a lower index than o. Simplices in K with a higher index
than o are not even relevant for this step.

We point out that properties (1) and (2) hold at each time in the algorithm. The
properties (3) and (4) are formulated specifically for step 1 and (5) for step 2.

REMARK 4.7. For PROPERTIES [4.6] we make the following observations:

(1) If property (1) holds, then youngest(:) can be used for each basisel(n),n € K.
This means that by property (1) we can formulate property (2).

(2) From properties (1) and (2) follows that By is a basis of Cj(X) for all k € Zx,.

(3) Properties (1) and (2) imply that each basis element keeps its order within the
filtration in the sense that

basisel(c) € Cx(X;) <= o € X is a k-simplex.

We conclude that for all i € {0,..., N} and k € Zs, the set Bj, is a basis of Cy(X;)
at all times.

(4) Let 0 € X,,, be a k-simplex. If we assume that properties (1) and (2) hold and
T = youngest(d(basisel(¢))) is defined, then we have

0 basisel(o) = basisel(7) + 2 A - basisel ()
T’GAZL:II

index(7")<index(7)

with coefficients A\, € Fy for all 7/ € B}’ ;. As in the definition of the function
youngest() in (4.5) we denote by A7 the set of all (k — 1)-simplices in X,,_;.

(5) Property (4) implies that the assignment of a partner cannot be changed once it
is made during the algorithm. We have partner(n) = 7 for n,7 € K if and only if
partner(7) = 7.

Proof of REMARK [{.7. The function youngest(-) is defined for all chains in Cj(X)—{0}
and each basisel(n),n € K is such a chain at all times by property (1). (@)
For the proof of (2) we consider the matrix

AN .
MA§ (basisel(+))
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and order the columns and rows by the index of the corresponding simplex. Then the
matrix is a triangular matrix with non-zero entries on the main diagonal by proper-

ties (1) and (2). We conclude that the matrix Mj;’“vv (basisel(-)) is invertible and the set
k

By = {basisel(n) | n e Ay} is a basis of Cj(X). )

For the proof of the direction “=" of (3) we let basisel(c) € Ci(X;) be a k-chain. By
remark (1) we can use the function youngest(-). We have o = youngest(basisel(c)) € A}
by property (2) and therefore o is a k-simplex in X;. The other direction “<” follows
directly from property (1).

To prove that B}' is a basis of Cx(X,,) for k € Z>¢ and m € {0,..., N} we let [
be the number of k-simplices in X;. The set B < By is Fy-linearly independent by
remark (2). The number of k-chains in B}, € Cy(X;) is [ by the equivalence already

proven. Hence, B} is a basis of the I-dimensional vector space Cj(X;). I3
Now we want to prove (4). Let o € X,,, be a k-simplex and let 7,..., 7, € X,,_1 be
the simplices of dimension k — 1 with index(7;) < index(r;) for all ¢ < j € {1,...,1}.

By remark (3) we know that basisel(o) is in Cy(X,,) and 0 basisel(c) € Cr_1(Xm-1).
Let 7 € {0,...,1} such that 7, = youngest(dbasisel(c)). Also by remark (3) the set
B! = {basisel(ry), ..., basisel(r;)} is a basis of Cj_;(X,,_1). We obtain

!
0 basisel(o) = Z A; - basisel(7;)

=1
for some coeflicients \; € Fo. Let p = max{j | A; # 0}. Then

p—1
0 basisel(o) = 1 - basisel(7,) + Z A; - basisel(T;)

J=1

holds. By property (2) the simplex youngest(Z?j A; - basisel(7;)) has a lower index
than 7, and we know that youngest(basisel(7,)) = 7,. Hence, we conclude that

7, = youngest(d basisel(0)) = 7;.

This proves (4). O

To prove remark (5), we observe that partners can only be changed in line @] Because
of property (4), a partner can only be assigned to simplices, which do not already have
a partner. Hence, the partner cannot be changed once it is assigned to a simplex
in the algorithm. Furthermore, partners can only be assigned by using Algorithm [2|
Therefore, the equivalence holds. [1(5)

We conclude that the remark holds. O]

By using the properties from above, we will prove the following
PROPOSITION 4.8.
(a) In every iteration of the for-loop step 1 as well as step 2 terminate at some time.

(b) After each iteration o € K of the for-loop with m := index(o), the bases

B = basisel({n € K | dim(n) = k,index(n) < m}),
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for k € Zso are of the desired form as in equation (4.2): Let n € K with
index(n) < m. If partner(n) # & and index(partner(n)) < index(n), we have

0 basisel(n) = basisel(partner(n))

and otherwise we have
0 basisel(n) = 0.

The partners are pairwise different in the sense that n =1’ for all n,n' € K with
partner(n) = partner(n’).

REMARK 4.9.

(1) PROPOSITION [4.§| (a) causes the whole algorithm to terminate, since the list K
is finite.

(2) Assume that for some m € {0,..., N} the bases B}',k € Z>( are of the form as
in PROPOSITION {.8| (b). Then similarly as for (4.2)) the set

{0 basisel(n) | basisel(n) € B}, d basisel(n) # 0}
is a basis of im(Jy : Cr(X,,) — Cr_1(X,n)) and

{basisel(n) | basisel(n) € B}, 0 basisel(n) = 0}
is a basis of ker(dy, : Cr(X,n) = Cr_1(Xm))-

(3) If the bases By , k € Z are of the form as described above in PROPOSITION ,
then also for each m € {0,..., N} the bases B]', k € Z~, are of this form.

We want to prove the proposition inductively. To do this we first note that PRO-
PERTIES [4.0] as well as PROPOSITION [4.8 hold for the first iteration:

The first element o in the list K has to be a point, since by REMARK [.3] we have
do = 0. The first step terminates directly without even looking at another simplex.
No partner is assigned and therefore step 2 is skipped. We have basisel(n) = n for all
n € K for the whole time.

To perform the induction step, we introduce the following

LEMMA 4.10. If PROPOSITION [/.8 and PROPERTIES [{.6 hold for all iterations n € K
of the for-loop with index(n) < (m — 1), then PROPERTIES also hold for iteration
o € K with index(c) = m.

Proof of LEMMA [{.10} Let 0 € K be the simplex with index(o) = m. We assume that
the proposition and the properties hold for all simplices with a lower index than o.

For step 1 we prove properties (1) - (4) inductively over the while-loop. Before the
first iteration of the while-loop starts, (1) and (2) hold by induction over the for-loop.
Since we did not consider any other simplices yet and line |§| was not reached, also (3)
and (4) hold.

To do the induction step, we assume that properties (1) - (4) hold for the first
k € Z- iterations of the while-loop. We want to prove that they also hold for the
(k + 1)-th iteration. Let basisel;(c) and 7, = youngest(d basisel,_; (o)) be the variables
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that are defined in the [-th iteration of the while-loop for [ € {1,...,k}. Furthermore,
let basiselp(o) be the value of basisel(o) before the while-loop starts. If we set new
values for basisel(c) and 7 in the (k + 1)-th iteration, we denote them by basisely1(0)
and Ty 1.

If in the (k + 1)-th iteration of the while-loop ¢ basisel,(o) = 0, nothing is changed
and properties (1) - (4) are fulfilled. In the other case 0 basisel,(c) # 0 we have to put
in a bit more effort. We note that (1) and (2) hold by induction up to line |12] since
basis elements are not modified before in this iteration of the while-loop.

By examining each line of the algorithm we see that (3) holds. We just need that
Tr+1 has a lower index than 0. REMARK (3) can be used before line |12 and yields
that basisel;(0) € Caim(o)(x,,)- We obtain

ébasiselk( ) € C’dlm (o)— 1( ) Cdlm (o)— 1(Xm—1)

and 7y,1 = youngest(d basiseli (o)) € X,,—1. Hence, index(7x41) < m = index(o).

To prove property (4), we consider line |§| of the algorithm. Because of line , we
have partner(7;,1) = &. The partner of o was not changed in the first k iterations of
the while-loop since otherwise step 1 would have terminated. By using properties (3)
and (5) for all iterations given by simplices with a lower index than o, we conclude
that partner(c) = ¢J. Therefore property (4) holds.

Now we will prove property (1) for this iteration of the while-loop. We recall that
basis elements can only be changed in line|12|and therefore property (1) holds by induc-
tion up to this point. Since line[12]can only be reached if partner(7;41) # &, we assume
that 741 has a partner. We know that basisel(c) # 0 and basisel(partner(7g11)) # 0.

In the following, will show that basisel, (o) and basisel(partner(7;1)) have the same
degree since then

basisely 1 (o) = basisel, (o) 4 basisel(partner(7.+1)) € Caim(e)(X)

by induction. REMARK (5) yields that the simplices 7,41 and partner(7g,;) are
both assigned as partners to each other. The assignment must have happened in
one of the preceding iterations of the for-loop. By property (3) for this iteration,
Tk+1 and partner(7x.;) both have a lower index than ¢. We want to show that
0 basisel(partner(7g41)) = basisel(7x41) since then we can conclude

deg(basisel(partner(7x41))) = deg(0 basisel(partner(mﬂ))) +1
= dim(7g41) +
(youngest(& basisely(c))) + 1
0 basisely(0)) + 1
basisely(0)).

= dim
= deg(
= deg(

Since basisel, (o) is a simplicial chain, we know that ¢ basisely (o) € ker(d). We can
use REMARK [4.7] (4) since properties (1) and (2) hold up to line[12] to obtain a unique
representation

0 basisely (o) = basisel(741) + Z

-1
nE‘AgiLm(a) -1
index(n)<index(741)
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of dbasisel (o) in the basis BZ};%U)_T REMARK (2) yields that 0 basisel(741) = 0.
Now we use PROPOSITION (4.8 (b) at the iteration n € K with index(n) = m —1 of the
for-loop. Since index(7y+1), index(partner(741)) < m—1, the basis elements of 754, and
partner(7y1) are of the desired form. We obtain index(partner(7y,1)) > index(7x1)
and 0 basisel(partner(7;,1)) = basisel(741).

It remains to show that

basisel;1(0) = basisel, (o) + basisel(partner(ry41)) # 0.

But his holds since partner(ry1) = youngest(basisel(partner(7;,1))) has a lower index
than o = youngest(basisely(c)) as proven above. Hence, (1) holds for this iteration of
the while-loop.

The preceding argument also shows that

youngest(basisely,1(0)) = youngest(basisel, (o) + basisel(partner(rx11))) = o

which proves (2) for this iteration.

It is left to show that properties (1), (2) and (5) hold for step 2. We note that step 2
terminates immediately if step 1 did not terminate after assigning partners. Hence, we
can assume partner(o) # .

We prove the properties by induction over the while-loop. Before the while-loop
starts no value of the simplices in K is modified. Therefore (1) and (2) hold since the
basis coincides with the basis from step 1. The simplex partner(c) has a lower index
than o since it was assigned in step 1 and property (3) holds. Hence, also (5) holds.

We do the induction step by assuming that properties (1), (2) and (5) hold for the
first k € Z, iterations of the while-loop and do the proof for the (k + 1)-th iteration.
Let 7, basisel;(partner(c)) and eliminate; be the variables which are defined in the
[-th iteration of the while-loop for [ € {1,...,k + 1} and let basisely(partner(c)) and
eliminatey be the values before the while-loop starts. Properties (1) and (2) hold until
line [17] by induction since the basis elements cannot be changed before.

To prove property (1) for this iteration we just have to check how the basis behaves
in line . If we can show that eliminate;, # 0 is a chain in Cgim(parter(o)) (X ), then
also basisel(7k+1) € Caim(partner(o)) (X ) since

deg(basisel(7g+1)) = dim(7541)
= dim(youngest(eliminatey))

= deg(eliminatey,)

by property (1) before line[I7] Also by property (1) we know that basisely(partner(o))
is a chain in Cgim(partner(o)) (X ) and therefore

basisel; 1 (partner(c)) = basisel;(partner(c)) + basisel(7;41) € Caim(partner(o)) (X ).

Now we show that eliminate, # 0 indeed is a chain with degree dim(partner(o)).
By REMARK [4.4] or line [14]if £ = 0 the variable eliminate;, is of the form

eliminatey, = basisely(partner(c)) + 0 basisel(o).
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By property (1) we have:

deg(basisely (partner(c))) = dim(partner(o))
= dim(youngest(d basisel(c)))
= deg(0 basisel(0))

Therefore, eliminatey is a chain and has the same degree as basisel;(partner(o)) and
0 basisel(c) which is dim(partner(c)) by property (1). Furthermore, we know that
eliminatey, # 0 by the condition of the while-loop in line [T5]

We prove basiselg, 1(partner(c)) # 0 by showing that youngest(basisel(7;.1)) has a
lower index than youngest(basisely(partner(c))). By property (2) before line [17] we
have youngest(basisel(partner(c))) = partner(c) and youngest(basisel(7x41)) = Tpi1-
By REMARK [4.4] we have

Tkr1 = youngest(basisely (partner(o)) 4+ ¢ basisel(c)).

We know that youngest(dbasisel(o)) = partner(o), which is the same simplex as
youngest(basisely (partner(c))) by induction. Hence, we obtain that 7,1 has a lower
index than partner(o). This also proves property (2)

In the algorithm we see that only basisel(partner(c)) can be modified. To prove
property (5), we have to show that partner(o) and 74,1 have a lower index than o.
Since the simplex partner(c) was assigned in step 1 of this iteration of the for-loop and
property (3) holds, it has a lower index than 0. We have already proven above that
Tr+1 has a lower index than ¢. This finishes the proof of the lemma. O

Now, we want to prove PROPOSITION

Proof of PROPOSITION [{.8 We use induction over the iterations of the for-loop. After
REMARK on page [27| we already discussed the base case. Let m € {1,..., N}. For
the induction step we assume that the proposition holds for all iterations n € K of the
for-loop with index(n) < m — 1. Let 0 € K be the simplex with index(o) = m. By
using LEMMA we conclude that PROPERTIES [4.6] hold for all iterations n € K of
the for-loop with index(n) < m, i.e. they even hold for the iteration o.

At first we want to prove (a), which states that both steps of the algorithm terminate.
We assume that step 1 does not terminate and denote by 7, and basisel; (o) with [ € Z>,
the values of 7 and basisel(c) which are defined in the [-th iteration of the while-loop.
Furthermore, we denote by basisely(o) the value of basisel(c) before the while-loop.
We will show that

index(741) < index(7)

for all [ € Z~,. This contradicts the assumption that there are only finitely many
simplices in K and step 1 does not terminate.

Let k € Z= be an arbitrary positive integer. By its definition in line [7] and line
we have

Tk+1 = youngest(0 basiseli (o))
= youngest (0 basisel,_; (c) 4+ 0 basisel(partner(7;))).
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In line [7| the simplex 7 is defined by 7 = youngest(d basisely_;(0)). Furthermore, in
the proof of property (1) in LEMMA we have shown that

0 basisel(partner(7y)) = basisel(7y,).

By property (2) we know that youngest(basisel(7;)) = 7,. We conclude that 741 has
a lower index than 7.

Now we assume that step 2 does not terminate. We denote by 7; and eliminate;
for | € Z~, the values defined in the [-th iteration of the while-loop. Furthermore, let
eliminateg be the value of eliminate before the first iteration of the while-loop. As in
step 1, we will show that

index(7;41) < index(7)

for all [ € Z~,, which contradicts our assumption.
Let k € Z~ be some positive integer. By lines [16] and [18 we have

Tk+1 = youngest(eliminatey,)

= youngest(eliminatey_, + basisel(7y)).

In line 7, is defined by youngest(eliminatey_1) = 7. Furthermore, we know that
youngest(basisel(7y)) = 7 by property (2). Hence, index(7;11) < index (7). C(a)

Now we prove that the new basis still has the desired form like in (b). We know by
PROPERTIES [4.6| (3) and (5) that only the values of partner(c), partner(partner(o)),
basisel(o) and basisel(partner(c)) can be modified during the algorithm. Furthermore,
by REMARK [4.7| (3) the basis elements of the simplices still form a basis.

If dbasisel(c) = 0 at the end of this iteration, then by property (5) we even have
0 basisel(o) = 0 after step 1. This means that step 1 terminated in line . Hence, no
other value than basisel(c) is modified. The other basis elements are in B} ', k € Z~g
and are already of the desired form by induction. In this case (b) holds.

If 0basisel(o) # 0 at the end of this iteration of the for-loop, then by property (5)
0 basisel(o) # 0 even holds after step (1). Step 1 still has to terminate by (a) which
we have proven above. It terminates in line 10| after the assignment of partners. By
property (3) and REMARK we have

index(partner(c)) < index(o) = index(partner(partner(o))).

Since a partner was assigned, the condition in line [13|is fulfilled and the while-loop in
step 2 is executed. Again, by using (a) we know that step 2 terminates. But this can
only happen if eliminate = 0. By REMARK [£.4] we know that

eliminate = 0 basisel(o) + basisel(partner(o)).

We obtain d(basisel(c)) = basisel(partner(o)) since the coefficients of the chains in this
algorithm are in [Fy. Furthermore, we note that the basis element partner(o) still has
vanishing boundary since

0 basisel(partner(o)) = 00 basisel(c) = 0.

Two different simplices 1,7’ € K can not have the same partner since REMARK [4.7] (5)
holds: If partner(n) = £ = partner(n’) for some £ € K, then n = partner(§) = . By
induction, all bases B}', k € Z>( are of the desired form. Cl(b)

This completes the proof of the proposition. n
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REMARK 4.11. We stated Algorithm [I|for filtrations of simplicial complexes, but many
other complexes are also suitable to be used as input. To execute the algorithm we
actually just need a sequence of chain complexes

co Py on B I on

with the following properties: Each C} is a finite dimensional vector space over Fy with
basis B;,, which can be included by the map f; into the basis of a higher level:

fi

BZ . BZ; — B?_l
For each i € {0,..., N — 1} there exists k; € Z>o and b € Bz,rl such that

b¢ im(f;

and for all [ # k;
im(f;

Bi) = B (4.8)
holds.

4.3 Tracking Lifetimes

Now we address the problem of figuring out at which steps of the filtration which basis
elements of the homology occur and vanish. The algorithm already yields this infor-
mation. We just have to interpret it in the right way. As noticed in REMARK [4.7] (3)
we have

basisel(n) € Cx(X;) <= index(n) < i, n k-simplex.

Therefore, we are able to specify a basis of the homology at every stage of the filtration

n € K k-simplex, index(n) < i

B, (x,) = { basisel(n) 0d partner(n) = &
& or index(partner(n)) > i

by using the basis By of the last chain complex Cj(Xy) in the filtration from
PROPOSITION [4.8] (b) and REMARK [4.9] (2) and (3), where K is the list of all simplices
added by this filtration. We are able to specify the lifetime of each basisel(o) with
vanishing boundary in the homology-sequence of by

' index(partner (o))
[mdeX(U), or o, if partner(c) =

where oo indicates that the basis element still exists in the homology of Xy. We draw
[index(c), N] and extend the interval by a red line instead of [index(c), o0).

Up to this point we always considered filtrations (4.1)) where one simplex is added
at each step. Now we assume that we have a filtration

D — Xg— X —— ... — X, (4.9)
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of finite simplicial complexes where an arbitrary number of simplices can be added at
each step. We note that the indices do not need to have integer values but should have
an increasing order. Such filtrations can be obtained from data as in Section 2.4, We
still want to be able to track the lifetimes of the generators in the homology sequence.
To do this we construct a filtration where just one simplex is added at each step

O « >)~(0, sy X, < y X (4.10)
by adding the simplices of each inclusion successively ordered by their dimension.

EXAMPLE 4.12. We consider the data set consisting of four points {a, b, c,d} = S < R?,
where a, b, ¢ have pairwise distance 1, dist(c,d) = 1, dist(a,d) > 1 and dist(b, d) > 1:

@
- |
1 - |
/// !
- I
a.\ 1
AN l
RN I
1 >~
~
®----—---- e
c 1 d

The Vietoris-Rips complexes for the radii 0 and % look like

VR(S,0) = {{a}, {b}, {c}, {d}}
VR(S, 3) = {{a}, {0} {c}. {d} {0, b}, {a, c}, {b, ¢} {a, b. ¢} {c, d}} .
We obtain the sequence & < Xy = VR(S,0) < X; = VR(S, 1). At the first inclusion,

there are added {a}, {b}, {c} and {d}. They all have the same dimension. Therefore,
we can add them in arbitrary order:

. add{a} . XV_ . add{b} . )N( . add{c} . X . add{d} . )N(
7 0 7 1 7 2 7 3

The complex that we obtain for Xj is the same as VR(S,0). In the second inclusion
we add the simplices

{a,b},{a,c}, {b,c},{a,b,c},{c,d}.
At first, we order them by their dimension and then arbitrarily:
1. {a,b},{a,c}, {b,c},{c,d}
2. {a,b,c}
We obtain

)'Z' . add{a,b} N ~ . add{a,c} N ~ . add{b,c} N ~ . add{c,d} N ~ (add{aA,b,c}\ ~

3 X4 X5 X X, » Xs = VR(S, 1),

and the whole sequence &5 <> X; < - -+ < Xg is of the form like ({.10).
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By using the algorithm for the new filtration (4.10)), we obtain a basis of the form
Be, (x,) = {basisel(n) | n € X; k-simplex}

for each chain group of (4.9) in each step. We assign a new value to each simplex,
which indicates its index in the original filtration (4.9)):

order(n) := min{i | n € X;}
It indicates that n € X; if and only if order(n) <. This yields a basis

n € K,dim(n) = k,order(n) <1

B, (x,) = { basisel(n) and partner(n) = &
" or order(partner(n)) > ¢

for the homology in each step. Instead of stating the lifetimes through indices of
filtration (4.10) we are able to specify them in terms of the order:

[order(a), order(partuer()) @)

or o, if partner(c) =

These intervals represent the lifetimes of the chains with vanishing boundary in the
homology-sequence of filtration (4.9)).

We note that the construction of is not unique, but the lifetimes in the homo-
logy of the original filtration are going to be uniquely determined since PROPO-
SITION says that barcodes of directed spaces are unique up to reordering of the
intervals. Furthermore, we want to mention that if the sequence is already of the form
(4.10) we can assign their indices as orders anyway. Therefore, it suffices to specify the
intervals only in terms of the order.

REMARK 4.13. By a similar procedure we can even make the algorithm available for
sequences of vector spaces as in REMARK [4.11] without properties and (4.§). In
|[ZC08, Definition 11 and Theorem 6] such a sequence of chain complexes is called based
persistence complex.

4.4 Simplification of the Algorithm

In this section we will show that we are able to omit step 2 of Algorithm [I]to draw the
barcode but save calculation time.
At first, we state the algorithm which uses only step 1 in each iteration:
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Algorithm 3 Simplified persistent homology algorithm.
1. def change basis without2(K):

2 for o e K:

3 while True:. . ... STEP 1
4 if 0basisel(o) = 0:

5: break

6: else:

7 T = youngest (0 basisel(o))

8 if partner(r) = &:

9: assign _partner(7, o)

10: break

11: else:

12: basisel(o) = basisel(c) + basisel(partner(r))

LEMMA 4.14. Step 1 in Algorithm[1] and in Algorithm[3 ezecute the exact same oper-
ations.

Proof. Let ¢ € K with index(o) = n be an arbitrary iteration of the for-loop. At
the iterations n € K with index(n) < n — 1 of Algorithm (1| step 2 changes only basis
elements with vanishing boundary of simplices with a lower index than 7 as stated in
PROPERTIES [4.6| (5). In step 1 of iteration o the only simplices which have a lower
index than ¢ and basis elements with vanishing boundary are the simplices described
by the variable 7. But only their partner assignment is relevant in step 1. O

We use this lemma to compare the algorithms with and without step 2.

PROPOSITION 4.15. By comparing the results of Algorithm [1] and Algorithm [3, we
observe the following:

(a) For each o € K the values of partner(o) after using both algorithms coincide.

(b) For each o € K with partner(c) = J the values of basisel(o) after using both
algorithms coincide.

(c) For each o € K with partner(c) # & and index(partner(o)) < index(o) the
values of basisel(o) after using both algorithms coincide.

(d) For each o € K with partner(o) # ¢ and index(partner(c)) > index(o) the
values of basisel(o) after using both algorithms can be different.

Proof. By LEMMA both algorithms execute the same operations in step 1. In
step 2 of iteration o € K only basisel(partner(c)) with index(partner(c)) < index(o)
can be modified by PROPERTIES 4.6 (5). These are the basis elements described in
(d). All other variables have to coincide. O

REMARK 4.16. To draw barcodes of a filtration like (4.1]) we just need the assignment
of the partners and the order of each simplex. Since the order cannot be changed
by Algorithm |1 and Algorithm {4 and because of PROPOSITION [4.15| (a), Algorithm
suffices to draw the barcodes.
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When we use Algorithm [3] instead of Algorithm [1] only the values of basisel(o) for
o € K with partner(c) = ¢ and index(partner(c)) > index(c) do not coincide. But
they are uniquely determined by basisel(partner(o)) since PROPOSITION [4.8| (b) holds
for Algorithm I We can adjust these elements by using Algorithm [4] after Algorithm
to obtain the same output as Algorithm [1]

Algorithm 4 Adjust basis elements after the simplified persistent homology algorithm.
1. def adjust_basisel(K):

2: for o € K:
3: if partner(o) # ¢ and index(partner(o)) > index(c):
4: basisel(c) = 0 basisel(partner (o))

4.5 The Implementation

The algorithm is implemented in Python3 and can be found in the appendix in Sec-
tion and at |[Ginl9]. The file called simpcells.py describes the class of simplicial
cells. Each cell has the attributes basisel, partner, index, etc. as described. The file
homology.py contains the algorithms stated in Section and [4.4]

To compute the homology of a complex with these algorithms, we at first need to
generate a list K of simplicial cells. We have to add the order and dimension of the
cells to ensure good behavior of the functions. Then we use

compute homology(K)

from homology.py to execute Algorithm [3| Alternatively, we can add the parameter
step2 = True to adjust the basis elements afterwards by using Algorithm @ We can
store the barcode and the generators of the homology after using the algorithm by

bar, gen = get barcodes(K)

from homology.py. At the end the barcodes of the d-th homology can be drawn by
using

draw_barcode(bar, d, K)

from homology.py.
An example using this procedure for a simple simplicial complex is

Example simple_ barcodes of cell list.py

which can be found at |Giin19].

4.6 Persistent Homology for Evenly Distributed
Points on a Circle

In the paper [AA17] the authors study Vietoris-Rips and @ech complexes of the circle
S!. They state that the Vietoris-Rips complex and the Cech complex yield the ho-
mology of all odd-dimensional spheres until finally the complex is contractible if the
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radius for the construction of the complexes is increased. In DEFINITION and
DEFINITION we can find the construction of those two complexes.

We want to check by an experiment if we obtain a similar result in the case of a
finite subset by studying the homology of the corresponding complexes of n evenly
distributed points on a circle. For an increasing number of points we could expect to
recognize a growing amount of odd-dimensional spheres in homology.

DEFINITION 4.17 (Evenly distributed points). Let dBg((0,0)) be a circle with radius
R > 0 in R?. Then we have a parametrization of the circle given by

bs 1 [s,8 + 2m) —— Bgr((0,0))
cos(t)
b It <sm(t)> '

The points x1, .. ., z, on the circle are evenly distributed if they are evenly distributed in
each parametrization. Equivalently, they are evenly distributed in one parametrization,
where adjacent points have distance 27”:

2
Else]ngb;l({xl,...,xn})—{S+—7r-i
n

ie{(),...,n—l}}

The points are implemented in the two dimensional real vector space R? by using
sine and cosine. Algorithmically, we generate the Cech complex and the Vietoris-Rips
complex for these points. We can easily compute the smallest radius for a simplex
o = {0y, ...,0x} in the Vietoris-Rips complex, such that the balls centered at oy, ..., oy
intersect pairwise by

o = max {3 [lo; — o], ’ 0,0, €0}, (4.11)
It is more difficult to compute the Cech complex since we have to check whether all

balls intersect i
()B.(0:) # @. (4.12)
i=0
It is not obvious how to determine the lowest radius » > 0 with this property, therefore
we follow a numerical approach: If all balls intersect, then they also intersect pairwise.
We start with the minimal radius r from (4.11)) and incrementally increase r until
the intersection property is satisfied. To check whether the property holds, we use

an algorithm from [LMDVTI5| and adapt it to our needs. The authors state that the
intersection of all B,.(ay), ..., B.(0x) € R? is not empty if and only if

(1) one ball is contained in all of the others or

(2) at least one point in the intersection set of the boundaries 0B, (o;) n 0B, (0;) for
1 # 7 is contained in all balls.

We note that (1) cannot happen for £ > 1, since all balls have the same radius and
different center. Since we only deal with finitely many balls, we also have only finitely
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many intersection points. For our needs it suffices to compute all intersection points
and then check successively if one of the points is contained in all balls. We know that
all balls have the same radius. Therefore, it is easy to compute their intersection points
pairwisely. Let A and B be the centers of two balls with radius » > 0. Furthermore,
let M = AJFTB be the midpoint of the line between A and B.

h

If the distance d between A and B is bigger then 2r, we have no intersection points
for these two balls. Otherwise, we define a vector h, which is orthonormal to the vector
from A to M. By using the Pythagorean theorem we can compute e = 4 /r? — (%l)2 and
obtain the intersection points M +e-h and M — e - h.

By implementing this approach for evenly distributed points on the circle with radius
1 we obtain the following results for complexes with different prescribed radii and
numbers of points:

(1) in the Vietoris-Rips complex:
— homology of the points
— homology of S*
— if we have 6 or more points: higher homologies but not only the odd-
dimensional spheres.
(2) in the Cech complex:
— homology of the points
— homology of S*
— many homologies only in small intervals that we cannot classify
The exact results can be found in the appendix in Section [6.1} Since the intervals for
the Cech complex are very small and even exceed 1, we can conclude that numerical
errors distort the homology crucially. To obtain more precise results we calculate the
order of the simplices analytically. For this we need to find a more precise description
for the condition with the intersections (4.12)).
In the following, let x4, ..., x, be evenly distributed points on the circle and py, ..., p;
be a subset of z1, ..., x, consisting of [ elements. The points py, ..., p; form an abstract

simplex in the filtration of Cech complexes. Its order is the minimal radius r for which
the property

B, (p;) # & (4.13)

l
=1

1
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is fulfilled. We recall that we defined B, (p;) to be closed balls for the construction of
Cech and Vietoris-Rips complexes. To describe the minimal radius such that all balls
at p1,...,p € 0BR((0,0)) intersect, we distinguish whether all points are on an open

half of the circle.

DEFINITION 4.18. Let py,...,p; € dBgr((0,0)) be points on the circle. We define them
to be on an open half of the circle by the following equivalent properties:

(1) There exists t € [0, 27] such that py,...,p € {(sin(z),cos(x)) | x € (t,t + m)}.

(2) There is « € [0, 27] such that py,...,p € Ry, H where

. (cos(a) —sin(a))

sin(a)  cos(a)
is the rotation matrix for the angle o and H = {(x, y) e R? ‘ y > O}.
(3) We have R,p1, ..., Rap € H for some « € [0, 27].
We can directly state the following

PROPOSITION 4.19. Let zy,...,7, € 0Br((0,0)) € R? be evenly distributed points
on the circle with radius R. Furthermore, let {pi,...,p} be a subset of {x1,...,x,}
consisting of | = 2 elements.

(a) If all points py,...,p, are on an open half of the circle, then (4.13)) is fulfilled if
and only if r = %maxi,j(dist(pi,pj)) where dist(p;, p;) = ||pi — pjll,-

(b) If p1,...,p are not on an open half of the circle, then (4.13|) is fulfilled if and
only ifr = R.

The property (a) is the same as in the construction of the Vietoris-Rips complex.
We can prove PROPOSITION (a) directly:

Proof of PROPOSITION (a). At first we prove the direction “=". We assume that
ﬂizl B,(pi) # &. Then we have B,(p;) n B.(p;) # & for all i,j € {1,...,1}. We
conclude dist(p;, p;) < 2r for all 4, j and obtain max; ;(dist(p;, p;)) < 2r.

To prove “<” we let p; and p; be the left and right points of the set {p1,...,p;} on

P

bi

Figure 4.2: Left and right points of {p1,...,p;} on an open half.
the open half in the following sense: If P < (t,¢+ ) represents the points on the open

half by
{p1,...,m} = {(sin(x),cos(z)) | € P < (t,t +m)},
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4 Computing Persistent Homology

then p; and p; are given by (sin(x), cos(x)) for z = min P and 2 = max P, respectively.
We define ¢ := £ dist(py, pr). Let r > § max; ;(dist(p;, p;)) be an arbitrary radius. Then
we have B, (p1) N B,(p) # & since the center M := P22 is in the intersection of both
balls. We want to prove that even

M & ﬂ B, () (4.14)

holds. It suffices to show that p; € By(M) < B,.(M) for all 1.

Figure 4.3: Setting for the proof of PROPOSITION (a)

Let ¢’ be the distance from M to some point p; and m = |M]| the distance from M
to (0,0) as in Figure For a triangle with points a, b, c and angle v opposite to ¢,
we have by the law of cosines

¢ = a® +b* — 2abcos(y).

We can use this for our construction to obtain
R =t +m?
R? =17 + m? — 2t'm cos(y).

T 3T

Since the angle v is in [gv 2

=], we obtain
RP=1*+m? =t -1+ R
and therefore ¢t > t'. This proves the result. H

For the second part (b), we want to prove that

ﬂB (pi) # & <= (0,0) ﬂB (pi)

if not all points p; are on an open half of the circle. To do this we state the following
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4 Computing Persistent Homology

LEMMA 4.20. The points py,...,p are not on an open half of the circle 0Br((0,0)) if
and only if their convex hull contains the center of the circle:

(0,0) € conv(py,...,m)

Proof. To prove “<" indirectly, we assume that all points are on one side of the circle.
We can assume that py,...,p, € H without loss of generality. But this means that also
their convex hull conv(py,...,p;) is in H, which does not contain (0, 0).

To prove the other direction “=" we assume that not all points are on an open half
of the circle. Successively, we remove points with the highest indices until all remaining
points py, ..., ps are on an open half. By rotating the circle and renumbering the points
we can assume that pq, ..., ps € H and the points p; and p, are the left and right pointsﬂ
of p1,...,ps. In order that py,...,ps11 cannot be on one side of the circle, the property

—pst1 € cone(py, ps) = cone(py, . .., Ps)

has to hold, where cone(py,...,ps) is the conical hull of the points py,...,ps. We
can find coefficients \;, A\; = 0, such that A\ip; + A\sps = —psy1. By adding psy1 and

multiplying with A = m, we obtain

(07 O) = A)\lpl + A)\sps + >\ps+1

with A4+ A\ + M)A = Land A, A\, A\s = 0. Therefore, (0,0) is contained in the convex
hull conv(py, ps, ps+1) S conv(py, ..., p;) of the points py, ..., p. ]

REMARK 4.21. In the proof of the lemma we have shown that if the point (0,0) is in
conv(py,...,p), then we can choose three points p;,, pi,, pi; from py,...,p; such that
(0,0) is also contained in conv(p;,, Piy, Pis)-

We will need a particular choice of such three points p;,,pi,,pi, in the proof of
PROPOSITION (b) with which we deal now.

Proof of PROPOSITION (b). To prove “<” we consider some r > R. We obtain
(0,0) € B,(p;) for all i and therefore (0,0) € ﬂi:l B,(p;). For this direction we did not
even use that pi,...,p; are not on an open half.

Now we prove “=". Let pi,...,p; be points on the circle that are not on an open
half. By REMARK [4.21] we are able to choose three points p;,, pi,, piy, such that

(0,0) € conv(pi,, Piy, Pis) =: D.

Without loss of generality we can assume p; = p;,, p2 = pi, and ps = p,.

If (0,0) is on one of the edges of the triangle D, two points have to be opposite on
the circle. Their distance is 2R and balls at these points can only intersect if their
radius r is greater or equal R. We assume that (0,0) is in the interior of the triangle
and consider the following problem:

Find p € B..(p1) n By (p2) N By(p3) for a minimal 7.

IThe points are left and right as described in the proof of PROPOSITION (a).
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4 Computing Persistent Homology

If we manage to solve this, we can conclude that B,.(p1) N B,(p2) 0 B (p3) # & if and
only if 7 > max;_; 23 dist(p;, p). In the following we will prove that p = (0,0) is this
point. We reformulate the problem to: Find p € R? such that it minimizes the function

f(z) = max{dist(py, x), dist(ps, x), dist(ps, )}

For the origin (0,0), it holds f(0,0) = max{R, R, R} = R. Since (0,0) is in the
interior of the triangle we can write R*—{(0,0)} as

R*—{(0,0)} = {z e R* | {&,p1) < 0 or {z,p2) < 0 or {x,ps) <0 },

where {-,-) denotes the standard scalar product in R?. Let z € R*—{(0,0)} be some
point which is not the origin. Without loss of generality, we can assume that (z, p;) < 0.

By the law of cosines we obtain

dist(py, z)? = dist(z,0)? + dist(py, 0)*> — 2dist(x, 0) dist(py, 0) cos(a),

3
2

3T

s
where a € (3, <r). Hence, we

obtain

) since {(z,p1) < 0. The cosine is negative for o € (7,

dist(py, 33)2 > dist(«x, 0)2 + dist(py, 0)2 > dist(py, 0)2

and therefore dist(py, z) > dist(p;,0). By the definition of f, we have f(z) > f(0,0)
and since x € R*—{(0, 0)} was chosen arbitrarily this holds for all those x. We conclude
that (0,0) € ('_, B.(pi) < B.(p1). Hence r > R. O

We use PROPOSITION to improve our algorithm for the construction of the
Cech complexes. By implementing the cells directly without the actual position of the
vertices and computing the distance of points only once at the beginning, we obtain
improved results for the Cech and Vietoris-Rips complex. They can be found in the
appendix in Section |6.2]

In the experiment the homology of the Cech complexes for at least 3 points is just
the homology of the single points, of S! and of one point for different radii. We want
to verify this observation by an analytic discussion of the Cech complexes.

Let S = {x1,...,z,} be the set of n evenly distributed points on the circle with
radius R and center in the origin. We denote them in a way such that x;,; is next to
x; for all 7+ and z; is next to z,. Furthermore, let C(X ,7) be the corresponding Cech
complex for the radius 7 as in DEFINITION [2.17] By PROPOSITION [£.19] we have the
following description:
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For 0 < r < R we know that a subset {z;,,...,2;} < {z1,...,2,} consisting of [
elements is an abstract [-simplex in C(X,r) if and only if z;,,...,2; are on an open
half of the circle and their maximal pairwise distance max; jieg, ..,y dist(z;, z;) is 2r
at the most. In the case r > R all subsets {z;,,...,2;,} € {z1,...,2,} are simplices in

C(X,r). We have the following realization:
|C(X,R)| =A"" =conv(e',...,e") = {yeR" | D,yi=1,4,>0 } cR"

Let r be some radius with 0 < r < R. Moreover, let A" be the set of all sets
{e",... e} such that z;,,...,x; are on an open half of the circle and the condition
max; jrefi, ....i,y dist(z;, ;) < 2r is satisfied. We have

A" o | C(S, )| = U conv(e, ... e). (4.15)

{ei1,...,ell }e AT

In the following, let 0 < 7] <1y < --- < UESTRS R be the radii at which the complex

changes. We have r; = %dist(mj,xjﬂ) for all j. The realization from (4.15) can be
written as

| C(S,7)| = U conv(el, ... e/t (4.16)
=1

where here and in the following the indices should be understood modulo n for better
readabilityﬂ. Our observations up to this point yield

1€(5.0) = [ ]4e)

| C(S,m)| = U conv(e’, el 1) (4.17)
j=1
|C(S,R)| =A™ L.

The first complex has the homology of n distinct points and the last one is contractible.
The second complex has the homology of the 1-sphere, since it is just one connected
component and the only chains with vanishing boundary are multiples of the chain

di_i(ef et e C1(C(X,r1)). For the remaining complexes we state the following

LEMMA 4.22. Let S and {r;}; be defined as above. The realization of C(S,r;) like in
[4.16)) is homotopy equivalent to | C(S,r)| for alli e {1,... |"|}:

|C(S, )] =~ [ C(S,m)]
Hence, all those complexes have the homology of the 1-sphere.

Proof. We do the proof by induction. For ¢ = 1 the statement is true. We assume
that the lemma holds for all r1,...7;_; and consider the complex C(S,r;). There is an
inclusion

[C(S, )| = Up, conv(e,... &)
Ul Ul

| C(S,ri1)| = Uj_y conv(e/, ... e/t

2This means that we define ej to be ej4 k., for some k € Z, such that ej4 ., is defined.
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4 Computing Persistent Homology

of the realizations for different radii. We have a strong deformation retractf| of

~ .

i j j+i—1 j+1 j+i i j j+i
A= conv(e/, ... e Juconv(e!™ .. @) € Al = conv(el, ..., &M,
which we state on the isomorphic spaces

~. [ ausl A
Al = yeR™ | y,=0foralll c {yeR’_l
y1 =0o0rys =0

Z[yl<1 };AZ

y; = 0 for all [ J

It is defined by
Hi: AL x [0,1] —— A

mapping ((y1,...,%i-1),t) to (y1,. .. ,yi,l) —I—t-min{yl, Yo} - (Nfl, -1, 0,'. ..,0). Tt is left
to the' reader to check tha;t 'mdeed Hi(y,0) =y, H}(y, 12 e A} and Hi(‘a, t) =a for all
ye A% te[0,1] and a € A} The properties J; A% = [ C(S,m:)[, U; A = [C(S, ri1)]
and Al n Al < E; N &;, for all j # j' hold. Therefore, we can define the strong
deformation retract

Hi 2 [ C(S, )] % [0,1] —— | C(S,7,)]

(z,t) —— Hj(x,1), for z € A}

on the whole Cech complex. This forms a strong deformation retract from | C(S,r;)|
onto | C(S,7;-1)|. Hence, both realizations are homotopy equivalent and their homology
coincides. O

REMARK 4.23. For the trick in the proof of the last lemma we did not explicitly use
that the points are evenly distributed or that the dimension of the sphere containing
the points is 1. Therefore, it should be possible to extend our results to non-evenly
distributed points on spheres in higher dimensions.

3Its definition can be found in [Hat02, Chapter 0]. There it is just called deformation retract and
the weak version is stated in exercise 4.
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5 Localizing Holes

The algorithm in the preceding chapter yields descriptions for the holes of a simplicial
complex in form of representatives of the non-vanishing homology classes. They can

be very inconvenient in the sense that they enclose points that are far away from the
hole.

Figure 5.1: Bad description of a hole.

We want to avoid that by finding better local descriptions. The idea is to partition
the complex and start searching for representatives there.

Figure 5.2: Improved description of a hole.

To do this we introduce the Mayer-Vietoris blowup in Section [5.2] which lives in the
product of the simplicial complexes X and A™. This product enables us to separate
local parts and glue them together at a later point. By tracking the homology through
this gluing process we obtain good local descriptions. The following statements and
proofs hold for homology modules over any commutative ring with 1.

5.1 Handling Products of Simplicial Complexes

The Mayer-Vietoris blowup, which is the key construction for the localization algorithm
and will be discussed in the next section, makes use of products of simplicial complexes.
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5 Localizing Holes

In this section we recall the construction of a product and explain the relation between
the chain complex of a product and the product of chain complexes.

Let X and Y be simplicial complexes. We know that the product of their realizations
| X | x Y| is also a topological space. It can be triangulated in a natural way if we assume
that the simplices of both complexes X and Y come equipped with total orderings < x
and <y on their vertex sets Vx and V. Note that this extra datum is also essential
in our algorithm. On the next pages we follow the construction from [ZCO08|.

Let the set of all O-dimensional simplices of X and Y be the vertex sets Vx and Vy,
respectively. We define a vertex set

Vixy i=Vx x Vy

of the product X x Y. A subset 0 & Vx.y is defined to be an abstract simplex of
X x Y if and only if there are simplices oy € X and oy € Y such that ¢ € ox x oy
and the restriction of the total orderings

1 <x q1 and ps <y @2
(p17p2) <XxY (Q17Q2) < or
p1 <x q1 and ps <y @2

forms a total ordering on o.

DEFINITION 5.1. For (abstract) simplicial complexes X and Y with total vertex or-
derings we define the abstract simplicial complex X x Y to be

XKV i— {a Veuy | 7 receives a total ordering } '

induced by those on Vx and Vy

The faces of each simplex in X x Y are the typical ones for abstract simplices and are
again in X x Y. This makes X x Y a well-defined complex.

(60,61) (62,61)

(60,60) (62,80)

(et e%)

Figure 5.3: Product of A% and Al

REMARK 5.2. Let AF and A*2 with k, ky € Z=( be two simplices. With the definition
of a product from above, we obtain that |AF1] x |A*2| is a geometric realization of the
product A¥ x A*2_ This is a standard argument, which can be found for example in
[GZ67, Chapter 3, Section 3.4] for simplicial sets. It can be shown that this also holds
for general simplicial complexes:

| X| x|Y]=|X xY]
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Next we will show that the homology of a product can be computed by the product
of the chain complexes. This is useful, as the latter is usually a much smaller complex.

DEFINITION 5.3 (Tensor product of chain complexes). Let (V,,0Y) and (W,, ) be
chain complexes. Then their tensor product is defined by

Ve@Woi = P (V,@W,)

p+q=k

for all k € Z with boundary maps given by dx(a ®b) = ¢} a ® b+ (—1)*%*a ® 0" b for
acV,and be W,.

We can easily verify that Co(X)® C.(Y') is smaller than C.(X x Y') by constructing
an injective map from the basis set

o € Xp-simplex, n € Y ¢-simplex
Bc.x)oc.(v), = { ¢ ®n | with p+ ¢ = k and orientation
given by total vertex ordering

to Be,(xxy) = {k-simplices of X x Y} where each simplex in the basis is oriented
by the total vertex ordering, sending (oy,...,0,) ® (10, ...,n,) to the basis element
((OﬂvnO)v"'v(ObanO)a(Obanl)a"'a(aﬁ?nq))

To prove that both complexes yield the same homology, we compare the modules of
k-chains by the Eilenberg-Zilber theorem, which is also known as the Alezander- Whitney
theorem, as in |[ZCO8|.

THEOREM 5.4 (Eilenberg-Zilber). Let X and Y be simplicial complexes with total
vertex orderings <x and <y. Like in the construction above this gives rise to a product
X xY of simplicial complexes. Then we can find chain maps

Cu(X X Y) 2‘;‘# O.(X)® C.(Y)

on chain complexes, which are natural in the sense of the following remark and induce
an isomorphism on homology modules.

REMARK 5.5. Having natural chain maps means that they commute with inclusions
of simplicial complexes. Formally speaking, let A(-,-), B(-,+) € {Co(- x 1), Co () @ Co ()}
be two maps which assign some chain complex to each pair of simplicial complexes
with total vertex orderings. For inclusions of simplicial complexes with total vertex
ordering ¢g : X — X’ and ¢; : Y — Y’ we have induced mapsE] on the chain complexes,

which we call
Lo AXY) —— AXY)

s B(X,Y) —— B(X',Y").

If we have a chain map fXY : A(X,Y) — B(X,Y) for all simplicial complexes X
and Y with total vertex ordering, then we call f natural if for all inclusions X < X’

!The induced maps for Co(- x ) and Co(-) ® C,(+) are 1o x ¢1 and 1o ® 11 respectively.
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and Y € Y’ the diagram

A(X Y) —> B(X Y)
bk
A(X’,Y’) — B(X’,Y’)
commutes.

For the Eilenberg-Zilber theorem we adapt the proof of [Bre97, Chapter 6, Section 1]
and [SZ88|, Satz 12.2.6]. We will do the construction of A and S in a simpler case where
X and Y are simplices and then we will use the naturality to extend the definition to
arbitrary simplicial complexes.

REMARK 5.6. Let X and Y be simplicial complexes with total vertex orderings.

(1) Let 0 € X x Y be a k-simplex. Then there are inclusions of simplicial complexes

LO Ll
AT —— X and A —=Y
with r, s € Z> and a simplex e, € A” x A®, such that (:2 x ¢})(e,) = 0.

(2) Let n®@7 € Cp(X) @ Cy(Y) with p, g € Z=o be a basis element. Then we can find
inclusions of simplicial complexes

AP 1y X and A5 Y,

such that (1, ®tr) : Cp(AP) ® Cy(A?) — Cp(X) @ Cy(Y) maps APQ A? to n® 7.

We note that (1) also yields a map (12 x ¢}) : Cr(A" x A®) — Cx(X x Y) which
maps e, to 0. Since we can describe bases of Ci(X x Y) and C,,(X) ® C,(Y'), we can
construct any element in those chain groups. It is not always possible to choose r and
s in part (1) of the remark such that r + s = k but we always have p + ¢ = k in (2).

Proof. For (1) let o = {(no,70),---, (M, 7k)} € X x Y be any k-simplex. By removing
duplicates we obtain simplices {Niy,....mi.} € X and {15,,...,7;,} € Y. We define the
maps 12 : A" — X, et — 1y, for all t € {0,...,r} and (L : A — X e — 7;, for all
t€{0,...,s}. Let further

Py A0, ...k} —— {ig,..., 0} and pr: {0, .. kY —— {Jo,. -, Js}
be the unique maps with n; = 7, ¢y and 7, = 7, ) for all [ € {0,...,k}. Then we obtain

a k-simplex
ey = {(epn(O) BPT(O)), o (epn(k) epr(k))} e A" x A®

with (.9 x ¢5)(e ) {(Mp,0)+ Tor 0)) - - (npn k) T (k) } = O D)
Let n = {170, oot e X and T = {To L, Tq) € Y be simplices. Then the simplicial
maps
by : AV —— X and Lty AP —— X
el —— et —— 7
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satisfy ¢,(AP) = n and ¢, (A%) = 7. We obtain a well-defined chain map
by @ty Cp(AP) @ Cy(AT) —— Cp(X) @ Cy(Y)

with (1, ® t;)(AP @ A7) = (n® 1) in Cp(X) ® Cy(Y). 0@

This finishes the proof of the lemma. O
LEMMA 5.7. For alll € Z~1 the following homology modules vanish.:

(a) H(Co(A" x A®)) =0 for all r,s € Zxo

(b) H(Co(AP) ® C.(A?)) =0 for all p,q € Z=o
Proof. By REMARK [5.2] we know that

A7 % A = |AT] x |A7] = {pt}

is contractible. [(a)
To prove part (b) of the lemma, we adapt the idea of the proof of the Kinneth
theorem from [Hat02, Theorem 3B.5| and customize it for our needs. For k € Z~ let

k k

be the simplicial chain complex. For better readability we define Bf := im(dF,,),
ZF := ker(dF) and C¥ := C;(A¥). Furthermore, we will omit indices of the boundary
map if their domain and codomain is obvious in the context. For any k, we have chain
complexes C*, Z¥ and BF:

k
>y CF ai crk, —— ...
U sy U
A
U o U
» B; » BY | —— ...

~

For p as in the statement of the lemma and any s € Z we obtain a short exact sequence
of modules:
0 y ZP s 0P —2% B* | —— 0

S

Tensoring the sequence with the free module C for any t € Z yields a sum of short
exact sequences which is a short exact sequence itself. We refer to [Rot09, Theorem 3.1
and Proposition 3.46| for a formal proof that by tensoring with Cy we obtain a short
exact sequence. The new short exact sequence is of the form:

0—— 2r@C? &4 crgeos 24 Br @Ci —— 0

Forallie Z,using @ BC{= @ B’ ,®C{ and the sequence from above, we
s+t=i—1 s+t=1
can define the following short exact sequence of modules:

0 —— (Z2®CY); — (CP®CY), —— (BE®C);y — 0
I} I} I}

D 2t D Tl D B, ®C

s+t=1 s+t=1 s+t=1
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To prove that this even defines a short exact sequence of chain complexes we have
to check whether the maps in each degree commute with the boundary maps. We
consider the following diagram:

0—— (z2@Cy), —2L, (creocy), —24, (BreCcy), , —— 0

la (1) la 2) la

0 —— (Z2?®C2);4 —d (CP®CY);y _ e, (BY®C8);g —— 0

The commutativity of (1) holds, since the maps on the rows are just the inclusions
and both boundary maps coincide. To check whether (2) commutes, we take some
c®c e (C?®C?); and use the maps of the diagram:

c®c oRid s de®
[ Ik
oc®c 0oc®c

+=DMe@ad T 4 (=1)oc® o

Since ddc vanishes, the diagram commutes up to a sign. This can be fixed by considering
the map

(-1)'o®@id: (CY®CY)i —— (CY® Bl)i
instead of d® id. We obtain a short exact sequence of chain complexes given by:

8®|d

0 —— (ZP®CY); = _1@d, (CP®C‘1) (BP®C%);_y —— 0

As in the Snake Lemma [HS97, Chapter III, Lemma 5.1| this yields a long exact
sequence in homology

L — Hy(ZPRCY) —— H(CP®CY) —— H; 1(BPQCI) —— ...,

where the connecting homomorphism H;(B? ® C?) — H;(Z? ® C?) is just the inclusion
¢ ® id multiplied with a sign. We will see this by the following diagram chase:

If we have bases Bgr and B for BY and C, then By := {b®c|beByr,ce Bcf}
is a basis of B @ C?. Let

D Meb®c= ) b®c,

b@ceB’! beB gy

be any element in B? ® C?. Its boundary is 0 + ZbeB (=1)Ilb® oc,. If the boundary
vanishes, then dc, = 0 for all b € Bgr and the summand b® ¢, is already a chain with
vanishing boundary. Hence, it suffices to define the map H;(B? ® C?) — H;(Z? ® C?)
just for elements of the form ¢® ¢’ # 0 € B? ® C} with vanishing boundary. We have
c# 0and ¢ # 0. Since the boundaries d(c®c’) = dc®@c + (—1)Ile® dc’ and dc vanish,
also the boundary of ¢’ has to vanish. The map (—1)**"*'0®id : C?,, ® C{ — Bp®Cq
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is surjective. Hence, there exists a chain d € C¥; such that (—1)*""*10(d) = ¢. We
obtain:

(_1)s+t+la®id

d®c s c®c
b A
0dd — — dd® 0

Therefore, the map H;(B? ® C?) — H;(Z? ® C?) in the long exact sequence is defined
by (—1)". ®id, where i = s + t.

We will show that the homology modules H;(C? ® C?) for ¢ > 1 vanish, since they
are enclosed by zero maps in the long exact sequence. The map

Ozracs 25 ® Cf — Z0,®C{ @ 28 @ Cl,4

2®cr—— Opz@c+ (=1)P2® 0cac = (=1)P2 ® Ocac

has its image in Z? ® C{_, since dzpz = 0. In the following, we write d;, for 0 rges
and 0; for 0 zrgce),. Since

0i: @ Z{QCI — @D 2L,

s+t=1 s+t=1

is defined by Js,; on each summand, we obtain

ker(0;) = P ker(dsy)

s+t=1

im(&iﬂ) = @ im(&sﬁt).

s+t=i+1
We can specify how the boundary maps look like:

ker(@sﬂg)
im(@si)

Zf ® ker(@cg)
7P @ im(dcs)

This yields

ker(0;)) = P ZP @ ker(0ca)

s+t=1
im(di41) = P Z8 ®@im(dca) = @ Z7 ®im(des ).
st=i+1 stt=i

We have inclusions ZF ® im(dcs ) S ZF ® ker(dg). By using the description for the
kernel and image and the inclusions it follows that

H(Z2 @ CF) = ker@) o

- @ <(Z§®ker(503>)/(zg®im(5cg+1))> '

s+t=1
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5 Localizing Holes

Tensoring with Z? is right exact. Hence, we conclude

H(Z®CH =D Z'® (ker(@cf)/im(acq ))
s+t=i t+1
= @ ZP @ H,(C?).

s+t=i

By using that A7 is contractible, we obtain that H,(CY?) is the coefficient ring for t = 0
and 0 for each other t. This yields H;(Z? ® C?) = Z”. The proof from above can be
copied for B? instead of Z? to show that H;(B? ® C?) = BY. We conclude that the
long exact sequence in homology is of the following form:

. —— B Ty g » H;(C?®C?) —— BY | LS 0 ——

1

Since H;(C?) = Zf/Bp = 0 for all i > 1, the map from B to Z” is an isomorphism.
Then H;(C? ® C9) is enclosed by zero-maps and we obtain H;(C? ® C%) = 0 for all
i = 2. Furthermore, in degree zero the map Bf < Z§ is an inclusion. Therefore we

have
B =~ 720 ' H(CP®CY) —2 BY —— 7P

and even the homology in degree 1 of C? ® C'? vanishes. [I(b)
This proves the lemma. O

Now we want to prove the Eilenberg-Zilber theorem. We will do so in several steps.

PROPOSITION 5.8. For all simplicial complezes X and Y with total vertex orderings
let
&Y XY L OY(X xY) —— O (X xY)

be two chain maps. If they are natural in the sense of REMARK and if they coincide
in degree 0, then they are chain homotopic Y ~ XY for all XY .

Proof. We follow the proof of [Bre97, Chapter VI, Theorem 1.3] but do it for simplicial
complexes. At first, we will show the statement for all X = A", Y = A® with r,s €
Z~, and then we will obtain a result for arbitrary simplicial complexes by using the
naturality and REMARK [5.6|

Let XY and ¥ be as in the statement of the proposition. We consider the chain
maps ¢™° = ¢~"2" and Y™ = Y22 for some r,s € Zso. Inductively, we will
construct a chain homotopy

DI Cu(AT x A%) —— Ciy (A7 x A)

such that
D,:’sﬁ + 5D£’s = (bZ’s — ¢,’;’s (5.1)

for all k € Zo.
In degree 0, we define Dy® := 0. Then property (5.1)) holds

0+0 = ¢p” —vp”
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5 Localizing Holes

since ¢™° and 1"® coincide in degree 0 by assumption.

To define D™* in higher degrees, we use induction over k. Let k& be in Z-,. We
consider the map

¢ — " — D0 (5:2)

on k-chains, which is already defined by induction. The canonical basis of Cj (A" x A¥)
is the set of all k-simplices equipped with the orientation given by the total vertex
ordering on A" x A®. It suffices to define D;’* on the basis. Let o € Cj,(A” x A®) be a
basis element. If we evaluate at ¢ and use the boundary map, we obtain:

Or(@y” — Uy — D21 0k)(0) = 0k (0) — Oxty* (o) — 0Dy Ok (0) (5.3)

If D;”, is defined, we obtain that ([5.3)) is 0 since ¢™* and 1" can be interchanged with
the boundary map and by induction

TS o __ TS TS r,S
akafl_gbkfl k—1 Dkfzak—l

holds. In the case that D;”, is not defined we have D;*, = Dy® = 0 and ¢p° = 9"
which also concludes that vanishes. Hence, the chain (¢,° — ¢,° — D% 0k)(0)
is in the kernel of ;. Since the homology of Hp(A”" x A®) vanishes for all £k > 1 by
LEMMA , the chain is also in the image of 0y, 1. There exists some 1 € Cy,1 (A" x A?)
such that Ox1m = (¢,° — ¥, ° — D ,0k)(0). We define D;*(0) = n. Then we have

Okt D" = Dy 0k)(0) = (9" — ¢37)(0)-

This defines D;* on all k-chains by extending linearly.

Now let X, Y be arbitrary simplicial complexes with total vertex orderings. We will
state DXY : Oy(X xY) — C,(X x Y) by defining it on each basis element. Let
0 € X xY be a k-simplex with orientation induced by the total vertex ordering. By
REMARK there are r,s € Z-q, an oriented simplex e, € A" x A® and inclusions
0 A" — X 1L A* — Y such that (12 x il)(e,) = 0. We define

Dy (o) = Dy (1) % 3)(eq)) = (19 x 1) Dy (e5).

e g

By extending linearly, we obtain D?’Y.
The maps DXY = {Df’y}kezzo form indeed a chain homotopy for all simplicial
complexes X and Y, which we want to check in the following. It suffices to show that

we have
oDXY L DXY o — ¢X,Y _ 1/}X,Y

on a basis. Let 0 € X x Y be a k-simplex with orientation induced by the total vertex
ordering. Then we can write 0 = (12 x 1})(e,) for the simplex and the inclusions
that we used for the definition of D*Y". Since the inclusion is a chain map, we have

(2 x 1) = (12 x 11)0 and conclude

(e DY+ DY ) (10 % ih)(eq) = (10 % 12)(Okr1Dy° + D 10 (o).

By (5.1), we have (g1 D, + D% 0k)(es) = (6" — 1. ") (e,). We use the naturality
of ¢ and 1) to obtain

(tg % o) (0" = i) ea) = (07" =i " g X t)(e0) = (&1, — W) (0)-

This concludes the proof. n
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5 Localizing Holes

REMARK 5.9. There is an analog statement for C,(X)® C,(Y") instead of Co(X x Y),
whose proof uses the second part of REMARK [5.6, We just have to do the same
construction of the chain homotopy D for all C,(AP) ® C,(A?) and then copy the
proof with the basis elements n® 7 = (1, ® ¢;)(A? ® A?) of C,(X) ® C,(Y) instead of

o= (2 xil)(e,).

The proposition states that the proof of the theorem can be reduced to finding the
maps A and S, which we will do in the following two lemmas.

LEMMA 5.10. For all simplicial complexes X and Y with total vertex orderings there
1S a map

S=8"":0,(X)R@C.(Y) — C.(X xY)
such that S
(1) is natural in the sense of REMARK [5.5]

(2) is the canonical isomorphism

So . C()(X) ®C()(Y) — C()(X X Y)
((Po), (1)) —— ((po, 1))

i degree 0.

Proof. The proof mainly follows [Bre97, Chapter IV, Section 16 and Chapter VI, Sec-
tion 1] and [Wei94, Section 6.5 and Section 8.5]. At first we want to decompose
AP x A? into a sum of simplices APT?’s to define S for all p,q € Z=o. A tuple
t = (to,...,tp+q) S {0,...,p} x{0,...,q} which is ordered in both coordinates yields
a simplex s; = {e’ ... e'»t1} in AP x A? For the index set

tl=p+q+1, }

Ipg = Il jq) i= {t c{0,...,p} x{0,...,q} t ordered in both coordinates

we obtain simplices {s¢}¢er, ,, which add up to A? x A?. We just have to choose the cor-
rect orientation of each simplex, such that they glue together: All indices ¢ € I, , have
first entry (0,0), last entry (p, q) and in each step a value f; = ¢, —t;_1 € {(1,0),(0,1)}
is added since t € [p] x [¢] has maximal length. We can define a permutation m; of
{1,...,p+ ¢} with m(1) < --- < m(p) and m(p + 1) < -+ < m(p + ¢) such that

Lo (1,0) ,ie{l,...,p}
=0 b

We note that these permutations are (p, ¢)-shuffles in the sense of [Wei94, Section 6.5]
and describe each t € I, ; uniquely. They yield the correct orientation in form of a sign
sign(m;) for each s, with ¢t € I, ,.

To define S it suffices to do this on the basis elements 7 ® 7 € (Co(X) ® Co(Y))s,
where 7 is a p-simplex in X and 7 a ¢-simplex in Y with orientation induced by the
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5 Localizing Holes

total vertex ordering and p + ¢ = k. At first we observe that we can define a chain

marf]

X Co(X) x Co(Y) —— Co(X xY)

(n,7) —— (ty X tr) ( > sign(m) - st) )

telp,q

We will only give a sketch of the proof that this is indeed a chain map. We make use
of the fact that all s; sum up to AP x A% as mentioned in REMARK [5.2] Therefore the
boundary of > .., sign(m)s; is a sum of the faces of A? x A%, which are the chains

AlPHG o A1 = > sign(m)sy and AP x AldHi} — >, sign(m)s,
tel[p)1i},[q] el [p], [al5}

with ¢ € [p] and j € [g]. By calculating which chains cancel out in >}, sign(m)0s,
and reorder the sum one can obtain

p q

SonxT) = (1yxtr) Z(—l)i Z sign(m¢) s + ( Z Z sign(m;) sy
i=0 telipl{s},[q] j=0 teI[ 1[5}
which is equal to (v, x ¢-)(0Xcp  sign(m)s:) = dS(n x 1) for all n € X p-simplices
and 7 € Y ¢-simplices.
Since X is bilinear, we obtain a map on the tensor product

N®T) —— (1 X t7) ( > sign(wt)st> ,

telp q

which is also a chain map since X is.

Now we just have to check that both required properties (1) and (2) hold. The
naturality can be proven just by using the definitions: Let 1o : X — X’ and¢; : Y — Y’
be inclusions of simplicial complexes with total vertex orderings. Then we obtain chain
maps tg X ¢t1 and g ® ¢1. The map § commutes with the inclusion:

S®@u)n®T1)=38((n) ®@ulr))

= (Lio() X tuy(r)) (Z sign(wt)st>

t€lp,q

= (Lo x t1)(ty X t7) (Z Sign(ﬂ't>5t>

telp q
= (L xt1)SM®T)

To check the second property, we consider the map S in degree 0. Each basis element
in the tensor product Co(X) ® Cy(Y') is of the form (1) ® (70) and is mapped by S to
((no,70)) € Co(X x Y'). This is the canonical isomorphism in degree 0. O

20,(X) x C4(Y) is chain complex by (Co(X) x Co(Y)); = D, qi Cp(X) x Cy(Y) with boundary

map 0, (x)xC,(v) (1 X T) = 0c,x)n x 7+ (=1)Pn x ¢, (v)T-
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5 Localizing Holes

LEMMA 5.11. For all simplicial complexes X and Y with total vertex orderings there
exists a chain map

A=A (X xY) —— C.(X)®C,(Y),

such that A is
(1) a natural chain map.

(2) the canonical isomorphism
Ay : Co(X xY) —— Co(X)® Co(Y)

i degree 0.

Proof. We follow [Bre97, Chapter VI, Section 1|. The same trick as in the proof of
PROPOSITION 5.8 will be used here. At first we construct the chain maps A™* = A4
for r,s € Z=o and then we use the required naturality of A to define it for arbitrary
complexes.

Let 7, s € Z( be two non-negative integers. Inductively, we define A)>°: In the base
case k = 0 the map A{° has to be the canonical isomorphism mapping a 0-simplex
(e',e7) to €' ® e?. There is no choice, since the map has to satisfy property (2) of the
lemma.

Now we do the induction step. Let k € Z~; be a positive integer and o € A" x A® be
some k-simplex oriented by the total vertex orderings. We consider the (k — 1)-chain
A7, 0(0). If k = 1, then the boundary vanishes since the negative chain groups of a
simplicial complex are all 0. For & > 2, we have

0ATS A(o) = AL, 00(0) = 0

by induction. Hence, the (k — 1)-chain is in the kernel of the boundary map. Since the
homology Hj_1(Cy(A") @ Co(A%)) is 0 by LEMMA [5.7] the (k — 1)-chain is also in the
image of J. There exists some 1 € (Co(A") ® Co(A?)); such that

on = A 0(0)

and we define A;°(0) to be n. In the same way, we define A} for all basis elements
o€ A" x A®*. We obtain a well-defined map on the whole chain group by extending
linearly.

Now let X and Y be arbitrary simplicial complexes with total vertex orderings. We
want to define A%Y on the basis of each Cy(X x Y). Let 0 € X x Y be any k-
simplex with orientation induced by the total vertex orderings. By REMARK we
can find a simplex e, € Cj,(A” x A®) and an inclusion (2 x ¢} : A" x A* - X x Y with
o= (2 x i})(e,). We define A (0) := (10 ®1L) A7 (e,). By extending linearly, we
again obtain a map A%Y on the whole chain complex.

It remains to check that A is a chain map, that it is natural and that it is the
canonical isomorphism in degree 0. Let o € X x Y be any simplex oriented by the
total vertex orderings. Then A commutes with the boundary maps since inclusions of
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simplicial complexes commute with boundary maps and on C.(A” x A®) the map A is
defined such that is commutes with the boundary map:

OATY (0) = 0tg ® 15) A (e0) = (1g ® 1) A™ (e5) = (1g ® 1) A™* Ole5)
=AY (0 x Do(e,) = ATV (2 x ib)(e,) = AFY 0(0)

Let tp: X — X' and ¢; : Y — Y’ be inclusions of simplicial complexes with total
vertex orderings and 0 € X x Y be a simplex with (:2 x i!)(e,) = o and e, € A" x A®.

o

By going through the proof of REMARK [5.6] we see that it yields

(t0 x t1)(0) = ((t0 0 1) X (110 1)) (es)

as representation for (t9 x ¢1)(0). Therefore, by definition we have the equation

AXY (19 % 11)(0)) = (10 012) x (110 11)) A™*(e,). We obtain:

A (19 x ) (o) = A oty x neg)(es) = (1ot @ tatg) A(e5)
= (L@ u) (2 @) A (er) = (0 ® 1) ANV (12 @ 1L)(e,)
= (10 x 1) A (0)

The 0-simplex ((po, p1)) € Co(X x Y) is indeed mapped to (pg) ® (p1) by \A:

A5 (2o, 21))) = (15 ® 131) A" (((%,€))) = (15 ® 1) (") ® (7)) = ((p0) ® (1))

Hence, A as constructed above has all required properties. O

After all this preliminary work, the proof of THEOREM [5.4] can be realized by gath-
ering the lemmas and proposition we already have.

Proof of THEOREM [5.4. We use LEMMA LEMMA and PROPOSITION [5.8
from above to show that

AoS ~id
SoA ~id,

where ~ denotes that they are chain homotopic. We conclude that the induced maps
of A and § on homology are isomorphisms. ]

For our purposes we also need an Eilenberg-Zilber theorem but for relative homology.

THEOREM b5.12. For all simplicial complezes Xo < X, Yy © Y with total vertex
orderings the maps A and S induce chain maps on the relative chain complexes

ColX x Y, (X x Vo) U (Xo x V) 752 CulX, Xo) ® C(Y, Vo),

which again induce isomorphisms on homology modules.
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Proof. At first we want to show that A and S are well-defined in each degree k.
The expression (C,o(X, Xo) ® Co(Y,Y)))r on the right hand side is a direct sum of
all Cp(X, Xo) ® Cy(Y,Yy) with p 4+ ¢ = k. We will prove that each of them can be

written as a quotient:

X X0) ® Co(¥ . Yo) = (GoX) o x)) © (G X xy))
= (GX)®C (Y >>/(CP(X)®C'q(Y())+Cp(Xo)®Cq(Y))

If we treat the modules of the chain complexes as vector spaces, this would be true
immediately since for vector spaces V =V, @V and W = W; @ W, we have

(Vi ® Vo) ® (W1 @ Wo) = (Vi @ W1) @ (Vi @ Wo) @ (Vo ® W1) © (Vo ® Wh),

=VRWo+Vo@®W

which implies

Vhia@Why, =viewi = VoW v ew s vyew)

We note that V ® Wy + Vo ® W is not a direct sum, since Vy ® W, occurs two times.
The result also holds for free modules over a commutative ring R with 1 as given

in our case. We denote by G—)lXR the direct sum where we have one copy of R

for each I-simplex in the simplicial complex X. Then we have Ci(X) = @) R and
X) /Cz( Xo) = (—DZX_XO R. We can copy the proof from above by using

Cp(X) ® Cy(Y)

B (X@OR®§OR> (X@Om@z%) (@@R®@OR) @ <§|}?R®€?R>J.

N~

(®% RO®Y, R)+(P%, RO®Y R)

Furthermore, we can take direct sums of quotients of modules by using the rule

@i(Ai/Bi) ~ @, Ai/@_)i B, to obtain

(Cu(X, Xo) ®C (Y Yo>>
~ (Cu(X) / X)®Co(Yo))i + (Co(X0) @ Ca(Y)) -

Now, since we can write both sides as quotients, we have to check that the restrictions
map to each other, explicitly that the diagram

Cr(X x Yo U X x V) —2 (Co(X) ® Cu(Yo))i + (Ca(Xo) ® Cu(Y))

j j (5.4)

CL(X x Y) A » (Co(X) @ Co(Y))i

and its counterpart for S commute, where the vertical maps are those induced by the
inclusions Yy € YV, Xo € X and X x Yy u Xg x Y € X x Y. If we manage to prove
this, we can conclude that the maps A and S are well-defined on the quotients.
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The upper left entry is a sum Ci(X x Yy u X x V) = Cp(X x Yp) + Cp(Xo x Y),
where each summand maps to one on the right side and vice versa:

Ch(X % o) T2 (Cu(X) ® CulYo))s

A
Cu(Xo x Y) == (Co(Xo) @ Cu(Y))i
By using the naturality of the maps A and S, we argue that the diagrams

Cr(X x Yy) —25 (Cu(X) @ Cu(Yo))r Ci(Xo x Y) —2— (Cu(X0) ® Ca(Y))i

| | | |

Ch(X xY) =25 (CuX) Q@ Co(Y)r Cu(X xY) —2— (Co(X)QCu(Y))

and their counterparts for S commute. Therefore, the whole diagrams for A and
S commute.

Now, knowing that A and S are well defined in all degrees, we still need to show
that A and S are chain maps. Since A is a chain map on C,(X x Y'), we obtain

00 A([a]) = d([A(0)]) = [00 Al0)] = [Acd(o)] = Acd([o])

for all [o] € Ck(X xY)/C (X x Yy U X, x Y) by using our definitions. We conclude
that A is a chain map on the quotient. The proof for S works analogously.

Now we will show that A and S on the quotients induce isomorphisms in homo-
logy. In the following, we will do the proof just for A, since for S we can use analog
arguments. We consider the commutative diagram

0 = Co(XxYy U XogXY) —— Co(XxY) — C (XY, (XxY)) u (XoxY)) = 0

L | I

+%(<)§<)?<§ C@@) » CUX)@CY) — Cu(X, Xp) ® Cu(Y,Y) — 0,

where the A in the middle is an isomorphism in homology by THEOREM [5.4] If we can
show that the left one is an isomorphism in homology, we can look at the long exact
sequence in homology and deduce that all induced maps are isomorphisms by the
5-LemmaE|. To use the lemma we need that the diagram in homology commutes, which
is true since both horizontal sequences are the long exact sequences of quotients and
all vertical maps are A. For the proof that the left A is an isomorphism in homology
we consider

0 — Co(Xo x Yp) 4o @%.(g(:fb}z) — S O X xYyuXyxY) —0

ido(-id) Co(X) ® Ca(Y)) N Co(X) ® Cu(Y0)

0 — Co(Xo) ®Co(Yy) — BC(Xo) @ CL(Y) +Co(X0) ® C.(Y) — 0

3The 5-Lemma can be found in [Rot09, Proposition 2.72].
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where the upper row is the Mayer-Vietoris short exact sequence as in [Hat02, Sec-
tion 2.2] but for simplicial complexes and the bottom row is also a short exact se-
quence made by a similar construction. The left and the middle vertical map are both
isomorphisms in homology by Eilenberg-Zilber. Furthermore, the diagram in homo-
logy commutes since on the rows are the same maps and the vertical maps are all A.
Again, by using the 5-Lemma, also the map on the right hand side is an isomorphism
in homology. This is what we needed to show. [

We note that both maps A and S on quotients are natural in the sense that they
commute with inclusions obtained by inclusions of pairs. This can be checked by using

the naturality on the level of C(X x Y) and (Ce(X) ® Co(Y))x of A and S.

5.2 Mayer-Vietoris Blowup

In order to localize holes in a finite simplicial complex X, we consider a cover U and
look at the disjoint union X4 of the pieces. Taking the homology of X¥ yields local
descriptions. We check which homology classes survive by connecting the pieces and
computing persistent homology for this process. The Mayer- Vietoris blowup XY is ob-
tained by gluing the parts together and has the same homology as the original complex
X but the parts where the subcomplexes intersect are blowed up as in Figure [5.4] In
this section we mainly follow |[ZCO08].

At first we formalize the notion of a cover of a simplicial complex X and perform the
construction of the blowup. For the rest of this chapter, let all simplicial complexes be
equipped with total vertex orderings since we need this property to define products.

DEFINITION 5.13 (Simplicial subcomplex). An (abstract) simplicial subcomplex of an
(abstract) simplicial complex X is a subset of X, which is also a complex.

DEFINITION 5.14 (Simplicial cover). Let X be an (abstract) simplicial complex. An
(abstract) simplicial cover U = {X;}ier for any index set [ is a set of subcomplexes of
X such that their union (J,.; X; is the whole complex X.

DEFINITION 5.15 (Filtered Mayer-Vietoris blowup). Let X be a simplicial complex
and U = {X'}epn—1] be a simplicial cover, where [n — 1] = {0,...,n — 1}. For all
t € [n — 1] we define

X{= ) X/ xAlexxart
J<[n—1]
0<|J|<t+1
where X7 := ﬂjeJ X7 and A7 < A" ! is the simplex with vertices induced by j € J.
The Mayer-Vietoris blowup of X and U is X* = X% ,. We call the family {X¥};c,—1)
the filtered Mayer-Vietoris blowup.

We note that since X¥ is contained in X x A" !, we have canonical projections
7x : XY - X and ma : XY — A" The projections yield chain maps given by

TX : Ci(X x A1) —— Ci(X)
o 0 , if x; = x; for some j # j'
((1’0,00),...,(55170'1)) { (;EO’,,.,.ZEi) R else
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for all i € Z~( and similarly for ma.

EXAMPLE 5.16. Let X = {a,b,c,d, e} be a simplicial complex with a simplicial cover
= {XY X'} containing the subcomplexes X° = {a, b, c,d} and X! = {b, ¢, d, e}. Then
Xg’ is of the form X x {0} U X* x {1} and the Mayer-Vietoris blowup is

{(b,0), (b,1)},{(c,0), (c, 1)}, {(d
Xi/[:X(L){U {( )a( 71)}7{( ) ( 71)7(071
{(c,0),(c,1),(d, 1)}, {(c,0),(d, 0

In Figure we see a picture of the Mayer-Vietoris blowup X% as described above.

(b,1) (e, 1) (d,1) (e, 1)
@

@
(a,0) (b,0) (c,0) (d,0)

Figure 5.4: Example of a Mayer-Vietoris blowup.

For the simplicial complex X = {a} we can define a cover Y = {X° X' X2} with
X% = X' = X? = {a}. Then we obtain:
th = {{(a760)}7{ a,el)}, {(G,GQ)}}
X' =Xt v {{(a,€), (a. e} {(a,€). (a. )} {(a, ), (a, €*)}}
Xg = le{ Y {{(a760>7 (a’76 > (a7 62)}}

This filtered Mayer-Vietoris blowup is visualized in Figure [5.5]

(a,e?) (a,e?) (a,e?)
(]
(] (]
(a,e9) (a,el) (a,e%) (a,el) (a,e9) (a,el)
XU XU XY

Figure 5.5: Filtered Mayer-Vietoris blowup for the cover consisting of three copies of
one point.

LEMMA 5.17 (Local description). Let X be a simplicial complex with a simplicial cover
= {X"}ien—1]- For all k € Z we have

Hy(X{) = @ Hi(X").

1€[n—1]
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Proof. By the definition of the filtered Mayer-Vietoris blowup, we can easily see that

n—1
X = U X7 x A = Uij{ej},
J<[n—1] Jj=0
|7|=1
where ¢/, j € [n — 1] are the edges of A"~!. This is the disjoint union of the pieces of
the cover. O

LEMMA 5.18 (Global description). Let X be a simplicial complex and U = {X"}ien—1
be a simplicial cover. Then for all k € Z there exists an isomorphism

H(XY) =~ Hy(X)
between the homology of X% and X given by the chain map Tx.
Proof. We take the standard realization

x4 = | IxXIxal= ) X< Al

g#J<[n—1] g#J<[n—1]

In |ZCO8| Section 4.1, Lemma 1| they do not give an explicit proof but refer to the case
where they define a Mayer-Vietoris blowup for an open cover of the topological space
|X| and argue that it is homotopy equivalent to the space |X]| itself. The realization
of a simplicial cover is in general not an open cover of | X | but it should be possible to
extend this proof to simplicial coverings.

Since we do not need a homotopy equivalence on the realizations, we follow a different
approach. At first, we consider a simple case, where U = {X°, X1} is a simplicial cover
consisting of two simplicial subcomplexes. The Mayer-Vietoris blowup is of the form

XY = |X° x {0} U | X" x {1}] U |(X°~ X1 x [0,1]] < | X]| x [0, 1].

By using ma : |[X¥| — [0,1] we define U := 71'([0,2)) and V := 71" ((,1]) which
form an open cover of | X¥| as in Figure [5.6]

Figure 5.6: Open cover of X with |U | = 2.

For the cover U of X we have a Mayer-Vietoris long exact sequence obtained by the
short exact sequence

0 —— C( XN XY) — C( XY Cu(X) —— Co(X) —— 0
a > (a,—a) (5.5)

(a,b) ———  a+ 0.
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We transfer this long exact sequence to singular homology of the realizations and
compare it with the Mayer-Vietoris long exact sequences of the cover {U,V} of | XY|:

s Hy(UNV) ———— H(U)® H(V) ——— H (| XY]) —— ...
()1 | (rx)s@(mx)e | (s
—— Hy(| X 0 |XY) —— H (X)) @ H (| X)) —— Hiy(|X]) —— ...
The first two vertical maps of the diagram are isomorphisms since we find homotopy
equivalences U n V' ~ |X° n X[ x {3}, U ~ | X" x {0} and V ~ |X'| x {1} which
preserve the x-coordinate by contracting linearly. Using the 5-Lemma yields the third
isomorphism. This proves the simple case.
The remaining cases will be proven by induction. For & = {X°, ..., X"} we have

A | XY —— A,

We consider the realization |A"| = conv{0,e!,...e"} < R™ and cover it by
Z Yi < %}
2 Yi > %}

UA = {(yla"'ayn) € |An

Vp = {(yl,---,yn) € |A”

as in Figure [5.7]

Figure 5.7: Open cover of X¥ with |[U | =n + 1.

We obtain an open cover {U,V} with U := 7, (Ua),V = 75'(Va) of | X¥]. As
before, we can find homotopy equivalent spaces

UnV=~5:=|X"n (IXI x {(yl,---,yn) ‘Zy = %}) SN <{y ‘ D Y= %})
U~ |X°] x {0} = 73'({0})
V ~ ‘(Xl U-'-UXn>{X1 ..... X"}‘ _ ,/T;l(A{l ,,,,, n})
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by retracting linearly with the following homotopies:

HU,V: UﬁVX[O,l]—)UﬁV

((I,y),t) S (:L‘,(l—t).y_|_t,% y )

2 Yi
Hy : Ux|[0,1] — U
((z,9), 1) —— (2, (1 =) -y +1-0)
Hy : Vx[0,1]] — V
(@, 9),t) —— (&, (1 =t) -y + - )

(z,9) (x,2y)
Since mx (AT = (X1 U - U X)X we obtain that T is isomorphic to
|(U] 1XOmXJ){XO“X1 """ XO“Xl}| For better readability, we define X! := X1u---uX™.

As in the simple case we want to find maps between the Mayer-Vietoris long ezact
sequence for the cover {U,V} of | XY| and {|X°|,|X*|} of |X|. We have the following
isomorphisms

Hy(U A V) = Hy(S) = Hy(T) % H(1X° ~ X))

~

H(U) = Hy(IX0] x {0}) 2% H,(1Xx0))

Hi(V) = Hy(|(X)X X)) 95 H(1X7))
where the first and the third hold by induction. Since all isomorphisms in these three
rows preserve the z-coordinate, the whole composition in each row is the map (mx).
and we obtain the following commutative diagram for the Mayer-Vietoris long exact

SeEqueNnces:

(WX)*\LZ (WX)*(‘B(WX)*\LZ (WX)*l

C—— Hi(IX°) | X)) —— Hy(|XO) @ He(|XY])) —— Hi(|X]) —— ...
By the 5-Lemma we obtain that

(mx)w « Ho(IXY]) —— Hi(IX])

64



5 Localizing Holes

is an isomorphism. The simplicial chain map 7y induces a map (7x). which coincides
with the one from above in the sense that

Hy (x4 % g (x)
J |
Hy(|X4) 2% Hy(1X))
commutes. This proves the lemma. O

The following lemma justifies the name of the Mayer-Vietoris blowup. The proof
is an adaption from [ZCO08, Section 4.1] where the authors shortly discuss the lemma
in the singular instead of the simplicial case. We do not need this lemma for further
arguments, therefore we give the proof only in the appendix in Section [6.3]

LEMMA 5.19 (Justification of the name). For a simplicial cover U = {X°, X'} of X
consisting of two simplicial subcomplezes, we have an isomorphism from each homology
module of the Mayer-Vietoris long exact sequence to the homology module of the long
exact sequence for the pair (XY, X¥) shifted by one:

S Hy(XY) —— H(XY) —— H;(XY, XY) —— ...

| | |

o Hy( X" ® Hy(XY) —— Hy(X) ——— H_ (X)) ———

Moreover, the diagram commutes.

In DEFINITION we already introduced the filtration

c N U . N U . N u _ xu
@ /XO er /(—>Xn_1—X .

Now we want to compute its persistent homology. With the tools we already dis-
cussed we would proceed as follows: We triangulate X“ as we did at the beginning of
Section [5.1] and then compute the corresponding simplicial chain complex

Co(XH) = Cu(XM) = ] Cu(X7 x AY).

J<[n—1]
0<|J|<t+1

Using the persistence algorithm from the preceding chapter, we are able to compute a
basis for the homology of X¥. The intervals [0,0) in the barcode are the ones that
describe the homology classes of X which come from the local parts. It would be
possible to proceed in this way, but computationally this procedure is very expensive.

DEFINITION 5.20. Let X be a simplicial complex and U = {X i}ie[n_l] a simplicial
cover. We call the image of

Ly @ Hk(Xé/{) — Hk(Xfff_l)

the k-th U-localized homology of X.
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Instead of computing persistent homology of C,(X¥); we will consider a smaller chain
complex CY(X);, which provides the same homology. We follow [ZC08|, Section 4.3].

DEFINITION 5.21 (Filtered blowup chain complex). Let X be a simplicial complex
and U = {X"}ie[n—1] a simplicial cover as in DEFINITION [5.14] For ¢ € [n— 1] we define
the complex CY(X); < C.(X) ® C.(A™1) by

CH(X) = > (CUX)@CU(A))

J<[n—1]
0<|J|<t+1

for all k € Z with the typical boundary maps d(a ® b) = da ® b + (—1)%&@q ® ob for
the tensor product Cy(X) ® Cy (A" 1). We call CY(X) := C¥(X),_; the blowup chain
complez of X and U and the family {C¥(X),;}seo—1) the filtered blowup chain complex.

To prove that the chain complex of the filtered Mayer-Vietoris blowup and the filtered
blowup chain complex yield the same persistent homology, we make use of the maps
from the Eilenberg-Zilber theorem

Cu (X7 x AT) é CL(X7) @ CL (A7)

which were introduced in THEOREM [5.4].

DEFINITION 5.22. Let U be a cover of the simplicial complex X. For all k € Z we

denote by

A
Ci(XY) — CH(X)

the maps defined by applying the maps from the Eilenberg-Zilber theorem on each
summand Ci(X7 x A7) and (C.(X’) ® C.(A7))x respectively.

LEMMA 5.23. Let X be a simplicial complex with a cover U consisting of n subcom-
plexes. For the maps A and S from the preceding definition, the following properties
hold:

(a) A and S are well-defined.

(b) A and S are chain maps.
(c) We have A(Cy(XH),) = C¥(X); and S(C¥(X);) < Cp(XY), for all k € Z and

teln—1].
Assuming that the lemma holds, we can consider the maps A; := ‘A|C.(X“)t and
S =8 |C“( X), between the filtered blowup chain complex and the chain complex of

the filtered Mayer-Vietoris blowup:

Ay
Co(XH), o CU(X )
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We recall

CoXM) = ). CuX7 x AT) < CUXY) = Co(XH)ps

J<[n—1]
0<|J|<t+1

ClX)e= ), CXN)@C(AT) = CY(X) = CY(X)n

J<S[n—1]
0<|J|<t+1

from DEFINITION [5.15 and DEFINITION [5.21]

Proof of LEMMA [5.23 At first we are going to prove (a). Let k € Z be an integer. On
each summand of C¥(X) and Cj,(XY) we have the maps

Cp(X7 x A7) # (Co(X7) ® Cu (A7),

from THEOREM To obtain well-defined maps on the sum, we have to check that
each map coincides on the intersection of two different summands. As mentioned in
[ZC08] we make use of the intersection-formula for C and the naturality of A. To do
this for S too, we need its naturality and another intersection formula for the
tensor products (Cu(X”) ® Co(A7))s.

Let I,J < [n — 1] be subsets with |I],|J| > 0. By using the intersection-formula for
C}, we obtain

Ce(XT x AN n C(X7 x A7) = Co(XT n X7 x AT A A7)
_ Ck(XIuJ % AIK\J).

In addition, we have
(CaXN) @ Ca(A))i 0 (Co(X7) @ Cu(A))y = (Co(XT) @ Co(AT)).
The naturality of A and S yield the following commutative diagram

(Co(XT) @ Cu(AT))y —1 5 Cu(XT x AT) — 2L (C.(XT) ® Cu(AT)),

] ] ]

(C.(XIUJ)®C.(AImJ))k ‘SI’JE Ck(XIuJXAImJ) Arg (C.(XIUJ)®C.(AIﬂJ>)k

] ) )

(CU(X7) @ Cu (A7) —22 5 Cu(X7 x AT) — A2 (O.(X7) @ Cu (A7),

where the vertical maps are induced by inclusions. If we take for example an element
o in the intersection Cy(XT7 x AI"7) then it is mapped by A; to

Ar(e1(0)) =1(Ar 5(0))

and by A; to
A;s(i(0)) = T5(Ar.(0)).
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Both elements in the image coincide, since they come from the same element in the
intersection. We can do this for all elements in the intersection for A and S. This
proves part (a). C(a)

A and § are indeed chain maps since they are on each chain group Cj(X7 x A7) or
(Co(X7)® Co(A7))r. We have

0A(0) =0A;(0) =A;0(0) = Ad(o)
0S(0) =08 ;(0) = §,0(0) = Sd(o)

for the J with o € C,(X7 x A7) and 0 € C,(X7) ® C,(A’), respectively. C(b)
Also (c) holds since Cy(X¥); and CY(X); for t € [n — 1] and k € Z are sums over the
same indices and A and S map summands with the same indices to each other. We
have the inclusions A(Cy(X¥);) = C¥(X), and S(CY(X),) < Cr(XY),. [e)
This proves the lemma. O

In the following, we will show that the maps
Ay
CL(XH), 22 CH(X),
t
as constructed above induce an isomorphism in homology. In this case the barcodes

for the two chain complexes coincide.

THEOREM 5.24. Let X be a simplicial complex and U = {X'}iepn—1) be a simplicial
cover of X. The chain map

S:CYX) —— C(XY)
and all restrictions S; induce isomorphisms in homology
(Se)s + Ho(CLH(X)) —— Hi(Co(XH),)

for all k € Z and t € [n — 1]. Furthermore, the diagram

St)x
Hy(CY(X),) 222,

~

H,(Co(XH),)

l (5.6)
(8y)x

Hy,(CH(X)v) —= Hi(Co(XH)y)

commutes for all k€ Z and t <t' € [n—1].

The theorem also holds for the maps A; instead of S; as stated in [ZC08| Theorem 5|.
If we assume that the theorem holds, we obtain

COROLLARY 5.25. Consider the coefficients for homology to be a field. For the con-
ditions as in THEOREM M the barcodes of {C, (Xu)t}te[nq] and {C?(X)t}te[n,l] co-
incide.

Proof. Both filtrations are directed spaces in the sense of Section The maps (Sy)s«
for t € [n — 1] form an isomorphism of directed spaces because of (5.6)). ]
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Proof of THEOREM |5.24. We already constructed the chain map S and it remains to
check that it fulfills the desired properties. Diagram ([5.6) indeed commutes since for
allt <t e[n—1]

CU(X), —S Oy (XYY,

[ [

CU(X )y~ O (XH),

is a commutative diagram in the category of chain complexes of modules and Hy is a
functor by [Wei94, Section 1.2] for all & € Z. Therefore, it suffices to show that the
induced maps (S;), on homology are isomorphisms for all ¢t € [n — 1]. We will prove
this by induction over t.

For ¢t = 0 we have

Cr(XH)y = Z Ce(X7 x A7) = Z_: Cr(X7 x {e})
e )

@@w;j LX) ® Cal{ )

lle

where the e/ for j € [n — 1] are distinct points. We note that C,({e’}) is the coefficient
ring of the module for ¢ = 0 and otherwise 0. Hence, Cy(X¥), is isomorphic to C¥(X),
by the canonical isomorphism Sy.

Now we perform the induction step and assume that the maps Sy, ...,S;_1 induce
isomorphisms in homology. We consider the following short exact sequences of chain
complexes

0 —— CYUX)y —— CYU(X), —— ?(X)t/cz:,(X)t_l — 0
J/St—l l lgt
0 —— Co(XY)j1 —— Cu(XY)y — '(Xu>t/C'.(Xu)t—1 — 0

with maps between them, where S't is the map induced by S on the quotien. St is a
well-defined chain map since §; and §;_; are well-defined chain maps. We obtain long
exact sequences in homology with maps between them by the Snake Lemma:

H; (CY(X)in) — Hi (CH(X)) — Hi (e xy, ) —
lst 1) l(St)* l(st)*
. — H )i—1) — H; (Co(XY),) — H; <C°<Xu)t/0.(X“)t_1> —
4We have Cil(X)t/C’ij(X)t_l =...5 Cy(X)t/CZ-’[(X)t_l 4 Oﬁ{l(X)t/O-u,l(X)t_l 2 ... and an

analog sequence for Ce (Xu)t/C’.(X”)t_l
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The diagram commutes since the maps on the rows are equal and all vertical maps
are S. We want to prove that (S;), is an isomorphism by using the 5-Lemma. The
map (S;_1) is an isomorphism for all ¢ € Z by induction. To show that (31;)* is also
an isomorphism we need to do some work. We will find chain complexes which are
isomorphic to the domain and codomain of S; respectively:

Xt/ St » Cu(X)e/ry yu
Ot o) (St Cr(X )i
[o®n] [oxn]
- T | (5.7)
[o®n] [oxn]
D (CX)®C(AT, A, s @ Cu(X? x A7, X7 x 0A7)
J<[n—1] J<[n—1]
|J|=t+1 |[J|=t+1

If we assume that we already constructed the isomorphism and take f as S from the
Eilenberg-Zilber theorem for the quotient, then the diagram commutes. By using THE-
OREM with X = X7, Y = A/, X, = @ and Yy, = 0A’ for each J individually,
we conclude that f induces an isomorphism in homology. The vertical maps are iso-
morphisms and also yield an isomorphism in homology. Therefore, S; has to be an
isomorphism in homology, too. In the remaining part of the proof we will construct
the vertical isomorphisms of diagram ({5.7)).
We start with the vertical map on the right side:

u
* )t/ckz(Xu)t—l = JC%?—I] Cu(X7 X A7, X an)
\ﬂ:tﬂ

[0 xn] +— [0 x 7]

In the following we denote by I(t) the set of all J < [n — 1] with 0 < |J| < ¢ for
the sake of better readability. We divide the construction of the isomorphism into two
steps: Let {Jy,...,J i} be the set {J < [n—1] | |J]| =t + 1}. In the first step we show
that the sum in the bottom row of

Xu)t/ck(Xu)t_l - Z Ck X AJ / Z Ck >< AJ)

Jel(t+1)

Jel(t)
m (5.8)
_ i AT + Cr(X7 x A7)
Z} (i ) a GRS X  a)
i= Jel(t)
is a direct sum. This can be shown by proving that
ChXT < ATy n Y Cu(X x AT) 2 CL(X7 x A7)
je{1,...,m}—{i} Jel(t)
for all i € {1,...,m}. It suffices to prove the inclusion for i = 1 since we can reorder
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Ji, ...y . We obtain

CL(X7 % A Z JXAJj):c(lexAJIkaU X7 x AT

— CL(Xt x ATt A U X7 x A7)

Ok(U XJ1UJ]' X AJ1ﬁJj)

7j=2

DICHXY x 4700 = ),

There are inclusions X /1Y’ € X717 for all j € {2,...,m}. Therefore, we have
Ck(XJlqu % AJ1ﬁJj) - Crk(XJlmJj % AJlmJ]‘).
Since |J; n J;| <t for all j € {2,...,m}, we obtain

(x) € D Cu(X 705 % AT Z Cr(X7 x A7),

Jj=2 Jel(t
In the second step we will find an isomorphism for each summand
Q (Ck(XJlXAJ)-F Z Ck XJXAJ

<t

N/s2 cux? x A%

|J]<t

with i € {1,...,m} from (5.8):

Ji J;
Qi = Ck(X x A )/Ck(XJZ « &AJ’L)

[n x o] +— [n x o]

Let i be some element in {1,...,m}. Weuse (A+ B)/B = A/(A ~ B) for the modules
A= Cp(X7 x A7) and B = 3,1y Ck(X7 x A7). Then it remains to show that
CL(X7 x AT A Z Cu(X7 x A7) £ Cu(X7 x 0AT).
Jel(t
The inclusion “2” holds since
Cr(X7T x 0A") = Y Ce(X7 x ATy = >0 Cu(XT x A7)
T#IGJ; D#IEJ;
and |J;| =t + 1. We prove the other inclusion “c” by looking at
CL(X7 x A7) Z Cu(X7 x AT) = C(X7 x A) n C( | ] X7 x A7)
Jel(t Jel(t)
= Cp(X7 x A 1 U X7 x A7)
Jel(t)
U XJiuJ % AJ¢(\J>.

Jel(t)
JinJ+J
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~

For all J € I(t) with J; 0 J # @& we define J := J; 0 J. It satisfies J e I(t), J < J;
and the inclusion X7i%7/ x A0/ < X7ivJ 5 AJinJ holds. Therefore, we obtain

Ci( U X797 5 ATy € Oy U xJivd o AJimj) = C( U X707 5 ATy,

Jel(t) Jel(t) Jel(t)
Jind#=JD jCJ~ JSJ;

Since J; u J = J; and J; nJ = J for all J < J;, we have
XJZ'UJ X AJN'\J — XJi % AJ‘

The set of all J < J; with 0 < |J| < ¢ is the set of all & # J & J; since |J;| =t + 1.
Hence, we obtain

(| xixal)y=cxx [ a7

Jel(t) B#IEJ;
J<J;

— OW(X7 x OA™)

by using that 0A” = Uizt AT = Ugrsey, A7 This concludes the proof of the
second step.

To show that the isomorphism is even an isomorphism of simplicial chain complexes
we need that the map commutes with the boundary operator ¢. But the map and 0
are defined on the quotient by its counterparts on the representatives where the map
is the identity, therefore this holds.

Now we consider the domain of S; and aim to obtain the following isomorphism:

Doy, = | @ CX)e0@%08)
|J|=t+1

[0 x 0] —— [0 x 7]

We use similar arguments as in the proof for the codomain but write them down
differently. Comparing the bases of chain complexes as we will do it here was done
before by the rules Co(X) n Co(Y) = Co(X nY) and Co(X) + Co(Y) = Co (X UY).
Now we are working with tensor products and we cannot use these rules anymore. We
again proceed in two steps. In the first step we want to show that the quotient

m

> <<C.(XJi>®C.(AJi))kf]§(t() LXN@CAAND /5 o (x@cu )] B9)

i=1 Jel(t)

which is equal to CH(X )t/C'ff (X)is is a direct sum. As before, to prove this it remains
to show that

(CXM @AM 0 DACN B AN E Y (X)) © Ca)

Jel(t)

72



5 Localizing Holes

The modules A := (C.(X”") ® Co(A”1)), and B := Y, (Co(X”) @ C. (A7), are
contained in (Cy(X) ® C,(A"1))x, which is a free module with basis

B = {0@77 ’ Ip,qeZsg:p+q=Fk,oe X p-simplex,ne A" ! q—simplex}
where the orientations of the simplices are induced by the total orderings on X and
A" 1. Moreover, we have bases

Ba = {a@neB ’ ce X' ne A‘h}
Bgp = {a®77€8 | 3ie{2,...,m}:JeXJi,neAJi}
for A and B, which are both contained in B. Hence, the intersection of A and B has
the basis
Banp ={oc®@neB|3iec{2,....,m}:0e X" n X" neAlinAl}
=B4s4nBg.

We have the inclusion X7t n X7t = X7iv/i < X7indt for all i € {2,...,m}. Since
ATi A AT = AJindrand | J; n Jy| < t holds, the basis Bap is contained in

D CUXT) @ Cu(A))s

Jel(t)

Hence, also A n B is contained in 3 ;) (Co(X7) ® Co(A7));.
In the second step we want to prove that there are isomorphisms

(G BN+ B (CXNOCAM) ¢ (¢ ()@ (00,

Jel(t)
~ (C,(X‘]i) ® (C-(AJ”/O.((?AJZ')));C

for each summand of (5.9)). If we show that for each pair (p,q) with p + ¢ = k there is
an isomorphism

(CP(XJZ) ® OQ(AJZ) + ZJEI(t)( (XJ) ® C AJ /ZJEI XJ) ® C (A‘]))

= (G ®CAN )0 (x ) ® ¢y (2a7)

~ Ji Ji
=~ Cp(X7)® <Oq(A )/Cq(é’AJi)> ;
then they sum up to an isomorphism like above. It suffices to show that

CXM) ®Cy(AT)n 3 (CUXT) @ CL(A))e = G(X") @ C(0n™).
~ JET() ~ ) ~
=B
We have the inclusion ¢’ < A’ since C,(0A”") = C,(A”). Furthermore, we know that

Cy(OAT) =3 sy, Cy(A7). Hence, we obtain

C' = Cp(XT)@Cy (A7) = Y C(XT) @ Cy(A)
G#I&J;
> GX)ecA)) e B
D#I=J;
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and the inclusion “2” is proven. To show that also the inclusion “<” holds, we need to
compare bases as in the first step. We have the bases

By = {0@77 eB ‘ o€ X' p-simplex and n e A”i q—simplex}
Bp ={oc@neB|3Jecl(t):oe X’ and ne A’}
Bang = {a@n eB ‘ 3Jel(t):0e X nX" p-simplex and n e A nA” q-simplex}

and we want to show that Ba/~p is contained in C’. We use that for all J € I(t) with
JnJ; # & we have X/ n X7 = X'V < X% and AV n A% = A/ Moreover, we
can rewrite the set {J nJ; # & | Je I(t)} as {J | & # J & J;} since |J;]| =t + 1. By
using | Jgy, jo, A7 = OA” this yields

Bynp € {o®neB |3 # J < J;:oe X% psimplex and ne A7 g-simplex}
={oc®neB | ce X’ psimplex and n € JA’ g-simplex }.

But this is a basis for C'. We obtain By~p < C’ and therefore A’ n B < (' as
desired. O

5.3 The Localization Algorithm

To execute the localization algorithm we need a finite simplicial complex X together
with a simplicial cover U = {X'}ic[,—1]. As already mentioned in this chapter, we
should keep in mind that the construction of the Mayer-Vietoris blowup requires a
total vertex ordering of X. We can compute persistent homology of the corresponding
filtered Mayer-Vietoris blowup {X¥},c(,—1] by Algorithm 1| from Chapter . This yields
a description of the localized homology of X, represented by the intervals from 0 to oo
in the barcode. By considering all classes that persist until the end, we obtain a full
description of the homology of X¥ ~ X.

As we have seen in the preceding section, instead of looking at the chains C,(X%),
of the filtered Mayer-Vietoris blowup we can consider the chains C%(X),;, which yield
the same homology. To use the persistence algorithm we already implemented, we just
need to specify a basis for C¥(X) which can be restricted to a basis for C¥(X); for all
t € [n — 1] and understand how the boundary map for this basis looks like.

LEMMA 5.26 (Basis for C¥(X)). The set
By ={c@A | g#Jc[n—1],0e X’ dimo +dimA’ = k}

where the orientation of the simplices is induced by the total orderings on X and A" !
is a basis for the chain module C¥(X) for all k € Z,.

Proof. Let k € Z-o be some non-negative integer We already know that the filtered
blowup chain complex

CY(X) € (Co(X) @ Cu(A™ )i

is included in the tensor product of two chain complexes. The basis for this tensor
product is N
By ={c®A"| e X, dimo + dim A = k}
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5 Localizing Holes

with orientations induced by the total orderings of X and A"~!. The set
B ={o@AleB, | oe X! Al c AV}

is a basis for the module (Cy(X”) ® C,(A”)),. Hence, the basis for the chain module
CHX) = X (CuXT)@C(AT))y is

J<S[n—1]
o<|J|
Bi= |J Bi= |J f{o@AleBi|oeXx’ 1<)
F#J<[n—1] g#JS[n—1]

If 0 ® Al is in the part of the union for index J, then it is also in every part for index
J" = J. By removing duplicates, we obtain

Bkz U {O‘@AJEék|0'EXJ}
g#J<[n—1]
={e@A7 |oce X’ dimo +dimA’ =k, & #J < [n—1]}

with orientations induced by the total vertex orderings as stated in the lemma. O

REMARK 5.27. Analogously, for all k € Z~, and ¢ € [n — 1] we obtain a basis
B ={c@A eB, ||J|<t+1}

The boundary map on C¥(X) is the standard boundary map on tensor products
from [Hat02, Section 3.B]:

LEMMA 5.28. Let 0 @ A7 € By, be a basis element of C¥(X) with k € Zso. Then the
boundary map s given by

(e @A) =00 @A + (—=1)1™76 ® A
dimo ' _ dim A7 ' R
= Y ()E@A + (=) Y (1)o@ A,

i=0 =0

where (/-\)j denotes that the j-th vertex is deleted from the sequence.

Proof. We use the typical definition of the boundary map for tensor products in the
first equation. Then we evaluate the map on each entry. O

Now we discuss how to implement the construction of the filtered blowup chain
complex. As in Chapter [f] we use coefficients in Fy such that we do not need to
care about the orientation of the simplices. We consider the filtered blowup chain
complex of the simplicial complex X and its cover Y. Its basis elements o @ A’
with 0 € X and & # J < [n — 1] are stored as tuples (o, J). For each of those
tuples we create a cell by computing its boundary as in LEMMA and dimension
dim((c, J)) := dim(o) + dim(A”) = dim(o) + |J] — 1 and add it to a list K. To each
cell (o,J) in K we store its order |J| — 1 in the sequence {C¥(X);}iefn—1- We note
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that by this implementation the cell (o, J) is in C¥(X); if and only if dim((c, J)) = k
and ord((c, J)) < t.

Now we order the elements in the list K by their order and if they have the same
order, we order them by their dimension. By doing this, we obtain a well-defined
filtration of complexes, where in each step one cell is added. Then we can use the
persistent homology algorithm from Chapter |4| to get the barcode.

We are interested in those cells whose corresponding basis element persists in ho-
mology until the end of the sequence. Those are the cells that do not have a partner.
Since the second step of the persistence algorithm changes only the cells which have a
partner with a higher index, it is irrelevant for the localization algorithm. Hence, we
can even use Algorithm [3]

The implementation to construct the filtered blowup chain complex can be found
in blowup.py. It uses the class tuple from tuple.py to solve the technical problem that
two lists whose entries coincide are not equal by default in Python3. The code can be
found in the appendix in Section . It is also available at [Glin19], where the reader
in addition can find a simple examples for the computation of localized homology in
the files Fxample Localizationl.py and Example  Localization2.py.

To interpret the results, we want to transfer the homology classes of H(CY (X))
with k € Z obtained by the persistence algorithm to Hy(X). Let [0] € Hx(CY(X);)
with ¢ € [n — 1] be some homology class obtained from the algorithm which is mapped
by the induced map

Hi(C¥(X);) — Hp(C¥(X)n-1) = Hi(CH(X))

of the inclusion ¢ : CY(X); — CY(X),_1 to [¢] # 0 € H,(C¥(X)). From THEO-
REM we know the map

S, Hy(CY(X)) —— H(C.(XY))

It preserves the persistence structure in the sense of (5.6). From LEMMA |5.18| we know
that the chain map 7y : Cx(XY) — Cy(X) yields an isomorphism in homology. This
gives us the corresponding basis element in the homology of Hy(X):

(7x)s : He(Co(XY)) —— Hi(Cu(X))
[S(0)] —— [mx(S(0))]

We are interested in how 7x(S(0)) looks like on the chain-level. By LEMMA [5.26
the module C¥(X) has the basis

Bii={n@A | g#J<[n—1],ne X’ dimn+ dim A’ = k}.
It suffices to describe mx o S for elements of the basis By. Let n ® A’ € By, be a basis

element with n = (no,...,n,), A = (e, ..., €7) and p+ ¢ = k. In particular, 7 is a p-
simplex and A7 is a ¢g-simplex. Let I, , be the set of all indices t < {0,...,p}x{0,...,q}
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which are ordered in both coordinates and satisfy |[t| = p+ ¢+ 1. Then S maps n® A’

to
(ty x tas)( ) sign(m)s;)
tel, 4
by its construction in LEMMA [5.10, If ¢ is at least 1, then we consider some element
t = ((ro,75),.- .., (rk,ry)) in I, ,. We have

/

(Ln X LAJ<St)) = ((771”0? er())’ KR (nrw erk))'

At least two indices r;, r;41 in 1o, . .., 7, coincide. Hence, also 7,, and n,,,, coincide and
Tx maps i, Xas (s;) to 0. Since ¢ was chosen arbitrarily, Tx also maps S(n® A7) to
0. If ¢ = 0, then Ztequ sign(7¢)s¢ = 5((0,0),...,(k,0))- Lherefore,

Sn@ A7) = ((no, ), ..., (1, €°))

and 7x(S(n x A7) = (1o, ..., ) = 1.

We conclude that we can interpret our results from the algorithm by writing each
chain representing an interval [¢,00) for some ¢ in Zsq as linear combination of basis
elements n ® A7 and project them to their first entry » if |J| = 0 and map them to 0
for |J| > 0.

We will prove in the following lemma that those cells obtained from the algorithm
whose corresponding basis element persists form order 0 up to the end yield homology
classes of X which are in one component Cy(X?) with k € Z, j € [n—1]. Therefore, this
procedure in fact provides an improved basis of the homology classes of X as described
at the beginning of this chapter.

LEMMA 5.29. Let X be a simplicial complex and U = {X"}icfo—1) be a cover consisting
of n subcomplexes. We consider the filtered blowup chain complex {CY¥(X):}iefn—1]-
The basis elements obtained by Algorithm[1] or Algorithm[3 representing a class in the

homology-sequence that persist from degree O until the end are chains in one component
Co( X ® C.({e7}) with j € [n— 1] of C¥(X)y.

Proof. This can be shown by induction over the index of the elements in the cell list
K used in Algorithm [I] and analogously for Algorithm [3]

The cell with index 0 in the list K is of the form {p}®{e’} € K with j € [n—1] and p €
X a 0-simplex. Therefore, step 1 terminates directly. In Algorithmbasisel( {p}®{e’})
can not be modified again. By PROPERTIES [4.6 (3) and (5), in Algorithm (1| the basis
element of {p} ® {€’} can only be changed again if the cell has a partner with a higher
index. In this case the corresponding basis element in the homology-sequence would
not persist from degree 0 until the end. Therefore, {p} ® {e’} is in C.(X7) ® C,.({e’}).

Let 0 ® {e/} € C¥(X), be the cell in K which has the index i > 0. We assume that
all cells with an index which is lower than ¢ are chains in just one component. During
step 1 of the iteration 0 ®{e’} of the for-loop the basis element of partner(7)®{e’} can
be added to the basis element of o ® {€’}. The basis element of partner(7) ® {e’'} is of
the form n® {e’'} for n € C,(X7) by induction. By the definition of partner(r) ® {e’'},
its basis element and the basis element of o ® {€’} have a coinciding element 7 ® {e’'}
in their boundary. Therefore, we obtain 7 = j'. The new basis element obtained by
adding the basis element of partner(r) ® {e’} to the basis element of o ® {e’} still
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has only {¢’} as its second entry. If the corresponding basis element of o ® {e’} after
step 1 persists until the end in the homology-sequence, then it can not be modified by
the algorithm once again by the same reason as in the base case. Hence, it is in the
component C,(X7) ® C.({e’}). O
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6.1 Experiment — Naive Approach

These are the results of the experiment discussed in Section [£.6, We use a MacBook
Air 2016 with an Intel Core i5, 1.8 GHz processor. The evenly distributed points are
implemented in R? by using the classes and functions of

points _to complex.py

which can be found in the next section or at |[Giinl9]. We construct complexes for
these points by Vietoris-Rips and Cech. Then we use functions from

homology.py

to compute their homology and draw their barcodes. We test up to an radius of 1.1
and all classes that still persist at this point are labeled with a red line at the end of
the interval. The cases for up to 3 points are trivial and we exclude them from our
observations. For 6 and more points interesting behavior can be observed. All files
mentioned in the remaining part of this section can be found at [Giin19)].

At first we consider the Vietoris-Rips complexes. The file

Example points_on_ circle_ VR_numeric.py

is used for the construction of the following barcodes. For 9 points the barcodes are
portrayed in Figure [6.1]

9 points, degree 0 9 points, degree 1 9 points, degree 2

Figure 6.1: Barcodes of the Vietoris-Rips complex for 9 points in degree 0, 1 and 2.

For up to 12 points we always see the homology of distinct points, the 1-sphere and
one point in degree 0 and 1 as in the figure for 9 points. The other results are displayed
in Figure [6.2]
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6 points, degree 2 8 points, degree 3 10 points, degree 4

000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200

11 points, degree 3 12 points, degree 2 12 points, degree 5

000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 2.0

Figure 6.2: More barcodes obtained for Vietoris-Rips complexes.

Now we consider the barcodes obtained by using the Cech complex. They can be
reconstructed by using the file

Example points_on_ circle. CECH _numeric.py.

For each cell we start with the radius of the Vietoris-Rips complex and increase it
incrementally by the value

preciston = 0.001

until the radius satisfies the condition for the Cech complex. For up to 5 points the
behavior of the barcodes is not really interesting since they are again just composed by
the intervals representing the points and the 1-sphere. If we consider barcodes for the
Cech complexes of at least 6 points we see intervals which exceed the 1, for example
the three small intervals in degree 4 in Figure [6.3] Moreover, there are many other
small intervals in the barcodes which indicate numerical errors. The biggest numerical
errors can be found in degree 1 as seen in Figure [6.4]

6 points, degree 1 6 points, degree 3 6 points, degree 4
© © ©
©)
©} O}
©)
E— o 0}

000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 2.00

Figure 6.3: Barcodes of Cech complex for 6 points in degree 1, 3 and 4.
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7 points, degree 1 8 points, degree 1 9 points, degree 3

0 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200

10 points, degree 1 11 points, degree 1 12 points, degree 1

Figure 6.4: More barcodes of Cech complexes with errors.

6.2 Experiment — More Precise Approach

If we implement the simplicial cells immediately and omit the representation of points
in R? as described at the end of Section , we obtain the following results. The Cech
complex yields just barcodes consisting of intervals representing the distinct points, a
circle and one point. There are no barcodes in higher degrees. This can be tested by
the reader by executing the file

Example points_on_ circle._ CECH _itmproved.py.

The barcodes for the Vietoris-Rips complexes are more interesting. They can be
computed by using the functions from the file

Example points on_circle. CECH _improved.py.
We used
Experiment_ VR.py

to start the algorithm and store the barcodes in a .txt file automatically. The results
can be found in Table for up to 16 points. We did not include the barcodes for
the zeroth or first degree since there we always see the homology of the points, of the
1-sphere and of one point. The column time I denotes the time to create the cells and
time 2 denotes the time to compute the persistent homology. The number in front of
each interval describes how often this interval appears in the barcode.
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# points | # cells | interesting barcodes time 1 | time 2
6 63 | deg 2: 1-[0.8660,1.0) 0.00s | 0.00s
7 127 | - 0.02s | 0.00s
8 255 | deg 3: 1-[0.9238,1.0) 0.12s | 0.01s
9 511 | deg 2: 2-[0.8660,0.9848) 0.41s | 0.02s

10 1023 | deg 4: 1-[0.9510,1.0) 1.85s | 0.04s

11 2047 | deg 3: 1-[0.9096,0.9898) 7.78s | 0.09s

12 4095 | deg 2: 3-[0.8660,0.9659) 35.63s | 0.34s
deg 5: 1-[0.9659, 1.0)

13 8191 | deg 3: 1-[0.9350,0.9927) 153.49s | 0.80s

14 | 16383 | deg 3: 1-[0.9010,0.9749) 654.06s | 2.97s
deg 6: 1-[0.9749,1.0)

15 | 32767 | deg 2: 4-[0.8660,0.9511) | 3068.06s | 7.91s
deg 4: 2-[0.9511,0.9945)

16 | 65535 | deg 3: 1-[0.9239,0.9808) | 12559.12s | 26.86s
deg 7: 1-[0.9808,1.0)

Table 6.1: The results of the improved approach to compute barcodes for the Vietoris-
Rips complexes.

In the table we see equally many interesting barcodes in odd degrees as in even
degrees. The main part of the computation time is used for the construction of the
simplicial complex. An improvement there could enable us to compute further barcodes
quickly and obtain new insights. Two possible approaches would be to use multipro-
cessing or a better sorting algorithm to speed up the assignment of boundaries.

6.3 Justification of the Name of the Mayer-Vietoris

Blowup

In the following we give the proof of LEMMA from Section [5.2}

LEMMA (Justification of the name). For a simplicial cover U = {X°, X'} of X con-
sisting of two simplicial subcomplexes, we have an isomorphism from each homology
module of the Mayer-Vietoris long exact sequence to the homology module of the long
ezact sequence for the pair (XY, X¥) shifted by one:

S Hy(XY) ——— H(XY) —— H(XY, XY) —— ...

|

|

|

— Hi( XY Hy(X') —— Hy(X) —— Hi_ (X)) ——— .

Moreover, the diagram commutes.

Proof. For better readabilty, we denote U = X? and V = X', It holds X = U u V,
XM =Ux{0} uV x {1} and X¥ = X} U (U nV) x [0,1]. We have the short exact
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sequences of simplicial chain complexes

0 —— Co(XY) ——— C(XY) ——— Co(X /C’X“)—”)

0 — C(UnV) — C.(CYaC(V) —— C(UuV) —— 0

where the first one is the short exact sequence for the pair (XY, X¥) given by the
canonical inclusion and projection and the second one is the Mayer-Vietoris short
ezact sequence. The induced long exact sequence of the pair (X%, X{) is given by the
maps

L Hy(XY) —— Hy(XY) —— Hy (XY, XY) —— H, ((XY) — ...

[0] ——— [o] [0] ——— [do].

The long exact sequence for Mayer-Vietoris is

. — H(UNV) — HU)® H;(V) — H;{(X) 2, H (UnV) —
[o] ——— ([o],[-7])

(7], [n]) —— [ +l,

where ¢ : H;(X) — H; 1(U V) maps [o] with 0 = v+ 1/, v € C;(U),y € Ci(V)
to [0y]. This can be checked by going through the proof of the Snake Lemma as in
[HS97, Chapter III, Lemma 5.1]. We have an isomorphism
Hy(XY) ——— Hy(U x {0}) ® Hy(V x {1}) ——— H;(U)® H;(V)
[o] = [pro(o) + pri(0)] —— ([pro(0)], [pri(o)]) —— ([mx(pro(o))], [7x (pri(0))]),
where the chain pr;(o) is the part of o which lies in X} n (X x {j}). The map 7y

is the chain map defined at the beginning of Section [5.1 Furthermore, we have the
isomorphism

Hi(XY) —— H(X)
[o] —— [7x(0)]

by LEMMA [5.18] For the setting

l (A) J (B) f (© l

H;(U) ~ H,_(U)
SH,(V) — H{(X) — Hi 1, (UnV) — OH, (V)

we want to construct a map f; such that the whole diagram commutes.
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In the following we will use Ezcision as in [Hat02, Theorem 2.20| to construct the
map. By [Hat02, Theorem 2.27|, we have an isomorphism between the relative homo-
logy of simplicial complexes and their realizations:

Let W = U nV be the intersection of U and V. We want to use Excision to obtain
(S)x
H(| XY, [ X ) «=— H(]W| = [0,1],[W] x {0,1}) (6.1)

but we cannot use it directly since the open sets | X{|> and (|[W| x [0, 1])° do not cover
| X¥] in general. We consider the homotopy

H:[0,1] % [0,1] —— [0,1]

(s,t) — s +sign(s — 3) - t - min{s,|s — 3|,1 — s}.

It yields isomorphisms on homology

(id X H (- 1))y
H(IXY], |XY o X x ([0, 7] v [3,1]) ——=— Ha(| XV, IXE])
ININE:
4 4

(id x H(-,1))4
Hl(|W| X [07 1]7 |W| X ([07 ] v [ 71])) — = HZ<|W| x [07 1]7 |W| x {07 1})
which can be proven by the 5-Lemma of the long exact sequences of pairs with maps
(id x H(-, 1)), between them. Now we can use Excision and obtain the commutative
diagram

(S)x
Hi(IW| = [0, 1], [W] x {0,1}) > Hy(| XY, 1 X5
(id ><H(~,1))*Tz (id ><H(~,1))*TZ
(S)x
Hi([W] = [0,1], W] x ([0, 3] v [§,1]) —=— Hi(|X{|,[X{] n X < ([0, 3] v [, 1])).

Hence, even ((6.1)) is an isomorphism as desired.

Now we consider the long exact sequence of the pair (|W|x [0, 1], |W|x{0,1}). Since
hi  H;(JW|x{0,1}) = H;(|W|x{0}) @ H;(|W|x {1}) — H;(|W|x[0,1]) is the inclusion
and |W| x [0,1] is homotopy equivalent to |W| x {0}, the map is surjective and the
next map in the long exact sequence is the zero-map. We obtain

O H(W % [0,1], W] x {0,1}) <% Hy_y (W] x {0,1}) —=2s ..
[O’] } > [80'],

where g;,7 € Z denote the connecting homomorphisms of the long exact sequence in
homology. By the exactness of the sequence, g; is injective and we have
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The kernel of h;_y is of the form ker(h;_1) = {([a],[—a]) € Hi1(]W]| x {0,1})}. We
define isomorphisms

~

ker(hi 1) 2% 1, (W] x {0)) T (W) — Hyoy (W)

where pr, is the projection of C,(|W| x {0}) ® C.(|W| x {1}) to C.(|W] x {0}). By
combining all these maps we obtain the required map
Fo Hi(XH, XH) &2 W % [0,1], W x {0,1)) — = H,_ (W)

- (6.2)
[o] ¢ > [mx (pro(00))].

We want to check whether the diagram with this map commutes. The square (A) is
commutative, since [mx(pry(o)) + mx(pr;(0))] = [7x(pry(c) + pri(0))] = [7x(o)] for
o€ Hy(XY).

To prove the commutativity of (B), let [o] = [a + 8 + 7] € H;(X%) with a €
C;(U x {0}),8 € C;(V x {0}) and 7 € C;(W x [0,1]) be an arbitrary homology class.
In H;(XY, X¥) we have [c] = [7] and by the right part of (B), we obtain

Hy(X{) —— Hi(X{, X§) ——— Hi(W)
[o] ¢ > [mx (pro(07))]-

Furthermore, we know that mx(a) € C;(U) and nx (8 + 7) € C;(V). Therefore, the
maps on the left part of the square yield

Hy(XY) —— H{(X) —— H; (W)
[o] > [0mx(a)].

We have to show that [0mx ()] and [7x (pr,(07))] coincide. Since pry(df) = 0, it holds
pro(0ar) + pry(07) = pry(d(a+ B+ 7)). This is zero since d(a + 3+ 7) = 0. We obtain
[Tx(pry(01))] = [—7x(pry(da))] = [-7x(da)]. The square commutes up to a sign
since Ty is a chain map. By multiplying those vertical maps which map to a homology
with even degree we make the diagram commutativeﬂ.

It remains to prove, that the square (C) commutes. Consider [o] € H;(XY¥, X¥). By
using the maps from the right and left part of the square, we obtain

e
—

[7x (pro(00))] —— [(7x (pro(00)), =7 x (pro(d0)))].

[00] ———= [(mx(pro(00)), mx (pr1(00)))]

To decide whether the maps coincide, we need to check if

[mx (pri(00))] = [=7x (pro(d0))].

! Alternatively, one could multiply the bottom map of the square (B) with (—1). This also preserves
the property of being a long exact sequence and we obtain a commutative diagram.
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- (U . u
We know that [¢] is in the kernel of Ci(XY )/Ci(XS’) — Cia(X] )/C;l(Xg)' It holds
(pry + pry)(do) = do since do € C;_1(XY). We conclude

mx(pry(0o)) + mx(pry(do)) = mx(0o) = dnx (o).

Hence, the difference of mx (pr,(do)) and —7mx (pry(do)) is in the image of 0. O

6.4 Source Code

The entire source code including some examples is uploaded to github at [Giin19] to
make it easily available to the reader. Nevertheless, the most important files can also
be found here.

simpcells.py

class cell:
"""Simplicial cells.

Args:
name: Name of the cell.
boundary (list ): The boundary cells.

Attributes:
name: Name of the cell.

boundary (list): List of boundary cells.
partner: Partner cell.
basisel: Corresponding basis element.

order: Order of the cell.
dimension: Dimension of the cell.

index: Index of the cell in the filtration .
o

def _ _init__ (self , name, boundary):
self .name = name
self .boundary = boundary
self.partner = None
self.basisel = [self, |
self.order = None
self.dimension = None
self.index = None

def repr (self):
T Return the string of a cell."""
# return ’‘name: ’+str(self.name) + ’, boundary: ’'4str(self.boundary)

return str(self.name)

def boundary(list):
"""Computes the boundary of a chain.

Args:
list (list): A list of cells representing a chain in F2.

Returns:
list: A list of cells representing the boundary in F2.
W
boundary list = []
for k in list:
for j in k.boundary:
if j in boundary list:
boundary _list.remove(j)
else:
boundary list.append(j)
return boundary _list

def add_chains(A, B):
""" Addition of two chains in F2.

Args:
A(list): List of cells.
B(list): list of cells.

Returns:
list: The addition of A and B.
W
C = A.copy ()
for b in B:
if b in C:
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C.remove(b)

else:
C.append (b)

return C

homology.py

79

import simpcells as sc

def change_ basis (K):
""" Algorithm 1.

Args:
K(list): List of cells representing the filtration.
W
i = 0 # number of iteration
for k in K:
# STEP 1
while True:
boundary_of basisel = sc.boundary(k.basisel) # compute boundary
if len(boundary_of_ basisel) = 0:
break
else:
tau = youngest(boundary_ of_ basisel)

if tau.partner is None:
assign_partner (tau, k)

break
else:
k.basisel = sc.add_chains(k.basisel , tau.partner.basisel)
# STEP 2
partner = k.partner # For better readability
if partner is not None:
eliminate = sc.add chains(partner.basisel, sc.boundary(k.basisel))
while len(eliminate) != 0:
tau = youngest(eliminate)
partner.basisel = sc.add_chains(partner.basisel , tau.basisel)
eliminate = sc.add_chains(eliminate , tau.basisel)
# print number to track the progress for long lists:
if i % 100 = O0:
print (i)

4= 1

def youngest(list_of cells):
"""Find the youngest cell in a list of cells.

Notes:
Every cells needs to have an index.

Args:
list _of cells(list): List of cells to search for youngest.

Returns:
cell: Youngest cell in list_ of cells.
W
min = None
min_index = None
for k in list_of_cells:
if min is None:

min = k
min_index = k.index
else:
if min_index < k.index:
min = k
min_index = k.index

return min

def assign_partner(celll , cell2):
"""Algorithm 2.

Args:
celll (cell): Cell to assign the other cell as partner.
cell2(cell): Cell to assign the other cell as partner.
wn
celll .partner = cell2
cell2 .partner = celll

def change basis_without2 (K):
""" Algorithm 3.

Args:
K(list): List of cells representing the filtration.
W
i = 0 # number of iteration
for k in K:
while True:
boundary_of basisel = sc.boundary(k.basisel) +# compute boundary
if len(boundary_of_ basisel) = 0:
break
else:
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tau = youngest(boundary of basisel)
if tau.partner is None:
assign_partner (tau, k)
break
else:
k.basisel = sc.add_chains(k.basisel , tau.partner.
# print number to track the progress for long lists:
if i % 100 == O:
print (i)
i4=1

def adjust_basisel (K):
"""Algorithm 4.

Args:

K(list): List of cells represent

W

i = 0 # number of

for k in K:
partner = k.partner
if partner is

iteration

# For bette

k.basisel = sc.boundary(part
# print number to track the
if i % 100 == O0:

print (i)
i4=1

def compute homology (K, step2=False):

progress for

ing the filtration.

r readability

not None and partner.index > k.index:

ner. basisel)

long lists:

"""Compute homology with Algorithm 3 (and Algorithm 4).

Args:
K(list): List of cells representing the filtration.
step2 (boolean, optional): Decide whether to execute step 2 or
Defaults to False.
W
add_indices (K) # Add indices to the cells in the list
print (’ —— change basis without step 2 —— )
change basis_ without2 (K)
if step2:
print(’ —— adjust basis elements — )
adjust_basisel (K)
def add_indices (K):
"""Adds indices to the cells with resprect to the list.
Args:
K(list): List of all cells.
W
i =0
for k in K:
k.index = i
4= 1
def get barcodes (K, max _ value=None):

"""Get the barcodes of cells by part
Notes:

The function compute homology ()

ner assignment .

basisel)

not .

should habe beeen used before.

The order of each simplicial cell has to be defined.
Args:
K(list): List of cells.
max_value(optional): Value that should be used as right entry
interval. Defaults to None.
Returns:
list: List of intervals.
list: List of corresponding generators.
W
max _dimension = 0
for k in K:
if k.dimension > max_dimension:
max_dimension = k.dimension
list = []
list2 = []
for i in range(max_dimension+1):
list .append ([i, []])
list2 .append ([i, []])
for k in K:
if k.partner is None:
list [k.dimension][1].append ([k.order, max_value])
list2 [k.dimension |[1]. append (k)
elif k.partner.order > k.order:
list [k.dimension][1].append ([k.order, k.partner.order])
list2 [k.dimension |[1]. append (k)

return list , list2
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def draw_barcode(list , dimension, K, max_value=None):
"""Draw a barcode.

Notes:
The function uses the module matplotlib.

Args:
list (list): List of intervals obtained from get barcodes() that should
be drawn.
dimension (int): Dimension of the homology that should be drawn.
K: List where the barcode comes from. We need this to compute the
maximal value of the intervals to decide where to end the diagram.
max_value(optional): Value where to cut the diagram. If this argument

is given, K can be set to an arbitrary value like None.
e

if max_value is None:
max_value = 0
for k in K:
if k.order > max_value:
max_value = k.order

if dimension > len(list)—1:
print ( 'no homology in this dimension’)

return

import matplotlib.pyplot as plt

item = list [dimension]
print (item)
index = 0

fig , ax = plt.subplots ()
for interval in item|[1]:
if interval[1l] is None:
ax.arrow (interval [0], index, max_value—interval[0], O,
color="black’, width=0.02, head width=0, head_ length=0)
ax.arrow (max_value, index, 0.lx*max_value, O,
color="r’, width=0.02, head width=0, head_ length=0)

else:
ax.arrow (interval [0], index, interval[l]—interval[0], O,
color="black’, width=0.02, head width=0, head length=0)
index = index + 1

ax.set _yticks ([])
ax.set_ylim(—1, index)
ax.set_xlim (0, max_value+1)
plt .show ()

tuple.py

class tuple:
"""A general tuple.

Notes:
If their entries coincide, they should be equal. If we just compare
lists itself in python, they do not coincide in general if their
entries coincide.

Args:
list _of points(list): A list of points representing a tuple.

Attributes:
tuple(list): The tuple

nnn

def init__ (self, list):

self.tuple = list

def without(self, number):
"""Returns a new tuple without item with index ’number
t = self.tuple[:number|+self.tuple [number+1:]
return tuple(t)

somnn

def eq__(self, other):

T Deécide whether two points coincide by =."""

if len(self.tuple) != len(other.tuple):
return False
token = True
for i in range(len(self.tuple)):
if self.tuple|[i] != other.tuple[i]:
token = False

return token

def _ repr__ (self):
"""Return the string of a tuple.
return str(self.tuple)

wnn

def _ _getitem__ (self, ii):
"""Get a list item."""
return self.tuple[ii]
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def all indices(k, m):
"""Yield all ordered lists of length k with pairwise different entries
in {0,...,m-1}

Notes:
Yield is used in this function. It behaves like return but it returns a
generator over which we can iterate.

Args:
k(int): Number of entries in the sublists we want to generate.

m(int): Length of the list that we want to choose from.
W

# yield the first sublist:
liste = []
for i in range(k):
liste .append (i)
yield liste

# function to modify the sublist:
def moveentry(j, list):
# 1if no element in the sublist can be changed return the empty list

if j =— —1:

return []
# increase the j—th element and minimize all following entries
if list[j]+1 < m and list[j]4+1 not in list:

new _list = list [:]]

for i in range(len(list)—len(new _list)):
new _list.append(list [j]+1+1i)
return new _ list
# if the j—th entry can not be increased, try the (j—1)—th
else:
return moveentry(j—1, list)

# yield a sublist and change change it by the function from above:
while True:

liste = moveentry(len(liste)—1, liste)

if liste =— |[]: # quit if the list can not be changed anymore
break

else:

yield liste

points to complex.py

import simpcells as sc
import tuple as tup
import numpy as np # for square and square root

class point:
"""Points in the real dimensional space.

Notes:
We want to save points as lists and do it as object for the same reason
as for tuple.

Args:
list (list): List of values representing a point in a finite dimensional
real vecotr space.
Attributes:

coordinates (list): Coordinates of the point in form of a list.

dimension(int): Dimension des Punktes.
W

def _ _init__ (self, list):
self.coordinates = list
self .dimension = len (list)

def distance(self, other point):

"""Distance to another point."""

x =0
for i in range(self.dimension):
x = x + np.square(self.coordinates[i] — other_point.coordinates[i])

return np.sqrt(x)

def add(self, other_point):
"""Return the sum of the point and the other point.
list = []
for i in range(self.dimension):
list .append(self.coordinates|[i] + other point.coordinates[i])
p = point(list)
return p

wnn

def scalarmult (self, scalar):
"""Return the multiplication with a scalar.
list = []
for i in range(self.dimension):
list .append(scalar x self.coordinates|[i])
p = point(list)
return p

wnn

def absolute_value(self):
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"""Compute the absolute value of the point."""

x =0
for i in range(self.dimension):
x = x + np.square(self.coordinates|[i])

return np.sqrt(x)

def eq__(self, other_point):

T Decide whether two points coincide by =."""

if self.dimension != other_point.dimension:
return False
token = True
for i in range(self.dimension):
if self.coordinates[i] != other_point.coordinates|[i]:
token = False

return token

def _ _repr__(self):
"""Return the string of a point.
return str(self.coordinates)

def _  getitem _ (self, ii):
"""Get a coordinate."""
return self.coordinates[ii]

points_to_cells_ VR (list _of points, max_radius):
"""Compute the Vietoris Rips complex for a list of points.

Args:
list _of points(list): List of all points.
max_radius: prescribed radius for the construction.

Returns:

list: List of cells already ordered in the right way.
W

list _of cells = [] # list of all cells
list _of cells by len = [[]] # store by dimension of cells

index list = [[]] # queue of lists of indices
number of points = len (list of points)

printindex = 0

while len (index_list) != 0: # while there are lists in the queue
last _index = index _list.pop(0) +# take the last element
max_last_index = max(last_index) if len(last_index) != 0 else
for i in range(max_last_index+1, number_of points):
indices = last_index + [i] # create new list of indices
# create tuple of points for this list of indices:
list _some _points = []
for i in indices:
list _some _points.append(list_of points[i])
tuple some points = tup.tuple(list some points)
# compute boundary: B N
boundary some points = []

—1

for i in indices: # loop over all elements in the boundary

new _boundary = []
for j in indices:
if i l= j:
new _boundary .append (list _of points[j])
new_boundary tuple = tup.tuple (new_boundary)
# search for cells in right dimension:
for ¢ in list_of_cells_by_len[len (new_boundary_tuple.
if c.name == new_boundary_tuple:

tuple) —1]:

boundary some_points.append(c) # append boundary
# create a cell using the tuple as name and the computed boundary:
new_cell = sc.cell(tuple_some_points, boundary some_points)

# add dimension:
new_cell.dimension = len(indices)—1
# add order to the cell:
new cell distance = 0
for k1 in range(len(indices)):
for k2 in range(kl+1, len(indices)):
dist = tuple some points.tuple[kl]. distance (
tuple some points.tuple[k2])
if dist > new_cell_ distance:
new _cell distance = dist
new_cell.order = new_cell_distance/2
# add cell to the list if it does not exceed the maximal
if new_cell_ distance/2 <= max_radius:
list _of cells.append(new_cell) # add to cell list

radius

index_list.append(indices) # add list of indices to queue
if len(new_cell.name.tuple)—1 >= len (list_of_ cells_by_ len):

list _of cells by len.append ([])

list _of cells_ by len[len(new cell.name.tuple) —1].append(new _cell)

if printindex % 100 == 0:
print (printindex)
printindex += 1
# At this point the cells are ordered by dimension. We order them
# by their order and then by their dimension.
list _of cells = sort_by order(list_of cells)

return list _of cells
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def

sort by order(list_ of cells):
"""Sort a list of cells at first by order and then by their dimension.

Notes:
The algorithm just sorts the elements that are not already ordered.
Therefore, if the list is ordered before by dimension, then after this
procedure it is ordered at first by the order of the cells and then by
their dimension.

Args:
list _of cells(list): A list of cells which we want to order.

Returns:
list: A new list containing all cells of list_of cells but ordered by

their order.
wan

new _list _of cells = []
for ¢ in list_of_ cells:
i = len(new _list of cells) # we begin secarchin on the right side

while True:
# if we arrive at 0, we add the cell there:
if i = 0:
new list of cells.insert (i, c)
break
# if the order of the next one is still higher, we go one step
elif new _list_of_cells[i —1].order > c.order:

i = i-1
# insert cell if the next one has at most the same order
else:

new _list_of cells.insert (i, c)

break

return new _list_of_cells

points _to_ cells Cech(list _of points, max radius, precision=0.01):
"""Compute the Cech complex for a list of points.

Notes:
This algorithm can just be used for points in two dimensional space
since the function verification for cech () is just implemented for
two dimensions .

Args:
list _of points(list): List of all points.
max_radius: prescribed radius for the construction.
precision (float , optional): The value by which we enlarge the radius in
each step.

Returns:
list: List of cells already ordered in the right way.

nnn

DR

ACHTUNG: wir muessen draw_barcode mit einer tolerance benutzen, damit nicht
jeder kleine strich angezeigt wird, der von den vielleicht nicht ganz
genauen punkten stammt.

R

# compute cells by Vietoris—Rips:

cell _list = points_to_cells_ VR (list _of points, max_radius)

# enlarge the radius for each cell until it satisfies the property for Cech
radius = 0
for ¢ in cell_list:

radius = c.order # start with radius from VR
while True:
if verification_for_cech(c.name.tuple, radius): # check
c.order = radius # set order
break
else:
radius = radius 4 precision

# order cells:
cell list = sort_ by order(cell list)

return cell list

verification _for_cech(candidate_points, radius):
"""Check whether all balls with presribed radius at the points intersect.

Args:
candidate points(list): List of the points.
radius (float): Radius of the balls.

Returns:
boolean: True if all balls at the points intersect.
W
# create list of all pairwise intersection points:
intersection points = []
h = len(candidate points)
for i in range(h):
for j in range(i+1, h)
cl = candidate_points[i]
c2 = candidate_points|[j]
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for k in intersection(cl, ¢2, radius):
intersection points.append ([i, j, k]J)

# if there are less then two balls then they all intersect:
if h < 2:
return True

# check whether one intersection point is in all balls:
veri = False
for inter in intersection_points:
# Note that inter [0] and inter [1] are indices of the points of the

# center of the balls and inter [2] is one of their intersection points.

veri = True
for k in range(h):
if k != inter[0] and k != inter [1]:
point _in_all_balls = True

for p in candidate_points:
if p.distance(inter[2]) > radius:

point in all balls = False
if not point_ in_all balls:
veri = False -
break
if veri:
break

return veri

def intersection (pl, p2, radius):
"""Compute the intersection of two balls.

Args:
pl,p2(point): Centers of the balls.
radius (float): Radius of the balls.

Returns:
boolean: True if all balls at the points intersect.
wn
# no intersection if their radius is smaller than 1/2 of their distance:
distance = pl.distance(p2)
if radius < distance /2.0:
return []

# compute intersection points:
vector_pl_to_p2 = p2.add(pl.scalarmult(—1))
center = pl.add(vector_pl_to_p2.scalarmult (0.5))

ortho = orthonormal(vector_pl_to_p2)
h = np.sqrt(np.square(radius) — np.square(distance /2.0))
if h = 0:
intersectionlist = [center]
else:
intersectionlist = []

intersectionlist .append(center.add(ortho.scalarmult(h)))
intersectionlist .append(center.add(ortho.scalarmult(—h)))

return intersectionlist

def orthonormal(p):
"""Compute orthonormal vector.

Notes:
This function works only for two dimensions.

Args:
p(point): A vector of dimension 2.

Returns:

point: A vector which is orthonormal to p.
wn

orthogonal = point ([p.coordinates[1], —1 % p.coordinates [0]])
orthonormal = orthogonal.scalarmult(1l/orthogonal.absolute value())

return orthonormal

blowup.py

import simpcells as sc
import tuple as tup

def construct mv_blowup(cell list , cover):
"""Construct the Mayer—Vietoris blowup for a given cover.

Args:
cell list (list): A list of cells describing the simplicial complex.
cover (list): A list of cell lists, describing the cover by
subcomplexes .
Returns:
list: A new list of cells describing the complex of the Mayer—Vietoris
blowup .
wn
n = len(cover) # number of subcomplexes in the cover
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new _cell list = []

# compute generators for the blowup and safe them as pairs:
for i in range(n): # consider i—th intersections

for 1 in tup.all indices(i+1, n): # J from the end of Chapter 5

1 _cover = []
for j in 1:
1_cover.append(cover|[j])
inter = intersection (l_cover) # compute intersection
for ¢ in inter: # sigma from the end of Chapter 5
# create cell for the pair (sigma, J):
new_cell = sc.cell(tup.tuple([c, tup.tuple(l)]), [])

new _cell _list.append(new_cell) # append cell to new cell list

# sort by #J and then by dim(sigma):
new _cell _list = sort_for_loc(new _cell_list)

# compute and set boundary
for ¢ in new_cell list:

boundary list = []

sigma = c.name.tuple [0]

# the part where we take the boundary of sigma:
J = c.name. tuple[1]

for b in sigma.boundary:
7# search for boundary in new cell list:
for i in new _cell_ list:

if i.name.tuple[0] == b and i.name.tuple[l] == J:
boundary list.append (i)
break

# the part where we take the boundary of J
if len(J.tuple) > 1: # otherwise the boundary forms no cell
for j in range(len(J.tuple)):
new_J = J.without (j)
for i in new _cell_list:

if i.name.tuple[0] == sigma and i.name.tuple[1]
boundary list.append (i)
break
# store the boundary list in the cell
c.boundary = boundary list

# set dimension
for ¢ in new _cell list:

d = c.name.tuple [0]. dimension + len(c.name.tuple[1l].tuple)—1
.dimension = d

o

# set order

for ¢ in new _cell list:
o = len(c.name. tuple[1]. tuple)—1
c.order = o

return new_cell list

intersection (list_of lists):
"""Compute the intersection of several lists.

Args:
list _of lists(list): A list , which contains all lists , that
intersect .

Returns:
list: The intersection of all lists in list_of_ lists.
o
new _list = []
# take elements in the first list:
for i in list_of_ lists [0]:
token = True
# check if they are in all other lists:
for 1 in list_of lists[1:]:
if i not in 1:
token = False
break

== new_J:

we want to

# if they are in all other lists , add them to the intersection:

if token:
new list.append (i)
return new _list

sort _for_loc(list_of_ cells):

"""Sort the list for the Mayer—Viertoris blowup.
new _list _of cells = sort_by_ dimension_of_sigma(list_of cells)
new _list _of cells = sort_by_ len_of_ J(new _list_of_ cells)
return new _list_of cells

wn

sort by dimension_of sigma(list_of_ cells):
"""Sort the list for the Mayer—Viertoris blowup by dimension of
# insertion sort

new list of cells = []
for c inilisfioficells:
i = len(new _list_of cells)
token = True
while token:
if i = 0:

new _list_of cells.insert (i, c)
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token = False
elif (new _list_ of cells[i—1].name.tuple[0].dimension
> c.name. tuple [0]. dimension):

i =i-1

else :
new list of cells.insert (i, c)
token = False

return new _list_of cells

def sort_by_ len_of J(list_of_ cells):
"""Sort the list for the Mayer—Viertoris blowup by length of J."""
# insertion sort

new _list _of cells = []
for ¢ in list_of_cells:
i = len(new _list_ of_ cells)
token = True
while token:
if i = 0:
new list_of cells.insert (i, c)
token = False

elif (len(new _list of cells[i—1].name.tuple[1].tuple)
> len(c.name.tuple[1].tuple)):

i =i-1

else:
new _list _of cells.insert (i, c)
token = False

return new _list_of cells
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