
Bachelorthesis

Configurable FPGA-based Access Latency

Emulation for Non-Volatile Main Memory

Dennis Morczinek

18th July 2020

Supervisors:

Prof. Dr. Jian-Jia Chen

M. Sc. Christian Hakert

Technische Universität Dortmund

Fakultät für Informatik

Lehrstuhl Informatik 12 (Eingebettete Systeme)

http://ls12-www.cs.tu-dortmund.de

http://ls12-www.cs.tu-dortmund.de

Abstract

Since the drawbacks of using non-volatile memory (NVM) technologies as main memory

are being addressed by researchers, its use as an energy efficient alternative to traditional

DRAM is more interesting than ever. The impact of the greater memory access latencies

of NVM compared to DRAM on a system can be investigated in systems that utilize at

least one type of NVM as main memory. In many cases those systems do not exist yet,

so the research has to be conducted on non-volatile main memory (NVMM) emulators or

simulators. Yu Omori et al. developed such an emulator on an SoC-FPGA. Their emulator

injects additional read and write delays to memory accesses that are configurable by the

user. However, the configurations are applied to the whole memory of the emulator, so

emulating hybrid systems with more than one NVMM type is not possible.

This thesis extends the FPGA emulator design of Yu Omori et al. to allow the emulation

of more than one NVMM type by making it possible to define areas in the main memory

with different access latencies. The underlying emulator architecture is adapted so that

the corresponding latency for each area can be stored and the delay injection logic receives

the appropriate value when a memory access is performed. The count of definable areas

and the utilization of the FPGA are kept in balance to allow for future modifications of

the emulator design.

Contents

1 Introduction 1

1.1 Motivation and Contribution . 1

1.2 Structure of the Thesis . 2

2 Related Work 3

2.1 Memory Access Simulators . 3

3 Technical Background 5

3.1 Configurable System Hardware . 5

3.1.1 FPGAs . 5

3.1.2 IP Cores . 9

3.1.3 SoC-FPGA Architecture . 9

3.2 Advanced eXtensible Interface . 10

4 Development 15

4.1 NVMM Emulator Design . 15

4.2 Design Extensions . 20

4.2.1 Register Module . 22

4.2.2 BRAM Module . 26

4.2.3 Module MUX . 31

4.2.4 Setting the Latencies . 32

5 Evaluation 35

5.1 Resource Utilization . 35

5.2 Impact on Memory Latency . 38

6 Conclusion 43

6.1 Summary of Results . 43

6.2 Future Outlook . 44

List of Figures 49

List of Source Codes 51

Bibliography 54

1 Introduction

1.1 Motivation and Contribution

Because of its fast access time and robustness, the main memory of a system is typically

based on DRAM. Recently emerging non-volatile memories (NVMs) such as Phase-Change

Memory (PCM), Ferroelectric RAM (FeRAM) and Magnetoresistive RAM (MRAM) show

almost no leakage power in the memory cells [20], increase energy efficiency of a system

compared to DRAM [20] and offer the possibility to realize durable data structures [16].

Due to these properties, NVMs are considered as a substitute to DRAM for use as main

memory. Overcoming their drawbacks, like slower access time and limited endurance

compared to DRAM, and examining their impact on a system when used as main memory

are ongoing research topics [14] [19].

Emulating the behaviour of non-volatile main memory (NVMM) enables in-depth research

of its impact on a system. In fact, for some types of non-volatile memory either emulation

or simulation is required since no real system that utilizes this type as main memory exists.

Various emulators or simulators that mimic the behaviour of NVMM have already been

developed [15] [16] [18].

Because of the distinct advantages and disadvantages of different NVMs, some systems

utilize more than one type of NVM as main memory. Moreover, there are types of NVM

that can be set to operate in a low energy mode for certain memory regions to reduce

energy consumption. Accordingly, an emulator of such systems requires a configurable

count of memory sections, each mimicking a certain type of NVM or energy setting.

In this thesis an existing NVMM emulator design that emulates the read and write latencies

of a single NVM for the entire available main memory is extended. This emulator is based

on an FPGA, an integrated circuit that can be configured to realize any kind of digital

logic within its resource limitations [13]. The extension will allow the user to define areas

in the main memory with different read and write latencies. As a result, systems with

more than one type of NVMM, as well as systems with one type of NVMM that has

configurable energy settings, can be emulated regarding their memory access latencies.

2 1 Introduction

1.2 Structure of the Thesis

Different implementation approaches of memory access simulators and emulators, includ-

ing the one used in this thesis, are at first introduced and briefly compared in Chapter 2

using concrete examples of available implementations.

Thereafter, in Chapter 3, the concepts of the technologies relevant to this thesis are ex-

plained. A concise overview of configurable hardware in general is provided before explain-

ing FPGAs and associated terms as well as their use in system environments in greater

detail. The architecture and specification of the hardware environment used in this the-

sis is presented thereon. Its adopted on-chip communication protocol named Advanced

eXtensible Interface is introduced in the following.

Chapter 4 covers the extensions made to the FPGA-based NVMM emulator after initially

demonstrating its actual state. The proposed idea is presented on a high level of abstrac-

tion at first, followed by detailed explanations of each added component. A program to

access the emulator in order to change the emulated latencies is introduced at the end of

this chapter.

At last, Chapter 5 evaluates how the design extensions affect system performance and

FPGA resource utilization. The impact on system performance is measured in the nanosec-

ond scope and analyzed subsequently. The resource utilization changes depending on how

many NVM types can be emulated in the emulator’s main memory. The correlation be-

tween memory section count, i.e. the number of emulatable NVMs, and resource utilization

is analyzed and functions to determine the approximated utilization by section count are

provided.

2 Related Work

2.1 Memory Access Simulators

The simulation of memory access characteristics of different memory types allows the

exploration of its behaviour and impact on a system without requiring physical access to

the type of memory to be examined. Different approaches have been made that allow

to either simulate or emulate NVMMs. In general, emulators try to mimic the visible

behavior of the target memory to the best of their ability, whereas simulators reconstruct

the underlying architecture, which will consequently result in an emulation of the target.

One possible classification is to differentiate between software-based simulators, external

hardware emulators and SoC-FPGA-based emulators.

Software-based simulators like NVMain2.0 [18] are able to accurately simulate NVMs and

save the information of the memory accesses in trace files. This however comes at the cost

of long simulation times, especially for full featured operating systems.

External hardware emulators do not suffer from this problem. They are placed in-between

the system memory and the system itself. Memory requests have to pass the external

simulator, which is able to e.g. modify the latency of the requests to match that of a certain

NVM type. HMTT is a memory accesses trace system implemented on an external board

that is connected to the monitored system via a DIMM slot [12] . HMTT itself is only a

monitoring system, but it is easy to imagine an extension where the memory accesses are

not only snooped but also modified.

System-on-a-Chip-FPGAs (SoC-FPGAs) are, as the name indicates, FPGAs that are

strongly linked to a processing system (cf. Chapter 3.1.3). The approach of SoC-FPGA-

based emulators is not too different from that of external hardware emulators. A dedicated

hardware, only this time implemented in an FPGA, is responsible for modifying the mem-

ory request issued by the processing system to match that of NVMs. So unlike external

emulators, the dedicated emulation hardware is on the same board as the system. There-

fore, the emulation hardware has access to much more system resources than just the

memory interface, which potentially allows for precise measurements of the full-system

performance impact of NVMs. Examples for SoC-FPGA-based emulators are TUNA [15]

and the NVMM emulator by Yu Omori et al. [16] that is extended in this thesis.

3 Technical Background

3.1 Configurable System Hardware

Custom hardware can be built in various ways. Complex digital circuits that need to be

manufactured in large numbers are often designed as application-specific integrated circuits

(ASICs) [13]. Once an ASIC design reaches production, it is not possible to subsequently

modify it. If a design does not need to be produced in large numbers or needs to be changed

frequently (for example for prototyping or if the requirements are not well defined yet),

reconfigurable digital circuits can be used. The relatively simple Programmable Logic

Array (PLA) is capable of implementing combinational circuits, however, for sequential

designs, mainly more advanced technologies like Complex Programmable Logic Devices

(CPLD) or Field Programmable Gate Arrays (FPGA) are used [13, p. 24 ff.]. Ultimately, it

depends on the use case, which device fits the target design best. The simpler architecture

of CPLDs compared to FPGAs can usually be beneficial in terms of cost, while FPGAs

offer a vast amount of logic, storage elements and sometimes additional atomic building

blocks for common circuit elements like multipliers and random-access memory [1] [8].

Because, as mentioned before, the emulator of this thesis is designed in an FPGA, its basic

concept is explained first. Hereafter the concrete system architecture used in this thesis is

presented.

3.1.1 FPGAs

The concept of an FPGA consists of a homogeneous field of Configurable Logic Blocks

(CLB), IO-Blocks and Switch Matrices [13, p. 28]. The CLBs implement the desired logic

whereas IO-Blocks drive in- and outputs of the FPGA. The configuration of the switch

matrices determines the interconnection between the FPGAs components. While the exact

architecture of those components differs depending on the manufacturer and product line

[2] [8], the basic concept can be described by a generic model as presented in Figure 3.1.

6 3 Technical Background

I/O-Block

Switch Matrix

Configurable

Logic Block

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

Figure 3.1: Concept of a Generic FPGA Structure

A basic CLB (cf. Figure 3.2) consists of three main components: a lookup-table (LUT), a

flip-flop and a multiplexer. LUTs are often labeled n-LUTs where n indicates the number

of inputs. A n-LUT has 2n rows and n + 1 columns. Therefore, one n-LUT can be used

to implement any binary function {0, 1}n → {0, 1} as a truth table. When an FPGA gets

configured, the LUTs are filled and the selection line of the multiplexer is set to a fixed

value so that one of its inputs gets passed through continuously. If the circuit that needs

to be implemented is combinational, the output of the LUT is selected; otherwise, for

sequential circuits, the output of the flip flop is selected.

To reduce the utilization of CLBs for common arithmetic computations, full adders are

added to many CLB designs (cf. Figure 3.3). Depending on the configuration of the CLB,

an extra multiplexer (depicted as MUX 1) controls, whether the output of the full adder

or the LUT gets passed through. The 4-LUT is divided into two 3-LUTs, each of which

is additionally connected to the full adder. Another multiplexer (depicted as MUX 2)

then combines the two 3-LUTs into one 4-LUT. Numerous other adaptions are made to

in0

4-LUT
in1

in2

in3

clk

clk

D
Q

MUX out

Figure 3.2: Basic Configurable Logic Block

3.1 Configurable System Hardware 7

3-LUT FA

D
Q

3-LUT

clkcin

MUX
MUX

MUX

in0

in1

in2

in3

out

cout clk

2

1

Figure 3.3: Extended Configurable Logic Block

CLBs by their manufacturers for resource- and thus space- and cost-saving reasons and

for performance reasons [7].

A single CLB itself is too small to implement complex circuit designs. The interconnection

between multiple CLBs, also called routing, is done by switch matrices and allows large

designs that are only bound by the number of available ressources.1 A simplified switch

matrix is depicted in Figure 3.4. A memory unit, for example a register, contains a bit

string that varies depending on the configuration of the switch matrix. The individual

bits are connected to transistors which controls their resistance and thus the permeability

of signals between the four wires.

The configuration, also called programming, of an FPGA is usually done with software

designed for this purpose that follows a stringent workflow (cf. Figure 3.5). The software

used in this thesis is Vivado by Xilinx since the FPGA is produced by the same company.

A hardware description language (HDL) such as Verilog or VHDL is used to describe the

target hardware design. This description can be used to simulate the design behaviour

memory

Figure 3.4: Simplified Switch Matrix

1Assuming that all timing constraints can be met.

8 3 Technical Background

since HDLs were originally designed to simulate circuits on a register-transfer level. When

no information about timing behaviour is given explicitly in the simulation, the signals

experience no delays and arrive instantaneously at their targets. Therefore, a correct

behavioural simulation does not guarantee a functional physical circuit. In the following

step, a tool translates the HDL description on register-transfer level into a textual netlist

that can be displayed as a gate level schematic – this step is called synthesis. The resulting

schematic depends on the optimization goals of the synthesis tool. The functional gate level

simulation offers insights into the synthesized design but still relies on timing behaviour

descriptions provided by the developer. Before the final implementation step, the developer

can decide to do manual floorplanning, where a confined physical space on the chip can

be set for selected circuit parts. This can be beneficial in terms of route lengths and

therefore timing delays. When the floorplanning has finished or has been skipped, the

implementation tool is used to place the synthesized design into the FPGA. The main

focus of the implementation tool is to find a placement into the FPGA that does not

violate any timing constraints or exceeds the resource capacity. If those conditions are

met, other optimizations can be taken into consideration. This step results into a bitstream

that gets loaded into the FPGA and sets all affected CLBs, IO-Blocks and switch matrices.

Because the FPGA loses its configuration when powered off, it has to be reprogrammed

using the bitstream when powered on again.

Synthesis

Implementation

Bitstream

Behavioural

Simulation

Gate Level

Simulation

Gate Level

Schematic

Floorplanning

Verilog/VHDL

Design Description

Figure 3.5: FPGA Design Workflow

3.1 Configurable System Hardware 9

3.1.2 IP Cores

Intellectual property cores (IP cores) approximately are to FPGAs what libraries are to

programming languages. Instead of rewriting commonly used designs, they can be packed

into IP cores for future use. There are two types of IP cores: hard cores and soft cores.

Hard IP cores are built into the FPGA fabric and as a result cannot be modified. If a

functionality is needed in many FPGA use cases, it is beneficial for resource usage and

timing when the FPGA offers a corresponding hard IP core. Dedicated RAM called Block

RAM (BRAM) and arithmetic units are examples that are commonly found in many

FPGA architectures. Soft IP cores on the other hand are placed into the FPGA via

synthesis and implementation, following the regular design workflow (cf. 3.5). They are

either delivered as HDL code on a register-transfer level or as a netlist on gate level.

3.1.3 SoC-FPGA Architecture

To receive their inputs and produce outputs, FPGAs are always embedded into a circuitry.

A relatively new approach of using FPGAs is the combination of an FPGA fabric and a

processor on one chip. The in- and outputs of the FPGA are connected to the systems

components, which enables flexible and efficient hardware extensions to them or the full

system. This architecture, called SoC-FPGA, is used to implement the emulator in this

thesis. More specifically, the Xilinx Zynq-7000 SoC ZC706 Evaluation Board that is popu-

lated with the Zynq-7000 XC7Z045 SoC is used here and since architectural characteristics

differ for each product, its architecture is presented from now on.

Xilinx Zynq-7000 XC7Z045 SoC

As shown in Figure 3.6, the architecture is divided into a Processing System (PS) and a

Programmable Logic (PL) on a single die. The PS contains an ARM Cortex-A9 dual-core

CPU, interfaces for external memory, I/O peripherals and has access to 1 GB DDR3 on-

chip memory [11]. The PL consists of an FPGA that, inter alia, can access the memory

interfaces on the PS. Moreover, the PL can utilize an additional 1 GB of dedicated DRAM

through an IP core called Memory Interface Generator (MIG), that acts as an memory

controller. If used in a design, this memory is mapped into the address space of the PS.

Other memory structures, either provided as IP cores like BRAM or realized with CLBs,

can also be accessed by the PS via reserved memory spaces. BRAM is a common resource

of FPGAs that can store large amounts of data while still allowing high performance

accesses. This SoC-FPGA offers 19.1 MiB of BRAM.

The FPGA is also connected to the processor and a central interconnect that provides

access to I/O peripherals. The PL is clocked by a 200 MHz oscillator which leads to a

clock period of T = (200MHz)−1 = 5ns. The MIG supports clock frequencies up to

300 MHz [5], however, in this thesis the aforementioned 200 MHz oscillator either directly

10 3 Technical Background

1GB DRAM (PL)

FPGA

Custom

Design

Memory

Interfaces

I/O Peripherals
Dual-Core

ARM Cortex-A9

Interconnect

PS PL

1GB DRAM (PS)

MIG

Figure 3.6: Zynq-7000 Architecture Overview

provides the clock signal for the components or drives clock generators to generate different

clock domains.

3.2 Advanced eXtensible Interface

Advanced eXtensible Interface (AXI), part of the Advanced Microcontroller Bus Architec-

ture (AMBA), is a protocol designed for on-chip communication. It has been adopted by

Xilinx for communication between IP cores within their FPGAs. As presented in Chapter

3.1.3, the SoC-FPGA used in this thesis is by Xilinx and thus also implements AXI.

The protocol implements a master/slave model of communication. The interconnection

between a master and a slave is seperated into five channels with each channel using its

own distinct signals (cf. Figures 3.7 and 3.8): read address (AR), read data (R), write

address (AW), write data (W) and response (B).

SlaveMaster

Address

and control

Read address channel

Read data channel

Read

data

Figure 3.7: AXI Read Channel Architecture

3.2 Advanced eXtensible Interface 11

SlaveMaster

Address

and control

Write address channel

Write data channel

Write

response

Write response channel

Write

data

Figure 3.8: AXI Write Channel Architecture

The read and write address channels carry control information about the ensuing data

transfers. The data is then transmitted in bursts via the read data or the write data

channel depending on whether reading or writing is to take place. An additional response

channel is used for writes, so that the master is informed by the slave whether the write

was successful or not. Each channel is clocked by the same global clock signal ACLK and

all components trigger on its rising edge. The active-low ARESETn is another shared global

signal that is used to (asynchronously) cancel transactions.

Every channel has two dedicated signals VALID and READY that implement a handshake

mechanism. The source provides an address, data or control information and asserts its

VALID signal to inform the destination that all corresponding signal lines are valid. The

destination asserts its READY signal as soon as it is ready to accept the information. Only

after a handshake has taken place, the data transmission can begin. The order of assertion

of the VALID and READY signals does not matter as long as the source does not assert the

VALID signal before the information is provided. Furthermore, the information must be

kept stable the whole time the VALID signal is asserted. Figure 3.9 presents all three

feasible handshake situations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ACLK

INFORMATION

VALID

READY

S
rc

D
st

Figure 3.9: Feasible AXI Handshakes

12 3 Technical Background

Figure 3.10 depicts an example of an AXI read transaction. For simplicity reasons, signals

that are not relevant for every read transaction, such as memory type or quality of service

indicators, are omitted. ARADDR describes the address from which to read. ARLEN+1

indicates the read burst length, or in other words the amount of data transfers (also called

beats) of a single read access. The size in bytes of one beat is encoded by ARSIZE. Also

encoded, ARBURST defines the read addresses for successive beats. The interpretation of

encoded signals can be obtained from Table 3.1.

The burst type FIXED accesses the same address provided by ARADDR repeatedly for every

beat. INCR accesses consecutive memory locations. Useful for cache line accesses, WRAP

is similar to INCR, except that an upper address boundary is determined. If the address

reaches this boundary, it is wrapped around to the lowest address of the burst.

In this specific example, the read burst first accesses the data saved on address 0xA0.

After a successful data transfer, the address is incremented by the size of a beat internally

to access the following four bytes. Since a total of four data transfers of four bytes are

performed, 16 bytes on the consecutive memory locations 0xA0, 0xA4, 0xA8 and 0xAC are

read by this transaction. The memory contents are put on the data line RDATA subsequently

for the master to read. RRESP (cf. Table 3.1) indicates the status of the access: OKAY for

a normal access success, EXOKAY for a succeeding exclusive access,2 SLVERR for accesses

that reached the slave but returned an error, and lastly DECERR, if there is no slave for the

given transaction address. The last beat of a burst must be flagged by RLAST.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ACLK

ARADDR 0xA0

ARLEN 3

ARSIZE 0b010 (4B)

ARBURST 1 (INCR)

ARVALID

ARREADY

RDATA 0xD0 0xD1 0xD2 0xD3

RRESP 0b00 (OKAY) 0b00 (OKAY)

RLAST

RVALID

RREADY

M
as

te
r

S
la

veR
ea

d
ad

d
re

ss
 c

ha
nn

el

S
la

ve
M

as
te

r

R
ea

d
da

ta
 c

ha
nn

el

Figure 3.10: Example Timing Diagram for AXI Read

2Exclusive accesses are used to ensure that only one master can access a certain slave at a time.
Additional logic is needed by the slave to support this functionality. They are not used in this thesis.

3.2 Advanced eXtensible Interface 13

Table 3.1: Encoded Signals for AXI

Burst Size Burst Type Response

AxSIZE Bytes AxBURST Type xRESP Status

0b000 1 0b00 FIXED 0b00 OKAY

0b001 2 0b01 INCR 0b01 EXOKAY

0b010 4 0b10 WRAP 0b10 SVLERR

0b011 8 0b11 Reserved 0b11 DECERR

0b100 16

0b101 32

0b110 64

0b111 128

An example of a write transaction is presented in Figure 3.11. The signals of the write

address channel work analogously to the read address channel signals. However, the data

channels differ for reads and writes. The data to write is put on WDATA, for which WSTRB

indicates which bytes on WDATA hold valid data – one bit for every data byte. Thus, in this

example the two bytes of 0xD5 and 0xD6 (equivalent to 0x00D5 and 0x00D6) are marked

as valid for the write. For 0xD7E7, only the first byte 0xD7 is marked as valid, hence only

this byte lane is updated to the memory. The signal BRESP of the write response channel

indicates the status of the finished write burst. The interpretations of all encoded signals

are analog for read and writes transactions (cf. Table 3.1).

14 3 Technical Background

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ACLK

AWADDR 0xBB

AWLEN 2

AWSIZE 0b001 (2B)

AWBURST 1 (INCR)

AWVALID

AWREADY

WDATA 0xD5 0xD6 0xD7E7

WSTRB 0b11 0b11 0b10

WLAST

WVALID

WREADY

BRESP 0b00 (OK)

BVALID

BREADY

M
as

te
r

S
la

veW
rit

e
ad

dr
es

s
ch

an
ne

l

M
as

te
r

S
la

veW
rit

e
da

ta
 c

ha
n

ne
l

S
la

ve
M

as
te

r

W
rit

e
re

sp
on

se
 c

h.

Figure 3.11: Example Timing Diagram for AXI Write

4 Development

In order to emulate the memory access latencies of systems with multiple main memory

types or energy-adjustable NVMs, this thesis extends the NVMM emulator based on a SoC-

FPGA implemented by Yu Omori et al. [16], which is called original emulator from now

on. This chapter first introduces the design and features of this emulator and thereafter

presents the development of the extensions and adjustments made to it, resulting in the

extended emulator.

4.1 NVMM Emulator Design

Chapter 3.1.3 presents the architecture of the Zynq-7000 XC7Z045 SoC-FPGA on which

the original emulator is built on. The 1 GB of DRAM connected to the PL is taken as the

emulated NVMM. Two models of a delay injection logic, a fine-grain and a coarse-grain

one, are implemented in the PL. The coarse-grain model injects an additional delay for

memory requests between the last level cache (LLC) of the CPU and the MIG. The fine-

grain model injects the additional delay in the memory itself by increasing the Row Address

to Column Address Delay (tRCD) and the Row Precharge Time (tRP)1. This is done by

modifying the MIG and allows for a better capture of the effects of bank parallelism and

row-buffer access locality [16]. For this thesis, only the coarse-grain model is provided and

will therefore be discussed from now on. Figure 4.1 shows an architectural overview of the

emulator.

1For DRAM, tRCD describes the minimum delay necessary before accessing a column in an active word
line. tRP describes the minimum delay necessary between disabling a selected word line and selecting a
different one.

16 4 Development

DRAM (PL) / 1GB

0x80000000 -

0xBFFFFFFF

Memory

Controller

Dual-Core

ARM Cortex-A9

LLC

PL

FPGA

Delay

Logic

MIG

DRAM (PS) / 1GB

0x00000000 -

0x3FFFFFFF

PS

Emulated

NVMM

Figure 4.1: Architectural Overview of the Original Emulator

The delay injection logic consists of two IP core blocks called LatSet (latency set) and

LatGen (latency generate). LatSet acts as an AXI slave, with the PS being the master.

As shown by Figure 4.2 it is not connected to the master directly but to another IP

core (shortened to IP henceforth) called AXI SmartConnect. AXI SmartConnect is an

IP provided by Xilinx that enables the connection of m masters to n slaves and, inter

alia, distributes the signals coming from a master to the corresponding slave.2 LatSet

implements two 32 bit wide registers to separately store the additional read and write

latencies named rlat and wlat. They can be written to by the PS through a general

purpose AXI master port GP0 AXI. This port is mapped into the address space 0x40000000

to 0x7FFFFFFF and the registers are addressable at 0x43C00008 (rlat) and 0x43C0000C

(wlat). The latencies are stored as the numbers of additional clock cycles that must elapse

before the memory request is forwarded.

ZYNQ
GP0_AXI S0_AXI

wlat

+
+

M0_AXI ++ rlat

 wlat

Processing System AXI SmartConnect LatSet

rlat

GP1_AXI

 S0_AXI+

Figure 4.2: Partial Emulator Block Diagram Showing LatSet

Another general purpose AXI master port, GP1 AXI, is connected to the MIG via a fur-

ther AXI SmartConnect. Since GP1 AXI is assigned to the address space 0x80000000 to

0xBFFFFFFF, the emulated NVM can be accessed at precisely these addresses. However,

instead of connecting all AXI signals directly to the MIG, the AXI address channel ready

2AXI SmartConnect is not necessary for one-to-one connections but simplifies possible future extensions
to the design.

4.1 NVMM Emulator Design 17

and valid signals are passed through LatGen. The outputs of the rlat- and wlat-registers

coming from LatSet are connected to LatGen as well, so that the additional memory re-

quest delays can be generated. It shall be noted here in advance that GP0 AXI and GP1 AXI

are parts of different clock domains, which will be revisited in Chapter 4.2.2. The clock

of GP0 AXI is generated by the PS whereas GP1 AXI is driven by a clock generated by the

MIG (called UI CLK in the design but simply referred to as memory clock henceforth).

Figure 4.3 shows the complete block design for the emulator.

ZYNQ GP1_AXI wlat

AXI SmartConnect LatSet

rlat

+

AXI_ACLK

M0_AXI

 S0_AXI+

M0_AXI_awaddr

M0_AXI_araddr

M0_AXI_awready

M0_AXI_arready

M0_AXI_awvalid

M0_AXI_arvalid

AXI SmartConnect

S0_AXI_arready

S0_AXI_awready

M0_AXI_arvalid

M0_AXI_awvalid

 S0_AXI_awvalid

 S0_AXI_arvalid

 M0_AXI_awready

 M0_AXI_arready

 AXI_ACLK

 AXI_ARESETn

 rlat

+ S0_AXI

 S0_AXI_awaddr

 S0_AXI_araddr

 S0_AXI_arvalid

 S0_AXI_awvalid

 S0_AXI_arready

 S0_AXI_awready

 NVM
 S0_AXI

 wlat

 rlat

GP0_AXI +

 AXI_ACLK

 S0_AXI+ GP0_AXI +

AXI_RESETn

+

MIG

 wlat

Processing System

 AXI_RESETn

 wlat

 rlat

LatGen

+ UI_CLK

+DDR3

Figure 4.3: Complete Block Diagram for the Original Emulator Design

The concept of LatGen is to delay the handshake signals of the AXI read and write address

channels before passing them to either the MIG or the PS (through the AXI SmartCon-

nect). For read requests, this concerns the arvalid signal of the master (M0 AXI arvalid)

and the arready signal of the slave (S0 AXI arready). The signals are asserted if, in ad-

dition to the state of the source signals, either rlat is zero (and hence no additional delay

is required) or the signal ready ar is asserted (cf. Listing 4.1).

18 4 Development

Listing 4.1: Read Address Handshake Signal Assertion in Module LatGen

1 wire zero_ar = (rlat == 32’h0);

2 assign M0_AXI_arvalid = (zero_ar | ready_ar) & S0_AXI_arvalid;

3 assign S0_AXI_arready = (zero_ar | ready_ar) & M0_AXI_arready;

The signal ready ar is asserted for the length of one clock cycle if a counter (that gets

incremented every clock signal) reaches the delay value rlat. The following code listing

4.2 will cover the mechanism that asserts ready ar in greater detail.

Listing 4.2: Assertion of ready ar in Module LatGen

1 reg ready_ar;

2 reg busy_ar;

3 reg [31:0] cnt_ar;

4

5 always@(posedge AXI_ACLK)

6 begin

7 if (∼AXI_ARESETN)
8 begin

9 cnt_ar <= 32’h1;

10 ready_ar <= 1’b0;

11 busy_ar <= 1’b0;

12 end

13

14 if (∼busy_ar & S0_AXI_arvalid & ∼ready_ar)
15 begin

16 busy_ar <= 1’b1;

17 cnt_ar <= 32’h1;

18 end

19

20 if (busy_ar)

21 cnt_ar <= cnt_ar + 32’h1;

22

23 if (busy_ar & cnt_ar >= rlat)

24 begin

25 busy_ar <= 1’b0;

26 ready_ar <= 1’b1;

27 end

28

29 if (ready_ar)

30 ready_ar <= 1’b0;

31 end

The assertion of S0 AXI arvalid implies that the PS is requesting a read transaction and

has already provided the read address and control information. Since S0 AXI arvalid

4.1 NVMM Emulator Design 19

is held high until the handshake completes, an signal called busy ar controls, whether

the counter has to be initialized or is already active, thus delaying the memory request.

If busy ar is deasserted and S0 AXI arvalid is asserted (cf. lines 14–18, Listing 4.2),

this means that a new read request has been initiated (the check for ∼ready ar prevents

an error that is explained further below). The counter is reset and busy ar is asserted.

Because this process already takes one clock cycle, the counter is set to one. For the

following clock cycles, the counter cnt ar is incremented (cf. lines 20–21, Listing 4.2)

until it reaches the value of rlat (cf. lines 23–27, Listing 4.2). In this case, the counter is

deactivated by deasserting busy ar, and ready ar is set high until the next clock signal

(cf. lines 23–30, Listing 4.2). If the condition of ∼ready ar had not been checked in

line 14, the counter would be activated again in the following clock cycle that deasserts

ready ar, because busy ar is already zero and S0 AXI arvalid is not deasserted by the

source until the handshake completes. Lastly, in case the PS sends an AXI reset signal,

all values are reset (cf. lines 7–12, Listing 4.2).

This mechanism is analogous for write transaction delays. S0 AXI arvalid is replaced

with S0 AXI awvalid, ready ar is called ready aw and instead of comparing the counter

value against rlat, wlat is used. The continuous assignment statement that controls the

assertion of the handshake signals therefore looks similar (cf. Listing 4.3).

Listing 4.3: Write Address Handshake Signal Assertion in Module LatGen

1 wire zero_aw = (wlat == 32’h0);

2 assign M0_AXI_awvalid = (zero_aw | ready_aw) & S0_AXI_awvalid;

3 assign S0_AXI_awready = (zero_aw | ready_aw) & M0_AXI_awready;

Now that the delay injection mechanism is known, the reason why the minimum realizable

additional latency is 10 ns can also be explained. When either rlat or wlat is zero, zero ar

or respectively zero aw are asserted and the handshake signals are immediately passed

through. If on the other hand the delay value is set so a value greater than zero, the busy

signal is asserted as soon as the handshake signal of the source arrives at time t. In the

best case scenario – where the delay value is set to one – the ready signal is asserted in the

following clock cycle (after t+1) because cnt ar or cnt aw are initialized with the value

one. It takes at least until the end of this cycle (t+2) for the receiver to see the handshake

signals. Figure 4.4 illustrates this situation for a write situation where wlat is set to one.

The arrows indicate the conditions that led to assertion of the signals they are pointing

to.

20 4 Development

0 1 2 3 4 5 6

ACLK

S0_AXI_awvalid

M0_AXI_awready

zero_aw

wlat 1

busy_aw

cnt_aw 1

ready_aw

M0_AXI_awvalid

S0_AXI_awready

a

c

b

d

e

f

g

H
an

ds
ha

ke
 in

H
an

ds
ha

ke
 o

ut

t t+1 t+2

Figure 4.4: Example Showing Minimum Realizable Latency

4.2 Design Extensions

The previously presented original design emulates one type of NVM for the whole 1 GB PL-

DRAM. Once rlat and wlat are set, all memory requests experience the same additional

latency. The fundamental idea of the extension is to divide the PL-DRAM into sections of

the same size which implement different, user-adjustable read and write latencies, so that

each section corresponds to the behaviour of one main memory type. Depending on the

use case that shall be emulated and thereupon evaluated with this emulator, the amount

of required sections within the DRAM can vary vastly. Therefore, the greatest amount of

sections possible that meets all timing requirements and still allows for future extensions to

the design (i.e. that does not exhaust one or more resources of the FPGA) is implemented

in the approach presented hereby. The correlation between resource utilization and section

quantity will be examined later in Chapter 5.

The first design draft continues the already implemented approach of using a register pair

to store the read and write latencies. Each memory section is associated with its own

register pair instead of using just one pair for the whole DRAM. The outputs of all read

latency registers, as well as the outputs of all write latency registers, are connected to one

of two multiplexers, which are controlled by the address of the current memory request.

The outputs of the multiplexers are connected to the rlat and wlat inputs of LatGen, so

that the latency generation logic always receives the proper values for the current memory

request. This design, called Register Module hereafter, is expected to behave equal to

the former one in terms of latency generation and timing, albeit realizing the desired

memory sections. However, beyond a certain size, multiplexers face issues meeting timing

constraints in FPGAs [6]. As this limits the number of achievable memory sections to 64

in this case (cf. Chapter 4.2.1) and more or smaller sections might be needed for certain

emulation use cases, the emulator is expanded with another module called BRAM Module.

4.2 Design Extensions 21

The BRAM of the FPGA is used to store further latencies and again, depending on the

memory request address, the corresponding latency values are send to LatGen. Utilizing

the BRAM enables the storage of many latency values and thus, compared to the Register

Module approach, more and smaller sections. As a drawback, reading the values from the

BRAM takes a fixed amount of additional clock cycles to elapse before rlat and wlat

are sent to LatGen, resulting in slower memory access times if no additional latency is

desired, which also results in a in a greater feasible minimum latency for the memory

sections whose latency values are stored in the BRAM.

To let the user decide which underlying conditions (section size, section count and timing

behaviour) of the two modules fits their use case best, the PL-DRAM is divided into two

500 MB domains, each of which implements one of the ideas (cf. Figure 4.5). The module

used is eponymous for the respective domain (Register Domain and BRAM Domain). The

Register Module and the BRAM Module will continuously output a latency value, even

if the memory access address is not intended for the domain they manage (cf. Chapter

4.2.3 for more details). Therefore, a multiplexer, called Module MUX, is controlled by the

current memory request address. If the address lies in the first half of the DRAM (between

0x80000000 and 0x9FFFFFFF) the output of the Register Module is passed to LatGen; if it

lies in the second half of the DRAM (between 0xA0000000 and 0xBFFFFFFF), the output

of the BRAM Module is passed on. Taken together, by controlling the input of LatGen,

Register

Module

DRAM / 500MB

0x80000000 -

0x9FFFFFFF

LatGen

DRAM / 500MB

0xA0000000 -

0xBFFFFFFF

Register

Domain

BRAM

Domain

PL

Module

MUX

MIG

rlat

wlat
BRAM

Module

rlat

wlat

read & write addresses

(GP1_AXI)

GP0_AXI

GP0_AXI

memory

request

handshake

signals

(GP1_AXI)

rlat

wlat

Figure 4.5: Architectural Overview of the Extended Emulator

22 4 Development

the Module MUX is responsible for the realization of the split memory domains, whereas

the Register Module and the BRAM Module store the latency values for each memory

section within their domains.

Similar to LatSet in the original emulator, both modules are addressable through the AXI

general purpose port GP0 AXI to change the content of the register pairs, respectively the

BRAM registers. The total picture of the architectural concept is visualized in Figure 4.5.

The connections of the GP1 AXI addresses to LatGen are new compared to the original

emulator design. The necessity of those connections is revisited in Chapter 4.2.2.

4.2.1 Register Module

As indicated in Chapter 4, the architecture of the Register Module is based on the module

LatSet of the original emulator. Two registers, that form a register pair, store the values

for rlat and wlat for a specified memory section. The original emulator uses one register

pair whose outputs are directly connected to LatGen, thus implementing a single memory

section (the whole PL-DRAM). The Register Module implements 64 register pairs to

divide the Register Domain of the DRAM into the same amount of sections. Each register

pair is responsible for saving rlat and wlat of one section. Unlike before, each memory

request might affect a different section, so a logic unit has to determine which register pair

contents to pass to LatGen, more precisely, to the Module MUX beforehand. This logic

unit is realized by two 64-to-1 multiplexers, where each data line is 32 bit wide. As shown

in Figure 4.6, all rlat-registers of a register pair are connected to the input ports of one

multiplexer and all wlat-registers to the input ports of another multiplexer.Their selection

lines are connected to either the current read or write address. Since those addresses are

latched, the most recent addresses are present constantly. So if for instance a read request

is issued, rlat changes as soon as the read address updates while wlat keeps the value

of the last issued write request. Before explaining how the selection of the correct input

is realized by the multiplexers, the size of a memory section must be known. With #sect

denoting the count of memory sections and memsize being the total size of the memory

that shall be divided, the size of a section, sectsize, is given as follows:

sectsize =
memsize

#sect
=

512 MiB

64
= 8 MiB = 8388608 B. (4.1)

Accordingly, every register pair is responsible for providing the read and write latencies

for an address space of 8388608 = 0x00800000 addresses.3 The read and write addresses

are 30 bits wide, but because the Register Domain is half the size of the PL-DRAM, only

the first 29 bits are of interest and the 30th bit is omitted. Since log2(8388608) = 23, only

the 23 low-order bits will change when the addresses of different memory requests stay in

the same memory section. Conversely, checking the remaining six high-order bits of the

3The PL-DRAM is byte-addressable.

4.2 Design Extensions 23

reg_wlat1

read address

rlat

reg_rlat0

reg_wlat0

reg_rlat1

...

reg_rlat63

reg_wlat63

64:1

MUX
...

...

reg_wlat1

write address

AXI

wlat
64:1

MUX

Figure 4.6: Register Module Architecture

address will yield the number of the memory section (starting at zero) that is currently

accessed as shown in the example below (cf. 4.2).

Section 0


000000︸ ︷︷ ︸

0

00000000000000000000000 (0x00000000)

–

000000︸ ︷︷ ︸
0

11111111111111111111111 (0x007FFFFF)

Section 1


000001︸ ︷︷ ︸

1

00000000000000000000000 (0x00800000)

–

000001︸ ︷︷ ︸
1

11111111111111111111111 (0x00FFFFFF)

· · ·

Section 63


111111︸ ︷︷ ︸

63

00000000000000000000000 (0x1F7FFFFF)

–

111111︸ ︷︷ ︸
63

11111111111111111111111 (0x1FFFFFFF)

(4.2)

24 4 Development

Therefore, only the six high-order bits of the address are connected to the selection lines of

each multiplexer, automatically realizing the desired selection behaviour. The correspond-

ing Verilog description of the multiplexers is done in a single Verilog module as depicted

in Listing 4.4. At any change of the six high-order address bits or one of the rlat- or

wlat-registers, the value of the address is compared against all possible cases (0 to 63) and

the outgoing signals are updated. These always-blocks are synthesized into combinational

logics that are functionally equivalent to multiplexers. Since every possible case is covered

in the case-statement, the default case is redundant and could be omitted.

Listing 4.4: rlat-Register and wlat-Register Multiplexers

1 always@ (*)

2 begin

3 case(rd_request_addr[28:23])

4 0 : rlat_out = rlat_s0;

5 1 : rlat_out = rlat_s1;

6 ...

7 63 : rlat_out = rlat_s63;

8 default : rlat_out = 32’h0;

9 endcase

10 end

11

12 always@ (*)

13 begin

14 case(wr_request_addr[28:23])

15 0 : wlat_out = wlat_s0;

16 1 : wlat_out = wlat_s1;

17 ...

18 63 : wlat_out = wlat_s63;

19 default : wlat_out = 32’h0;

20 endcase

21 end

Similar to the original emulator, the rlat- and wlat-registers can be accessed through the

general purpose AXI master port GP0 AXI of the PS. Each register is 4 byte wide (32 bit

word length), so the registers realize a storage space of 2·4 B·(#sect−1) = 2·4 B·(64−1) =

504 B. An address space of 0x1F8 addresses (0x1F8 = 504) is required. The addresses from

0x42000000 to 0x420001F8 are reserved for this purpose.4 The addresses of the registers

for one section follow one another, which is why rlat- and wlat-registers alternate. The

address of the rlat-register for section i ∈ {0, . . . , 63} is given by

rlat addri = 0x42000000+(8i) (4.3)

4As mentioned in Chapter 4.1, the address space from 0x40000000 to 0x7FFFFFFF is reserved for
memory structures connected to GP0 AXI. These structures are synthesized to be byte-addressable as well.

4.2 Design Extensions 25

and the address of the wlat-register for section i by

wlat addri = 0x42000000+(8i+4). (4.4)

The reason why 64 sections were chosen was already touched in Chapter 4.2. Unlike

the BRAM Domain, the Register Domain should show the same timing behaviour as the

PL-DRAM of the original emulator. This means that as soon as a memory request is

issued, the rlat or wlat value has to be stable at LatGen at the rising edge of the next

clock cycle (of the memory clock domain). Hence, the propagation delay of the signals

between the Register Module and LatGen must not exceed the length of one clock cycle.

The propagation delay is affected by the design of the Register Module itself, the Module

MUX, which is on the route between the Register Module and LatGen, and the total

route length through the FPGA fabric. The synthesis and implementation tools of the

FPGA design software optimize the described design to guarantee that all timing (as well

as logical and physical) constraints are met [9] [10].

For the presented design, 64 sections within the Register Domain are the achievable upper

limit. Raising the count of sections requires the usage of an additional bit for the selection

lines of the multiplexers. The count of attainable sections would increase to 26+1 = 128

and the size of one section would decrease to half the size, which is 4 MiB (cf. Equation

4.1). A multiplexer with one additional selection bit is twice as large, which requires double

the amount of CLBs to be used. This issue is illustrated in example implementations (cf.

Figure 4.7) of a 4-to-1 and an 8-to-1 multiplexer within an FPGA, where the dedicated

multiplexers within the CLBs are utilized and each LUT implements a 2-to-1 multiplexer.

The increased usage of CLBs leads to longer data routes and ultimately the propagation

CLB

d3

3-LUT

d2

3-LUT

d1

d0

sel0

sel1

(a) 4-to-1 Multiplexer Implementation

Figure 4.7: Example of Multiplexer Implementations with CLBs [3]

26 4 Development

sel1

sel2

d7

d6

d5

d4

d2

d0

d3

d1

sel0

(a) 8-to-1 Multiplexer Implementation

Figure 4.7: Example of Multiplexer Implementations with CLBs (cont.) [3]

delay of the data signals exceeds the length of one clock cycle. In this particular case,

the memory request address lines are connected to such a high count of CLBs, that the

propagation of their signals cannot meet the timing constraints. If an implementation

fails due to strict constraints, using a different implementation strategy that focuses on

solving the resource problem (e.g. time, area or power) can help [9]. However, even with

a strategy that runs “timing-driven optimizations to potentially improve overall timing

slack” [9, p. 181], the design with 64 sections is the largest one that meets all timing

constraints.

4.2.2 BRAM Module

The BRAM Domain is implemented for designs that require a finer granularity of the

memory sections compared to the Register Domain. The BRAM is an unused resource so

far and it has the ability to store a great amount of quickly accessible data, which makes

it a good candidate for this goal. The latency values are stored in the BRAM where the

appropriate value first has to be read from before it is passed to LatGen through the

Module MUX. Because the BRAM is realized inside of the FPGA fabric as a hard IP core,

it is able to handle read and write operations in one clock cycle [1, p. 12]. If a high routing

delay of the output is expected, an optional output register stage that adds one additional

clock cycle to reading operations is offered to relax the timing constraints. It is enabled in

this design which increases the read latency to two clock cycles (write operations are still

handled in one clock cycle). Memory accesses in the BRAM Domain without additional

delay set are therefore equivalent to memory accesses in the Register Domain with a set

delay of 10ns = 2T (with T denoting the period of the clock signal). A total of 131072

4.2 Design Extensions 27

memory sections (the reason for this number is explained at the end of this chapter) are

implemented with the size of

sectsize =
memsize

#sect
=

512 MiB

131072
= 4 KiB = 4096 B. (4.5)

each. The BRAM is inferred by using the Block Memory Generator IP from Xilinx (BRAM

Generator henceforth) that allows the configuration of various settings like the memory

width and depth, the usage output registers or the type of memory. The available two

memory types are single port and dual port random access memories.5 Single port memo-

ries have to handle read and write operations sequentially. The address line is shared and

a write-enable-signal switches between reading and writing mode. Dual port memories

allow simultaneous read and write operations on separate ports. Port A handles write ac-

cesses whereas port B is responsible for reading accesses. Each port has their own address

line, relevant control signal lines and clock signal. The BRAM Module makes use of the

dual port BRAM configuration, the reason for this will be explained later in this chapter.

As in the Register Module, the AXI master port GP0 AXI of the PS is used to address the

memory structure and set the latency values of the sections – only this time no dedicated

registers are addressed but the BRAM. The address space 0x40000000 to 0x4007FFFF is

reserved for rlat values, 0x41000000 to 0x4107FFFF for wlat values. The addresses for

the latency values of section i ∈ {0, . . . , 131071} are given by

rlat addri = 0x40000000+(4i)

wlat addri = 0x41000000+(4i).
(4.6)

Xilinx offers an AXI slave IP called AXI BRAM Controller that enables AXI compliant

access to the BRAM and is used here to connect the GP0 AXI master interface of the PS

to the BRAM via the controllers. This allows the modification of the BRAM content,

however, reading the latency values of the current PL-DRAM memory access for LatGen

requires additional logic. This logic controls the access to the BRAM Generator and is

called Access Controller in Figure 4.8, that shows the block design of the BRAM Mod-

ule. All architectural elements are realized twice: once for rlat (top) and once for wlat

(bottom). This is also the reason why rlat and wlat values have their own address spaces.

5Actually, the random access memories can also be configured to operate like read-only memories, the
contents of which are loaded from an initialization file.

28 4 Development

bram_addr

bram_wrdata

 nvmm_request_addr

 gp0_addr

 gp0_wrdata

 gp0_wr_en

addr_o

wrdata_o

wr_en_o bram_wr_en

bram_en

S0_AXI

 PORT_A

 clka

 addra

+

 dina

 wea

 PORT_B

 addrb

 clkb

+

 doutb

S0_AXI_clk

 S_AXI

 clk

+

rd_addr

 rlat

mem_clk

BRAM Generator

bram_rddata

AXI BRAM Controller

 bram_en

Access Controller

 enable

 data_o

 clk

data_i

Delayed Register

bram_addr

bram_wrdata

 nvmm_request_addr

 gp0_addr

 gp0_wrdata

 gp0_wr_en

addr_o

wrdata_o

wr_en_o bram_wr_en

bram_en

S1_AXI

 PORT_A

 clka

 addra

+

 dina

 wea

 PORT_B

 addrb

 clkb

+

 doutb

S1_AXI_clk

 S_AXI

 clk

+

wr_addr

 wlat

BRAM Generator

bram_rddata

AXI BRAM Controller

 bram_en

Access Controller

 enable

 data_o

 clk

data_i

Delayed Register

Figure 4.8: BRAM Module Block Diagram

If the BRAM needs to be accessed by the PS to update the section latencies, the signals

of the AXI BRAM Controller must be forwarded to the BRAM Generator. At any other

time, the system may try to access the emulated NVMM which is only indicated by a

changing address in the GP1 AXI interface.

The AXI BRAM Controller asserts its output signal bram en if the PS wants to issue a read

or write access to the BRAM via GP0 AXI and deasserts it after finishing the transaction.

This fact is used by the Access Controller to multiplex the right signals to the BRAM as

shown in Listing 4.5.

Listing 4.5: Access Controller Logic

1 always@ (*)

2 begin

3 if(bram_en)

4 begin

5 // AXI_GP0 issued a transaction

6 addr_o = gp0_addr;

7 data_o = gp0_wrdata;

4.2 Design Extensions 29

8 wr_en_o = gp0_wr_en;

9 end else

10 begin

11 // Forward NVMM transaction address

12 addr_o = adjusted_nvmm_access_addr;

13 data_o = 32’b0;

14 wr_en_o = 4’b0;

15 end

16 end

Once all section latencies are set by the user, bram en will stay deasserted and the Access

Controller forwards the adjusted nvmm access addr to the BRAM and sets the other

signals to zero. For every change of the NVMM access address an adjusted version of

it is passed to the BRAM directly, where the appropriate latency value is output after

two clock cycles. The original NVMM access address must be adjusted, such that the

address for the latency value of the section in which the original address is located, is

created. With a section size of 4096 B (cf. 4.6), each section has an address range of

0x1000 addresses (0x1000 = 4096). The adjustment of the address works similar to the

procedure shown in the example 4.2 for the Register Module: the 30th bit of the original

NVMM address is omitted because the BRAM Domain is only half the size of the PL-

DRAM. Since log2(4096) = 12, only the 12 low-order bits will change when the address of

a different memory request stays in the same memory section. So checking the remaining

17 high-order bits of the address will yield the number of the accessed memory section,

starting at zero. Lastly, to obtain the address from the section number, it has to be

multiplied by four, which is done by left-shifting the address twice (cf. Listing 4.6). The

high-order bits are filled with zeros because the BRAM generator expects an address with

a length of 32 bit.

Listing 4.6: NVMM Address Conversion

1 adjusted_nvmm_access_addr =

2 {15’b0, nvmm_access_address[28:12]} << 2;

The way the Access Controller works (connecting a single address line to both address

ports of the BRAM) means that the advantage of simultaneously reads and writes of a

dual port BRAM configuration is lost. The reason a dual port BRAM configuration was

used is because the GP0 AXI and memory clock domains are asynchronous. In a single

port configuration one of the clock signals would have to be chosen as the BRAM clock

which could lead to errors in the other clock domain due to phase-shifted clock signals.

The GP0 AXI domain is responsible for writing new values to the BRAM whereas the

memory clock domain only reads from it. This is exploited by the dual port configuration

by connecting the GP0 AXI clock to port A (writing port) and the memory clock to port

B (reading port). This way writing new latency values is guaranteed to succeed and the

30 4 Development

section latencies are guaranteed to arrive at LatGen in exactly two clock cycles of the

memory clock.

A remaining problem is that a user cannot reliably check the content of the BRAM and

readbacks from write accesses may also show incorrect data, since reads from the GP0 AXI

domain are not guaranteed to succeed. This problem is solved by setting the minimum

read latency of the AXI BRAM Controller to three and implementing Delayed Registers

(cf. Figure 4.8). The Delayed Registers are clocked by the memory clock. As mentioned,

the valid read data appears on the output of the BRAM after two clock cycles in this

clock domain. As soon as the bram en signal is asserted, the Delayed Registers wait for

two clock cycles before reading the value on their inputs and latching them. The AXI

BRAM Controller waits one more clock cycle in the GP0 AXI clock domain to ensure that

even in the worst case phase alignment of both clock signals, valid data can be read from

the Delayed Registers.

The BRAM read latency of two clock cycles has to be incorporated in LatGen aswell. The

NVMM read and write addresses are connected to LatGen and the Verilog description is

extended as shown for read accesses in Listing 4.7 (analogous for write accesses).

Listing 4.7: Introducing Delay Variables to LatGen

1 always@ (*)

2 begin

3 if(nvmm_rdrequest_addr < 30’h2000 _0000)

4 begin

5 // Register Domain access

6 delay_ar = 32’d0;

7 zero_ar = (rlat == 32’h0);

8 end else

9 begin

10 // BRAM Domain access

11 delay_ar = 32’d2;

12 zero_ar = 1’b0;

13 end

14 end

The values of zero ar and zero aw are explicitly set to zero if the memory access is within

the BRAM Domain. New values delay ar and delay aw are introduced to delay those

accesses by two clock cycles. Accesses within the Register Domain will not be delayed any

further because for those delay ar and delay aw are set to zero. The if statement that

decides whether ready ar or ready aw has to be asserted is extended by also comparing

the counter value against delay ar or delay aw (cf. Listing 4.8 as an example for read

accesses).

4.2 Design Extensions 31

Listing 4.8: Additional Check for Assertion of the Ready Signal

1 if(busy_ar & cnt_ar >= rlat & cnt_ar >= delay_ar)

2 begin

3 busy_ar <= 1’b0;

4 ready_ar <= 1’b1;

5 end

The implementation of 131072 memory sections requires approximately 47 % of the avail-

able BRAM primitives. To get memory sections of equal size, the number of implemented

sections has to be a divider of 512 MiB (as one byte is the smallest addressable unit),

or in other words a multiple of 2 (smaller or equal to 512 MiB). Hence, the next bigger

section size would be 262144. The BRAM primitives are equally distributed on the FPGA

and a design with more than 131072 fails the timing requirements due to long routes that

produce high net delays, again with the implementation strategy to run timing-driven

optimizations.

4.2.3 Module MUX

In their calculations to determine the accessed memory section, both the Register Module

and the BRAM Module omit the 30th bit of the NVMM read and write addresses. These

modules are responsible for 512 MiB of the 1 GiB NVMM memory each, so 29 bits are

sufficient to address every byte in their domain since log2(512Mi) = 29. As a consequence,

the modules cannot determine whether they are responsible for the current NVMM access

or not. Both modules output latency values and the Module MUX has to determine

which output to pass to LatGen. This is done by checking the value of the NVMM

address: addresses greater than or equal to 0x20000000 indicate that the BRAM Domain

is addressed, values below this boundary are intended for the Register Domain. This

behaviour can be realized by two 2-to-1 multiplexers, whose select signals are the 30th

bit of either the NVMM read or write address. Checking the value of this bit is sufficient

since values greater than or equal to 0x20000000 require the 30th bit to be set. The

Module MUX Verilog description without input and output port declaration is presented

in Listing 4.9.

Listing 4.9: Module MUX

1 assign rlat = nvmm_rdrequest_addr[29] ?

2 BRAM_rlat : register_rlat;

3 assign wlat = nvmm_wrrequest_addr[29] ?

4 BRAM_wlat : register_wlat;

32 4 Development

4.2.4 Setting the Latencies

To set the read and write latencies in the original emulator, a program called latset is

provided. latset uses the Unix system call mmap to map parts of the device file /dev/mem

into its address space. /dev/mem contains an image of the main memory of the system

where the byte addresses are interpreted as physical memory addresses. It can be used

to examine or change the content of the main memory [4]. A sufficiently large portion

of this file gets mapped into the address space of latset by the program itself to access

the physical addresses 0x43C00008 (rlat register) and 0x43C0000C (wlat register). The

arguments of the program determine the latencies in nanoseconds, so the usage is as

follows: latset <rlat> <wlat> . Since the counter in the delay generation logic dictates

the number of clock cycles by which the memory request shall be delayed, the arguments

are divided by five, as the period of the memory clock is 5 ns. This also means that

arguments that are not multiples of five are rounded down.

The same approach of using /dev/mem and mmap is adapted for the extended emulator.

Since the amount of sections has changed, latset has to access different addresses (cf.

Equations 4.3, 4.4 and 4.6). Moreover, because the smallest realizable additional latency

is 10 ns, smaller arguments are adjusted accordingly. The fact that a value of 1 for rlat

or wlat already produces a delay of 10 ns (cf. Figure 4.4) is taken into account. If for

example a delay of 15 ns is desired, latset will store the number 2 instead of 3. Apart from

that, the modifications of latset only affect the usability. For example, it is possible to

provide an address range in order to set the latencies of all affected sections. Table 4.1

presents the usage of the extended version of latset.

Table 4.1: Usage of latset

Parameter Options Description

latset <rlat> <wlat> Sets all section latencies to values

provided by <rlat> and <wlat>.

latset -reg <rlat> <wlat> Sets all section latencies of the Reg-

ister Domain to values provided by

<rlat> and <wlat>.

latset -bram <rlat> <wlat> Sets all section latencies of the

BRAM Domain to values provided

by <rlat> and <wlat>.

latset -reg --read <sect> Reads the latencies of the section

provided by <sect> of the Register

Domain.

4.2 Design Extensions 33

latset -bram --read <sect> Reads the latencies of the section

provided by <sect> of the BRAM

Domain.

latset -reg <sect> <rlat> <wlat> Sets the latencies of section <sect>

of the Register Domain to values

provided by <rlat> and <wlat>.

latset -bram <sect> <rlat> <wlat> Sets the latencies of section <sect>

of the BRAM Domain to values pro-

vided by <rlat> and <wlat>.

latset -range <from> <to> <rlat> <wlat> Sets the latencies of sections in ad-

dress range from <from> to <to>

to values provided by <rlat> and

<wlat>.

5 Evaluation

5.1 Resource Utilization

When a finished design is successfully implemented into the FPGA fabric, Vivado offers

reports of various circuit characteristics like for example resource utilization, estimated

power consumption or clock interaction for design evaluation. Chapter 4 revealed that

the effects of the design extension on signal timing were the main concern of the design,

which ultimately set an upper limit for the size of the design and thus the number of

implemented memory sections. The relatively large number of FPGA resources of the

Zynq-7000 XC7Z045 SoC is the reason why the resource utilization was not as significant

and therefore not mentioned as of yet. Nevertheless, while converging to the design limit

by enlarging the design, i.e. increasing the register count in the Register Module and

utilizing more BRAM primitives in the BRAM Module, the effect on resource utilization

could be recorded.1 Figure 5.1 shows the percentage utilization of the LUTs, the LU-

TRAM (LUTs implemented as RAM within a CLB) and flip-flops (FF) depending on the

number of implemented sections in the Register Module. The number and distribution of

used resources is indeed dependant on the HDL description of the design, but the used

implementation strategy has a great impact aswell [9]. Every measurement in this chapter

uses the same implementation strategy in Vivado to guarantee comparable results: Per-

formance NetDelay high. The BRAM Module is unmodified in the shown measurement

series and configured to implement the upper limit of 131072 sections. The utilization of

the BRAM is constantly at 47.16 % and excluded in this figure for readability reasons.

With an constant value of 6.26 %, the LUTRAM utilization is not influenced by the num-

ber of sections. The measurements of the LUT and flip-flop utilization however indicate a

linear increase with an increasing number of sections. Since changing the emulator design

and running an implementation to estimate the resource utilization can be time consum-

ing, linear regression is used to calculate functions that provide the approximate number

of used resources (LUT and FF) for the number of sections that were not sampled. An

1To conduct the measurements of the resource utilization by section count for both the Register Module
and BRAM Module, the supported section count of the modules has to be adjusted in both designs. Since
these designs have to be created anyway for the measurements, they are provided with this thesis. Please
note that these designs were not tested and that latset will not work for them. The contents of the rlat

and wlat registers, respectively BRAM registers, can still be changed by manually accessing /dev/mem.

36 5 Evaluation

0 10 20 30 40 50 60 70
0

5

10

15

Section Count

U
ti

li
za

ti
o
n

[%
]

LUT
LUTRAM
FF

Figure 5.1: FPGA Utilization by Section Count for the Register Module

simple linear regression model y = c + dx is determined using the least-squares approach

as follows:

y = c + dx = y − sxy
s2x

x︸ ︷︷ ︸
c

+
sxy
s2x︸︷︷︸
d

x
(5.1)

with covariance

sxy =
1

n− 1

n∑
i=1

(xi − x)(yi − y) (5.2)

and variance

s2x =
1

n− 1

n∑
i=1

(xi − x)2 (5.3)

for all n measured data pairs (xi, yi), i ∈ {1, . . . , n}.

Using the data pairs of the LUT and FF measurements, the regression yields the utilization

models

utilLUT rm(x) ≈ 0.0002x + 0.125

utilFF rm(x) ≈ 0.00015x + 0.05814

for the estimated percentage utilization of the LUTs and FFs by section number x realized

by the Register Module (denoted by rm). The Pearson correlation coefficient

rxy =
sxy
sxsy

(5.4)

5.1 Resource Utilization 37

yields rLUT
xy = 0.99787 for the LUT model and rFF

xy = 0.99971 for the FF model. These

models are applicable for the section range 2 to 64, the validity for a section number above

64 is uncertain because Vivado might try to duplicate logic to shorten route lengths [17]

since meeting the timing constraints was not possible beyond 64 sections with a fixed

BRAM section number of 131072.

The percentage resource utilization with an increasing number of sections was also recorded

for the BRAM Module (denoted by bm in the equations) and is presented in Figure 5.2.

Especially for the section numbers smaller than 4098 it is visible in the figure that the

BRAM utilization is constant for a certain section range before abruptly rising. The reason

for that is the fact that one of the 545 available BRAM primitives is capable of storing

4096 words with a width of 32 bit [1].2 Because the number of realized BRAM sections is

identical to the number of words to be saved and the size of an atomic BRAM block (i.e.

one primitive) is known, the utilization of the BRAM can be determined exactly instead of

approximately. The realization of one section requires storage for two 32 bit words, hence

one BRAM primitive is capable of storing enough data words for 4096B/2 · 4B = 512

sections. One BRAM primitive that is already used in the MIG is taken into account in

the calculation. The percentage utilization of the BRAM for a section number of x is

therefore given by

utilBRAMbm
(x) =

1

545
·
(⌈ x

512

⌉
+ 1
)
.

100 101 102 103 104 105
0.1

1

10

100

Section Count

U
ti

li
za

ti
on

[%
]

LUT
LUTRAM
FF
BRAM

Figure 5.2: FPGA Utilization by Section Count for the BRAM Module

2The exact number of storable words for each primitive varies with different BRAM configurations
and word widths [1]. The denoted value is true for the configuration used in the design of the extended
emulator.

38 5 Evaluation

The measurements accurately capture the limits at which the LUTRAM utilization in-

creased abrubtly, so their utilization can be determined precisely aswell in the range from

2 to 131072 by

utilLUTRAMbm
(x) =


6.21 for 2 ≤ i ≤ 32

6.23 for 33 ≤ i ≤ 2048

6.26 for 2049 ≤ i ≤ 131072.

The utilization by section number of the two remaining resources for the BRAM Module,

LUTs and FFs, again show a linear correlation. Equation 5.1 yields the approximation

functions

utilLUT bm
(x) ≈ 5.74 · 10−8 x + 0.13021

utilFF bm
(x) ≈ 3.9045 · 10−7 x + 0.6261

with Pearson correlation coefficients (cf. Equation 5.4) rLUT
xy = 0.98713 and rFF

xy =

0.98045.

Ultimately, the resource utilization of the extended design is compared to that of the

original design in Figure 5.3.

LUT LUTRAM FF BRAM
0

10

20

30

40

50

9.1

4.3 4.1
0.2

13.7

6.3 6.8

47.2

U
ti

li
za

ti
on

[%
]

Original
Extended

Figure 5.3: Comparison of FPGA Resource Utilization

5.2 Impact on Memory Latency

The effects of the extended design in respect to the memory latencies without additional

latency set have already been addressed in Chapter 4. Rather, it was presented that the

implemented design extensions resulted from considerations regarding the timing behavior

of the memory accesses. The timing constraints that were set for the design ensure that

the route delay of a signal from one clocked component to another must not exceed the

5.2 Impact on Memory Latency 39

length of one clock cycle. Since the extended design passes the timing analysis of the

implementation tool, the effects of the design changes can easily be determined within

the scope of the delay generation logic itself (i.e. LatSet and LatGen in the original

emulator, Register Module/BRAM Module plus Module MUX and LatGen in the extended

emulator). Chapter 4.2 describes how the emulator behaviour changes with the executed

extensions: memory accesses to the Register Domain with rlat and wlat set to zero will

behave the same way as they do in the original emulator, accesses to the BRAM Domain

on the other hand will experience a delay because LatGen has to wait two clock cycles

before rlat and wlat coming from the BRAM are present. Contrary to what one might

first expect, this delay is three and not two clock cycles. As soon as the latency values are

present to LatGen, it detects that their value is zero and the AXI handshake has to be

forwarded immediately. The ready signal is asserted in the next clock cycle which triggers

the forwarding of the handshake signals. It takes another clock signal at the receivers

side to detect those handshake signals, ultimately resulting in a delay of three additional

clock cycles in the BRAM Domain (see also Figure 4.4 where this behaviour was already

covered).

Notwithstanding the fact that the timing behaviour can be determined precisely for the

delay generation logic, the performance of the system as a whole might still be affected. So

far, the propagation delay of the memory request between the PS and the delay generation

logic (where the AXI SmartConnect IP can be found, cf. Figure 4.3) was not considered.

Whether the duration of the AXI transactions that send the memory requests is affected

by the design extensions or not is examined hereafter.

A series of measurements are performed on three designs: the original emulator, the

extended emulator and an adjusted design where the delay generation logic is removed.

An Xilinx IP core called ILA (Integrated Logic Analyzer) enables to capture signals of the

FPGA that follow a predetermined trigger condition. In this case, the address lines coming

from the PS, the address lines directly at the MIG and the BVALID signal sent by the MIG

are captured using the ILA core. As the trigger condition a change of the memory request

address coming directly from the PS is chosen. To determine the latencies on read accesses,

randomized memory locations are read from on all three designs. A further distinction

is made for the extended design, where the Register Domain and BRAM Domain are

considered individually. The number of clock cycles between the change of the read address

coming from the PS and the moment at that the output of the MIG changes is captured

and presented in Figure 5.4.

The measurement results indicate that the impact on reading performance is indeed an

additional delay of three clock cycles in the BRAM Domain of the extended emulator

whereas the Register Domain behaves similar to the original emulator that shows no

significant derivation from a design without a delay generation logic. It is also visible in

40 5 Evaluation

43 44 45 46 47 48

5

10

15

20

Clock Cycle Count

In
ci

d
en

t
C

o
u
n
t

63

Original
No DelayGen
Ext. Register
Ext. BRAM

Figure 5.4: Read Access Latency Samples

the diagram that the read performance is not a fixed number but may vary depending on

signal line utilization.

For write accesses, again randomized locations are written to using random 32 bit words.

This time, the elapsed clock cycles between the address coming from the PS and the

BVALID signal of the MIG are measured. This outcome is depicted in Figure 5.5. Despite

the delay of three clock cycles before the handshake signals appears at the MIG in the

BRAM Domain, the diagram shows that most of the time the MIG asserts BVALID only

one clock cycle later compared to every other case. The write address and write data are

already present at the MIG and independent from the delay generation logic. Since it

requires many connections to the ILA core to directly tap the content of the DRAM, a

more precise measurement of when the data word is present in the memory registers is

hard to realize, so this measurement has to rely on the validation of the write access by

18 19 20
0

5

10

15

20

Clock Cycle Count

In
ci

d
en

t
C

o
u
n
t

Original
No DelayGen
Ext. Register
Ext. BRAM

Figure 5.5: Write Access Latency Samples

5.2 Impact on Memory Latency 41

the MIG. Whether or not the AXI logic is responsible for this (at least) one clock cycle

delay of the valid signal can only be guessed at this point. It can be stated with high

certainty however that write accesses to the BRAM Domain are validated at a later time

by the MIG.

Using an ILA core for the measurements of potential effects on signal behaviour has

the advantage that the effects are visible in the nanosecond scope. The ILA sees what

has actually happened in the circuit during the captured time period. A more precise

measurement is not possible, but this comes at a cost of measurement effort. The memory

accesses have to be carried out manually before the signals can be observed in Vivado

where then the number of elapsed clock cycles between the trigger and the expected event

needs to be counted.

6 Conclusion

6.1 Summary of Results

The effects on a system due to specific memory access latencies of non volatile memories

used as main memory can be investigated with the emulator provided by Yu Omori et al.

The emulator is limited to a single main memory type; due to the specific characteristics of

different NVMs however, hybrid systems that make use of several NVMs as main memory

are subjects of research as well. This thesis extends the given emulator by the function

to mimic the access latency behaviour of more than one NVM type. In order to be able

to emulate the largest possible amount of system configurations and offer the flexibility

to experiment with different configurations, the extension allows for a fine granularity of

memory sections within the main memory if required, each of which corresponds to one

NVM type. The access latencies for specified memory regions or the whole memory can

be set by a program provided with this thesis.

Since the physical boundaries of a realizable section count and therefore emulatable NVMs

are reached relatively fast in an approach to extend the design idea of the original emulator,

the DRAM that emulates the NVMs is divided into two domains. The access latency

emulation of the first half of the DRAM behaves similar to original emulator design. The

number of emulatable NVMs is limited to 64 in this domain. The second half of the DRAM

enables up to 131072 different NVM types with the drawback of overall slower access times,

which increases the viable minimum access latency for this domain. The delay generation

logic design of this domain takes a different approach compared to the original emulator

by utilizing an hitherto almost unused resource (the BRAM) of the FPGA, in which the

emulator is implemented in.

The evaluation of the extended design suggests that the impact on the system performance

caused by the extensions are as expected. The design environment of the FPGA ensures

that the described hardware works as stated (the signal timing is of particular interest

here) within the FPGA, nonetheless the hardware changes can have an impact on the

system as a whole (i.a. because the on-chip communication protocol allows deviations in

the timing of signal exchanges). It should be noted however that the measurements had to

be conducted manually and therefore the sample size is relatively small. Further research

needs to be done to increase the significance of the findings.

44 6 Conclusion

6.2 Future Outlook

Additionally to the coarse-grained delay injection model, Yu Omori et al. implemented

a fine-grained model where the additional memory latencies are generated within the

DRAM itself [16]. This model could also be extended in future work in order to enable

the emulation of hybrid systems.

Moreover, regular use of the emulator could reveal frequent configurations of the emulator

regarding the count of emulated NVMs. It is also possible that the division of the DRAM

is more of a hindrance than a benefit. Future work could gather the most common use

cases so that adapted versions of the emulator could be made available.

Appendix

FPGA Utilization (%) Measurement Data for Figure 5.1

Section Count LUT LUTRAM FF BRAM

2 12.53 6.26 5.85 47.16

3 12.60 6.26 5.85 47.16

4 12.55 6.26 5.88 47.16

6 12.61 6.26 5.89 47.16

8 12.62 6.26 5.94 47.16

12 12.77 6.26 6.00 47.16

16 12.81 6.26 6.06 47.16

24 12.98 6.26 6.17 47.16

32 13.12 6.26 6.30 47.16

48 13.47 6.26 6.54 47.16

64 13.73 6.26 6.77 47.16

FPGA Utilization (%) Measurement Data for Figure 5.2

Section Count LUT LUTRAM FF BRAM

2 12.98 6.21 6.22 0.37

4 12.98 6.21 6.24 0.37

8 12.97 6.21 6.22 0.37

16 12.98 6.21 6.22 0.37

32 12.98 6.21 6.23 0.37

64 13.00 6.23 6.23 0.37

128 13.00 6.23 6.23 0.37

256 13.00 6.23 6.24 0.37

512 13.00 6.23 6.24 0.37

513 13.01 6.23 6.25 0.55

768 13.01 6.23 6.25 0.55

1023 13.01 6.23 6.25 0.55

46 6 Conclusion

1024 13.01 6.23 6.24 0.55

1025 13.05 6.23 6.28 0.73

1536 13.05 6.23 6.28 0.73

2047 13.02 6.23 6.25 0.92

2048 13.02 6.23 6.25 0.92

2049 13.08 6.26 6.31 1.10

3072 13.07 6.26 6.30 1.28

4095 13.04 6.26 6.28 1.65

4096 13.04 6.26 6.31 1.65

4097 13.08 6.26 6.31 1.83

6144 13.08 6.26 6.31 2.39

8191 13.07 6.26 6.31 3.12

8192 13.07 6.26 6.31 3.12

8193 13.10 6.26 6.33 3.30

12288 13.10 6.26 6.33 4.59

16383 13.12 6.26 6.34 6.06

16384 13.12 6.26 6.34 6.06

16385 13.18 6.26 6.37 6.24

24576 13.17 6.26 6.38 8.99

32767 13.21 6.26 6.41 11.93

32768 13.21 6.26 6.41 11.93

32769 13.30 6.26 6.43 12.11

49151 13.34 6.26 6.48 20.73

65535 13.37 6.26 6.48 23.67

65536 13.37 6.26 6.48 23.67

65537 13.45 6.26 6.50 23.85

98304 13.60 6.26 6.64 35.41

131071 13.74 6.26 6.77 47.16

131072 13.74 6.26 6.77 47.16

6.2 Future Outlook 47

Access Latency (Clock Cycles) Measurement Data for Figures 5.4 and 5.5

Original No DelayGen Ext. Register Ext. BRAM

read write read write read write read write

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 20

43 18 43 18 43 18 46 19

43 18 63 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 48 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

45 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

44 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

43 18 43 18 43 18 46 19

List of Figures

3.1 Concept of a Generic FPGA Structure . 6

3.2 Basic Configurable Logic Block . 6

3.3 Extended Configurable Logic Block . 7

3.4 Simplified Switch Matrix . 7

3.5 FPGA Design Workflow . 8

3.6 Zynq-7000 Architecture Overview . 10

3.7 AXI Read Channel Architecture . 10

3.8 AXI Write Channel Architecture . 11

3.9 Feasible AXI Handshakes . 11

3.10 Example Timing Diagram for AXI Read . 12

3.11 Example Timing Diagram for AXI Write . 14

4.1 Architectural Overview of the Original Emulator 16

4.2 Partial Emulator Block Diagram Showing LatSet 16

4.3 Complete Block Diagram for the Original Emulator Design 17

4.4 Example Showing Minimum Realizable Latency 20

4.5 Architectural Overview of the Extended Emulator 21

4.6 Register Module Architecture . 23

4.8 BRAM Module Block Diagram . 28

5.1 FPGA Utilization by Section Count for the Register Module 36

5.2 FPGA Utilization by Section Count for the BRAM Module 37

5.3 Comparison of FPGA Resource Utilization 38

5.4 Read Access Latency Samples . 40

5.5 Write Access Latency Samples . 40

List of Source Codes

4.1 Read Address Handshake Signal Assertion in Module LatGen 17

4.2 Assertion of ready ar in Module LatGen 18

4.3 Write Address Handshake Signal Assertion in Module LatGen 19

4.4 rlat-Register and wlat-Register Multiplexers 24

4.5 Access Controller Logic . 28

4.6 NVMM Address Conversion . 29

4.7 Introducing Delay Variables to LatGen . 30

4.8 Additional Check for Assertion of the Ready Signal 31

4.9 Module MUX . 31

Bibliography

[1] 7 Series FPGAs Memory Resources User Guide (UG473). Version 1.14.

https://www.xilinx.com/support/documentation/user_guides/ug473_

7Series_Memory_Resources.pdf.

[2] Altera FPGA Architecture White Paper (WP-01003). Version 1.0. https:

//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/

wp-01003.pdf.

[3] Designing Large Multiplexers (UG002). Version 1.3. http://ebook.pldworld.

com/_semiconductors/Xilinx/DataSource%20CD-ROM/Rev.6%20(Q1-2002)

/userguides/V2_handbook/ug002_ch2_multiplexers.pdf.

[4] Linux manual page for mem(4). https://man7.org/linux/man-pages/man4/mem.

4.html.

[5] Memory Interface Solutions User Guide (UG086). Version 3.6. https://www.xilinx.

com/support/documentation/ip_documentation/ug086.pdf.

[6] Multiplexer Design Techniques for Datapath Performance with Minimized Rout-

ing Resources (XAPP522). Version 1.2. https://www.xilinx.com/support/

documentation/application_notes/xapp522-mux-design-techniques.pdf.

[7] Spartan-7 FPGAs: Meeting the Cost-Sensitive Market Requirements (WP483).

Version 1.1. https://www.xilinx.com/support/documentation/white_papers/

wp483-spartan-7-intro.pdf.

[8] UltraScale Architecture Configurable Logic Block User Guide (UG574). Ver-

sion 1.5. https://www.xilinx.com/support/documentation/user_guides/

ug574-ultrascale-clb.pdf.

[9] Vivado Design Suite User Guide – Implementation (UG904). Version 2018.3.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/

ug904-vivado-implementation.pdf.

[10] Vivado Design Suite User Guide – Synthesis (UG901). Version 2017.1.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_

1/ug901-vivado-synthesis.pdf.

 https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
 https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
 https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
 https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
 https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
http://ebook.pldworld.com/_semiconductors/Xilinx/DataSource%20CD-ROM/Rev.6%20(Q1-2002)/userguides/V2_handbook/ug002_ch2_multiplexers.pdf
http://ebook.pldworld.com/_semiconductors/Xilinx/DataSource%20CD-ROM/Rev.6%20(Q1-2002)/userguides/V2_handbook/ug002_ch2_multiplexers.pdf
http://ebook.pldworld.com/_semiconductors/Xilinx/DataSource%20CD-ROM/Rev.6%20(Q1-2002)/userguides/V2_handbook/ug002_ch2_multiplexers.pdf
https://man7.org/linux/man-pages/man4/mem.4.html
https://man7.org/linux/man-pages/man4/mem.4.html
 https://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
 https://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
 https://www.xilinx.com/support/documentation/application_notes/xapp522-mux-design-techniques.pdf
 https://www.xilinx.com/support/documentation/application_notes/xapp522-mux-design-techniques.pdf
 https://www.xilinx.com/support/documentation/white_papers/wp483-spartan-7-intro.pdf
 https://www.xilinx.com/support/documentation/white_papers/wp483-spartan-7-intro.pdf
 https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
 https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug904-vivado-implementation.pdf
 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug904-vivado-implementation.pdf
 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug901-vivado-synthesis.pdf
 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug901-vivado-synthesis.pdf

54 Bibliography

[11] Zynq-7000 SoC Data Sheet: Overview (DS190). Version 1.11.1. https://www.

xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.

pdf.

[12] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song, and J. Xu. Hmtt: A

platform independent full-system memory trace monitoring system. In Proceedings of

the 2008 ACM SIGMETRICS International Conference on Measurement and Mod-

eling of Computer Systems, SIGMETRICS 08, page 229240, New York, NY, USA,

2008. Association for Computing Machinery.

[13] I. Grout. Digital Systems Design with FPGAs and CPLDs. Newnes, USA, 2008.

[14] C. Hakert. Memory access analysis and endurance leveling approaches for non-volatile

working memory systems. Master’s thesis, 2019.

[15] T. Lee and S. Yoo. An fpga-based platform for non volatile memory emulation. In 2017

IEEE 6th Non-Volatile Memory Systems and Applications Symposium (NVMSA),

pages 1–4, 2017.

[16] Y. Omori and K. Kimura. Performance evaluation on nvmm emulator employing fine-

grain delay injection. In 2019 IEEE Non-Volatile Memory Systems and Applications

Symposium (NVMSA), pages 1–6, 2019.

[17] H. Patel. Synthesis and implementation strategies to accelerate design performance.

Xilinx White Paper, 229, 2005.

[18] M. Poremba, T. Zhang, and Y. Xie. Nvmain 2.0: A user-friendly memory simula-

tor to model (non-)volatile memory systems. IEEE Computer Architecture Letters,

14(2):140–143, 2015.

[19] Y. Zhang and S. Swanson. A study of application performance with non-volatile

main memory. In 2015 31st Symposium on Mass Storage Systems and Technologies

(MSST), pages 1–10, 2015.

[20] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main

memory using phase change memory technology. In ISCA ’09, 2009.

 https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
 https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
 https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

Eidesstattliche Versicherung
(Affidavit)

Name, Vorname
(Last name, first name)

Matrikelnr.
(Enrollment number)

Ich versichere hiermit an Eides statt, dass ich die
vorliegende Bachelorarbeit/Masterarbeit* mit dem
folgenden Titel selbstständig und ohne unzulässige
fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt
sowie wörtliche und sinngemäße Zitate kenntlich
gemacht. Die Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

I declare in lieu of oath that I have completed the
present Bachelor’s/Master’s* thesis with the following
title independently and without any unauthorized
assistance. I have not used any other sources or aids
than the ones listed and have documented quotations
and paraphrases as such. The thesis in its current or
similar version has not been submitted to an auditing
institution.

Titel der Bachelor-/Masterarbeit*:
(Title of the Bachelor’s/ Master’s* thesis):

*Nichtzutreffendes bitte streichen
(Please choose the appropriate)

Ort, Datum
(Place, date)

Unterschrift
(Signature)

Belehrung:
Wer vorsätzlich gegen eine die Täuschung über
Prüfungsleistungen betreffende Regelung einer
Hochschulprüfungsordnung verstößt, handelt
ordnungswidrig. Die Ordnungswidrigkeit kann mit einer
Geldbuße von bis zu 50.000,00 € geahndet werden.
Zuständige Verwaltungsbehörde für die Verfolgung
und Ahndung von Ordnungswidrigkeiten ist der
Kanzler/die Kanzlerin der Technischen Universität
Dortmund. Im Falle eines mehrfachen oder sonstigen
schwerwiegenden Täuschungsversuches kann der
Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5
Hochschulgesetz - HG -).

Die Abgabe einer falschen Versicherung an Eides statt
wird mit Freiheitsstrafe bis zu 3 Jahren oder mit
Geldstrafe bestraft.

Die Technische Universität Dortmund wird ggf.
elektronische Vergleichswerkzeuge (wie z.B. die
Software „turnitin“) zur Überprüfung von Ordnungs-
widrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis
genommen:

Official notification:
Any person who intentionally breaches any regulation
of university examination regulations relating to
deception in examination performance is acting
improperly. This offense can be punished with a fine of
up to €50,000.00. The competent administrative
authority for the pursuit and prosecution of offenses of
this type is the chancellor of TU Dortmund University.
In the case of multiple or other serious attempts at
deception, the examinee can also be unenrolled,
section 63, subsection 5 of the North Rhine-
Westphalia Higher Education Act (Hochschulgesetz).

The submission of a false affidavit will be punished
with a prison sentence of up to three years or a fine.

As may be necessary, TU Dortmund will make use of
electronic plagiarism-prevention tools (e.g. the
"turnitin" service) in order to monitor violations during
the examination procedures.

I have taken note of the above official notification:**

Ort, Datum
(Place, date)

Unterschrift
(Signature)

**Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung") for the
Bachelor’s/ Master’s thesis is the official and legally binding version.

vorliegende Bachelorarbeit/Masterarbeit* mit dem present Bachelor’s/Master’s* thesis with the following

/Masterarbeit*:
(Title of the Bachelor’s/ Master’s* thesis):

Morczinek, Dennis 190883

Configurable FPGA-based Access Latency Emulation for Non-Volatile Main Memory

Dortmund, 18.07.2020

Dortmund, 18.07.2020

	Titelpage
	Abstract
	Table of Content
	Introduction
	Motivation and Contribution
	Structure of the Thesis

	Related Work
	Memory Access Simulators

	Technical Background
	Configurable System Hardware
	FPGAs
	IP Cores
	SoC-FPGA Architecture

	Advanced eXtensible Interface

	Development
	NVMM Emulator Design
	Design Extensions
	Register Module
	BRAM Module
	Module MUX
	Setting the Latencies

	Evaluation
	Resource Utilization
	Impact on Memory Latency

	Conclusion
	Summary of Results
	Future Outlook

	List of Figures
	List of Source Codes
	Bibliography

