
Bachelor/Master Thesis

LLVMTA: Adding AARCH64
(ARMv8,9) support to a static WCET
analyser

computer
science 12

Nils Hölscher
Prof. Dr. Jian-Jia Chen
Otto-Hahn Str. 16
Technische Universität Dortmund
Email: nils.hoelscher@tu-dortmund.de
10.03.2022

LLVMTA is a static Worst Case Execution Time
(WCET) analyser published recently. Such analysers
determine an upper bound of the program’s execution
time (so-called WCET), which is very useful for real-
time systems. To estimate the WCET of a program,
its Control Flow Graph (CFG) has to be reconstructed
from the binary, by which all necessary analyses ap-
proaches can be conducted, like value analysis, path-
analysis and cache analysis, as shown in Figure 1.

Program
Binary

Control-flow
Reconstruction

Control-flow
Graph

Control-flow Analysis
(incl. Loop-bound Analysis)

Value Analysis

Annotated
CFG

Abstract
Execution

Graph

Micro-
architectural

Analysis
Path Analysis

Timing Bound

Figure 1: Overview of the general steps in WCET analysis.

Conventional tools like OTAWA or aiT take the gen-
erated binary code to reconstruct the CFG. However,
it is already generated during a programs compilation,
and the reconstructed one might lose important infor-
mation for analysis.
Alternatively, LLVMTA takes a different approach. As

it is integrated into LLVM, the program can be anal-
ysed from its native code in C, instead of the gener-
ated binary. The whole compilation flow of LLVM and
LLVMTA is shown in Figure 2. The current version
of LLVMTA supports two 32-bit ISAs, namely RISC-V
and ARMv4. To make LLVMTA more comprehensive,
an additional support to 64-bit ISAs such as AARCH64
is highly relevant, which will align with the recent de-
velopment in the industry, e.g., ARM.

In this thesis, students should make themselves famil-
iar with LLVMTA, LLVM and the AARCH64 ISA. After

C Code clang
Intermediate

Representation

opt

llc

Assembler
Representation

llvmta
low-level analysis

Assembler
Linker

Timing
Bound

Program
Binary

Address

Mapping

&

Figure 2: Overview of the common LLVM compilation flow
(clang, opt, llc) including the integration of our low-level
analysis tool LLVMTA.

that the abstract address system of LLVMTA has to be
adapted to 64 Bit. Finally the students should imple-
ment as many AARCH64 instructions into the LLVMTA
analyser as possible, starting with simple load, store
instructions and simple arithmetic instructions. The
minimal goal should be to successfully analyse a simple
loop example.

Other suggestions and related topics are also welcome.
Please do not hesitate to make an appointment.

Required Skills:

• Knowledge of computer architecture

• Basic/Advanced knowledge of C++

Acquired Skills after the thesis:

• Deep knowledge about ARMv9 ISA.

• Insights into the LLVM compiler ecosystem

• Knowledge about static WCET analysis.

Literature:

• LLVMTA: An LLVM-Based WCET Analysis Tool

mailto:nils.hoelscher@tu-dortmund.de
https://drops.dagstuhl.de/opus/volltexte/2022/16624/

