technische universitat
dortmund

Introduction

In hard real-time systems, it is mandatory to verify the tempo-
ral behavior of the application, e.g., the compliance to deadline
constraints. In parallel task scheduling, inter- and intra-task par-
allelism has to be considered in the timing analysis, where inter-
task parallelism refers to the co-scheduling of different tasks and
intra-task parallelism refers to parallel execution of a single task.
In the context of task models for parallel computing, fork/join
models [1], synchronous parallel task models, and DAG
(directed-acyclic graph) based task models [2-7] have been pro-
posed and analyzed with respect to real-time constraints.

In the gang task model, a set of threads is grouped together into
a so called gang with the additional constraint that all threads
of a gang must be co-scheduled at the same time on available
processors. It has been demonstrated that gang-based parallel
computing can improve the performance in many cases [8}|9].
Due to its practicability, the gang model is supported by many
parallel computing standards, e.g., MPI, OpenMP, Open ACC
or GPU computing.

In the stationary gang scheduling paradigm, each gang task is
statically assigned to a set of processors, in which the cardinal-
ity of the set is equal to the gang size of the task. After this
assignment is done, a gang task is only eligible to be executed
on stationary processors assigned to it.

Thesis

1. In this thesis, the student should implement fixed-priority
stationary GANG scheduling in LITMUS—RTE] using the C
programming language.

2. Moreover the student should devise experiments to evaluate
the scheduling overheads and run-time variations using the
provided tracing tools in LITMUS-RT.

3. (optional) The student could asses if it is possible to inte-
grate memory bandwidth controllers, e.g., memguardE]into
stationary GANG scheduling to limit memory contention of
co-scheduled tasks.

Ideally, this thesis should either demonstrate the benefits of
the stationary constraint with respect to memory contention,
scheduling overheads and run-time variations or hint to the per-
formance problems of this approach. If you are interested, please
do not hesitate to contact me for further information and liter-
ature.

Thttps://www.litmus-rt.org/
2https://github.com /heechul /memguard

computer
science 12

|2

Niklas Ueter

Prof. Dr. Jian-Jia Chen

Otto-Hahn Str. 16

Technische Universitat Dortmund
Email: niklas.ueter@tu-dortmund.de

Required Skill

e Basic knowledge with Linux and systems programming
e Comfortable with C and Python

e Interested in Real-Time scheduling

Acquired Skills after the work

e Knowledge of parallel real-time scheduling algorithms
e Knowledge of real-time operating systems

e Design, Analysis, and Implementation of system software
for real-time systems

References

[1] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Proceedings of the 2010 31st
IEEE Real-Time Systems Symposium, RTSS '10, pp. 259-268, 2010.

[2] J. Fonseca, G. Nelissen, and V. Nélis, “Improved Response Time Analy-
sis of Sporadic DAG Tasks for Global FP Scheduling,” in Proceedings of
the 25th International Conference on Real-Time Networks and Systems,
2017.

[3] J. C. Fonseca, G. Nelissen, V. Nélis, and L. M. Pinho, “Response time
analysis of sporadic DAG tasks under partitioned scheduling,” in 11th
IEEE Symposium on Industrial Embedded Systems, SIES, pp. 290-299,
2016.

[4] S. Baruah, “The federated scheduling of constrained-deadline sporadic
DAG task systems,” in Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition, DATE, pp. 1323-1328, 2015.

[5] S. Baruah, “Federated scheduling of sporadic DAG task systems,”
in IEEE International Parallel and Distributed Processing Symposium,
IPDPS, pp. 179-186, 2015.

[6] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic dag task model,” in ECRTS, pp. 225-233,
2013.

[7] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-Time Analysis of Conditional DAG Tasks in
Multiprocessor Systems,” in Proceedings of the 2015 27th Euromicro
Conference on Real-Time Systems, 2015.

[8] M. A. Jette, “Performance characteristics of gang scheduling in mul-
tiprogrammed environments,” in Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, SC '97, 1997.

[9] D. G. Feitelson and L. Rudolph, “Gang scheduling performance bene-
fits for fine-grain synchronization,” Journal of Parallel and Distributed
Computing, vol. 16, pp. 306-318, 1992.



