technische universitat
dortmund

Mainstream highly-parallel accelerators, such as
Nvidia’s T4 and Google's TPU, are usually optimized
for low bit-width inputs. Each computing unit require
less circuitry and generate less heat compared to larger
bit width. For instance, 8-bit multipliers save up to
91% of power and is 2.17 times faster than a 32-bit
multiplier [2]. While TPUs are designed for matrix mul-
tiplication, we foresee the rise of vector processors with
numerous low-bit, RISC-style ALUs that can support a
broader range of parallel operations.

Traditionally found as DSPs in embedded systems spe-
cialized for signal processing, we envision these vec-
tor processors becoming essential co-processors in mo-
bile SoCs or being integrated into CPUs like a built-in
graphics unit. They could also be embedded in memory
controllers for near-data computing, accelerating var-
ious tasks such as vector searches, exhaustive scans,
and reduction operations like summation and finding
minimum valued]

However, as such a low-bitwidth co-processor collab-
orates with other wide-bitwidth compute units (e.g.,
CPU), data format conversion must be performed fre-
quently to realize cache-efficient computation. This
could require creating many copies of the same data in
various formats. In addition, conversion is required in
each iteration of mixed-precision (8-bit and 32-bit) lin-
ear algebra algorithms [3], which may be a bottleneck.

The objective of this thesis is to investigate several con-
version procedures that trade off complexity and accu-
racy. You will study current rounding techniques in em-
bedded DSP tailored for signal processing [5], floating-
point arithmetic emulation schemes built for TPU [3],
and low-bitwidth aggregation operations used in ap-
proximation query processing in databases [4].

You will write C+-+ program with x86 SIMD intrinsics
to create prototypes for basic operations such as vector
addition, matching, and reduction. You will use various
rounding strategies, compare their complexity, adjust

LUPMEM exemplifies this approach, featuring native 8-bit hardware mul-
tipliers but relying on software-based shift-and-add multiplication for higher
bit widths and emulating floating-point arithmetic [I]

computer
science 12

|2

Yun-Chih Chen
Prof. Dr. Jian-Jia Chen

Otto-Hahn Str. 16

Technische Universitat Dortmund
Email: yunchih.chen@tu-dortmund.de
July 15, 2024

the bitwidth and vector length, and assess their algo-
rithmic accuracy. Your research will set the groundwork
for a general hardware-based rounding approach that is
embedded in memory and provides efficient data lay-
out for a future scalar-vector collaborative processing
system.

Required Skills:
e Experiences in basic data structures

e Experiences in C++ programming

Acquired Skills after the thesis:
e Hands-on experience with x86 SIMD programming.

e Experiences in extending and generalizing existing
codebase [0].

e Experiences on mixed-precision algorithms and
rounding techniques.

References:

[1] Friesel, Birte, Marcel Liitke Dreimann and Olaf Spinczyk. “A Full-
System Perspective on UPMEM Performance.” Proceedings of the 1st
Workshop on Disruptive Memory Systems (2023).

[2] Oliveira, Geraldo F., Juan GOmez-Luna, Saugata Ghose, Amirali
Boroumand and Onur Mutlu. “Accelerating Neural Network Inference
With Processing-in-DRAM: From the Edge to the Cloud.” IEEE Micro
42 (2022): 25-38.

[3] Lin, Zejia, Aoyuan Sun, Xianwei Zhang and Yutong Lu. “MixPert:
Optimizing Mixed-Precision Floating-Point Emulation on GPU Inte-
ger Tensor Cores.”, Proceedings of the 25th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Em-
bedded Systems (2024)

[4] Pirk, Holger, Stefan Manegold and Martin L. Kersten. “Waste not. . .
Efficient co-processing of relational data.” 2014 IEEE 30th Interna-
tional Conference on Data Engineering (2014): 508-519.

[5] https://docs.amd.com/r/en-US/am004-versal-dsp-engine/
Rounding

[6] https://github.com/megagonlabs/vecscan


mailto:yunchih.chen@tu-dortmund.de
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/Rounding
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/Rounding
https://github.com/megagonlabs/vecscan

