technische universitat
dortmuna

To prevent race conditions or data corruptions, con-
currently accessing the same resource is prohibited
by exploiting mutual exclusion. Several semaphore-
based protocols have been developed to provide a
deadlock-free resource synchronization and mitigate
the priority inversions. In uni-processor systems,
Priority Inheritance Protocol (PIP) and Priority Ceiling
Protocol (PCP) are widely accepted and utilized.
In modern multiprocessor platforms, many resource
synchronization protocols have been proposed, e.g.,
Multiprocessor Priority Ceiling Protocol (MPCP) [5]
and Distributed Priority Ceiling Protocol (DPCP) [6]
and implemented on various real-time operating sys-
tems (RTOSes), e.g., RTEMS [1] and LITMUSET [2].

To ensure the correctness of such implementations,
dedicated corner cases will be designed and deployed
to testify whether the system behaves as expected.
However, such case-based validation is usually not
sufficient, since it is not possible to test over all
the sensitive cases empirically. Alternatively, Gadia et
al. [3] use Java to model the implementation of Priority
Inheritance Protocol on uniprocessor in the RTEMS
and validate the model by using Java Pathfinder to
exhaustively detect potential data races, deadlocks,
and priority inversions. However, the required effort
cannot easily scale to validate the other advanced
protocols or even for multiprocessor systems.

Towards this, formal verification has been adopted
recently. Gu et al. in [4] develop a practical concurrent
OS kernel named CertiKOS, and verify its (contextual)
functional correctness with a proof assistant Coq.
Although some researches continue to provide certified
real-time systems on the same vein, we are more
interested to verify the existing implementations on
off-the-shelf real-time platforms. We can foresee that
such an alternative trait is challenging but potentially
effective to the relevant researches.

In this thesis, the student is expected to study the
existing implementations of DPCP and MPCP on

computer
science 12

|2

Junjie Shi

Dr.-Ing. Kuan-Hsun Chen

Prof. Dr. Jian-Jia Chen

Technische Universitat Dortmund
Email: kuan-hsun.chen©tu-dortmund.de
July 16, 2020

RTEMS and LITMUSET at first. Afterwards, all
the necessary properties of the assumptions (HW and
OS) used by these protocols must be defined and
modeled. Based on the proposed models, the student
has to formulate the properties of MPCP and DPCP
that can be validated, e.g., ceiling priority boost and
priority based wait queue. Here, we assume the basic
components provided in RTOSes and hardware are
correct, e.g., priority based scheduler. At the end,
the student is supposed to validate/verify how these
necessary properties are matched prove the correctness
of considered implementation of PIP, PCP, MPCP,
and DPCP on RTEMS and LITMUS®T,

Required Skills:

e Knowledge of C and C++ programming

e Knowledge of Real-Time System

e Knowledge of System Programming and

e Architecture knowledge is beneficial
Acquired Skills after the work:

e Knowledge of Resource Synchronization

e Knowledge of Real-Time Operating Systems

e Design, Analysis, Implementation of system soft-
ware on real-time system, e.g., version control,
coding convention, etc.

References
[1] RTEMS. http://www.rtems.org/.

[2] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson.
LITMUSET: A testbed for empirically comparing real-time multiprocessor sched-
ulers. In Real-Time Systems Symposium (RTSS), pages 111-126. |IEEE, 2006.

[3] S. Gadia, C. Artho, and G. Bloom. Verifying nested lock priority inheritance in
RTEMS with java pathfinder. In K. Ogata, M. Lawford, and S. Liu, editors,
Formal Methods and Software Engineering - 18th International Conference on
Formal Engineering Methods, ICFEM, year = 2016,.

[4] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjoberg, and D. Costanzo.
Certikos: An extensible architecture for building certified concurrent OS kernels.
In 12th USENIX Symposium on OSDI, 2016.

[5] R. Rajkumar. Real-time synchronization protocols for shared memory multipro-
cessors. In Proceedings.,10th International Conference on Distributed Computing
Systems, pages 116 — 123, 1990.

[6] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for
multiprocessors. In Proceedings of the RTSS, 1988.

mailto:kuan-hsun.chen@tu-dortmund.de

