
Master/Bachelor Thesis

Implementing and Verifying Resource
Synchronization Protocols in RTOSes

computer
science 12

Junjie Shi
Prof. Dr. Jian-Jia Chen
Technische Universität Dortmund
Email: junjie.shi@tu-dortmund.de
April 4, 2022

To prevent race conditions or data corruptions, con-
currently accessing the same resource is prohibited by
exploiting mutual exclusion. Several semaphore-based
protocols have been developed to provide a deadlock-
free resource synchronization and mitigate the priority
inversions. In modern multiprocessor platforms, many
resource synchronization protocols have been pro-
posed, e.g., Multiprocessor Priority Ceiling Protocol
(MPCP) [5] and Distributed Priority Ceiling Protocol
(DPCP) [6] and implemented on various real-time
operating systems (RTOSes), e.g., RTEMS [2].

To ensure the correctness of such implementations,
dedicated corner cases will be designed and deployed
to testify whether the system behaves as expected.
However, such case-based validation is usually not
sufficient, since it is not possible to test over all
the sensitive cases empirically. Alternatively, Gadia et
al. [3] use Java to model the implementation of Priority
Inheritance Protocol on uniprocessor in the RTEMS
and validate the model by using Java Pathfinder to
exhaustively detect potential data races, deadlocks,
and priority inversions. However, the required effort
cannot easily scale to validate the other advanced
protocols or even for multiprocessor systems.

Towards this, formal verification has been adopted
recently. Gu et al. in [4] develop a practical concurrent
OS kernel named CertiKOS, and verify its (contextual)
functional correctness with a proof assistant Coq.
Although some researches continue to provide certified
real-time systems on the same vein, we are more
interested to verify the existing implementations on
off-the-shelf real-time platforms. We can foresee that
such an alternative trait is challenging but potentially
effective to the relevant researches.

In this thesis, the student is expected to convert
the existing implementations of DPCP, MPCP, FMLP,
and DGA [7] on the latest version of RTEMS, i.e.,
5.1, at first. Afterwards, all the necessary properties
of the assumptions (HW and OS) used by these

protocols must be defined and modeled. Based on
the proposed models, the student has to formulate
the properties of protocols that can be validated,
e.g., ceiling priority boost, migration mechanism, and
forced execution order. Here, we assume the basic
components provided in RTOSes and hardware are
correct, e.g., priority based scheduler. At the end,
the student is supposed to validate/verify how these
necessary properties are matched prove the correctness
of considered implementation of DPCP, MPCP, FMLP,
and DGA on RTEMS by using Frama-C [1].

Required Skills:

• Knowledge of C and C++ programming

• Knowledge of Real-Time System

• Knowledge of System Programming and

• Architecture knowledge is beneficial

Acquired Skills after the work:

• Knowledge of Resource Synchronization

• Knowledge of Real-Time Operating Systems

• Design, Analysis, Implementation of system soft-
ware on real-time system

References
[1] Frama-C software analyzers. https://frama-c.com/. visited on 15.10.2021.

[2] RTEMs. http://www.rtems.org/.

[3] S. Gadia, C. Artho, and G. Bloom. Verifying nested lock priority inheritance in
RTEMS with java pathfinder. In K. Ogata, M. Lawford, and S. Liu, editors,
Formal Methods and Software Engineering - 18th International Conference on
Formal Engineering Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016,
Proceedings, volume 10009 of Lecture Notes in Computer Science, pages 417–432,
2016.

[4] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
Certikos: An extensible architecture for building certified concurrent OS kernels.
In 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages 653–669, 2016.

[5] R. Rajkumar. Real-time synchronization protocols for shared memory multipro-
cessors. In Proceedings.,10th International Conference on Distributed Computing
Systems, pages 116 – 123, 1990.

[6] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for
multiprocessors. In Proceedings of the 9th IEEE Real-Time Systems Symposium
(RTSS ’88), pages 259–269, 1988.

[7] J. Shi, J. D. T. Pham, M. Münch, J. V. Hafemeister, J. Chen, and K. Chen.
Supporting multiprocessor resource synchronization protocols in RTEMS. CoRR,
abs/2104.06366, 2021.

mailto:junjie.shi@tu-dortmund.de

