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Zusammenfassung

Dynamic Random-Access Memory (DRAM) ist seit vielen Jahren als Arbeitsspeicher
des Computers eingesetzt. Wegen seines einfachen One-Transistor One-Capacitor Aufbau,
niedrigen Kosten und kurzen Zugriffszeit dient DRAM als eine Brücke zwischen dem teure-
ren und schnelleren Static Random-Access Memory und dem günstigeren und langsameren
Hard Disk Drive oder Solid-State Drive. Heutzutage treten jedoch intrinsische Probleme des
DRAM langsam auf, und zwar seiner großen Energieverbrauch und eingeschränkten Ska-
lierbarkeit. Deswegen ziehen die entstehenden nichtflüchtigen Datenspeicher-Technologien
mehr und mehr Blicke der Forscher auf sich.

Aber momentan sind Datenspeicher von meisten diesen Technologien noch nicht
verfügbar auf dem Markt. Um die verschiedenen Eigenschaften dieser Technologien zu
ermitteln, ist ein Emulationsboard in dieser Bachelorarbeit gebaut. Das Emulationsboard
basiert auf dem SoC FU500, der Prozessoren mit einer Open-Source Befehlssatzarchitektur
Reduced Instruction Set Computer Five (RISCV) nutzt. Außerdem ist ein Ein-Gigabyte
DDR3 Arbeitsspeicher verfügbar auf dem Emulationsboard. Weil die Geschwindigkeit der
entstehenden nichtflüchtigen Datenspeicher-Technologien langsamer als die von DRAM ist,
lassen sich diese neuen Technologien emulieren durch DRAM. Das Emulationsboard nutzt
ein Verzögerungsmodul, das aus einem Schieberegister mit Erweiterung besteht, um den
Zugriff auf die Arbeitsspeicher zu verlangsamen und die Datenübertragunsrate des DDR3-
Arbeitsspeicher zu verringern. Die Anzahl von Flipflops des Schieberegisters lässt sich von
dem Benutzer beim Kompilieren einstellen und somit verschiedene Verzögerungszyklen
erreichbar sind.

Außerhalb dem Aufbau des Emulationsboard ist ein Benchmark-Paket aufgebaut.
Das Benchmark-Paket umfasst zwei Open-Source Benchmarks, nämlich MiBench und
Tinymembench, und ein selbst geschribenes Benchmark für Schreib-Latenz-Test. Das
Emulationsboard ist mit diesen zwei Benchmarks evaluiert.

Abstract

As DRAM is facing some problems such as limited scalability and huge power consump-
tion, researchers are turning their focus on the emerging Non-Volatile Memory (NVM)
technologies, like Phase-Change RAM (PRAM), Spin-Transfer Torque RAM (STT-RAM)
and Resistive RAM (ReRAM), to get rid of these problems. Compared to DRAM, NVM
is non-volatile and has higher density. Moreover, in contrast to flash memory, NVM are
byte-addressable. Therefore, they can be considered as a candidate for replacing traditional
DRAM. In order to explore the characteristics of different NVM technologies, in this
thesis, an emulation board with parameterizable memory access latency is built upon a
platform called FU500, which utilizing the open-source instruction set architecture RISCV,
to ensure flexibility and extensibility for further research. Moreover, a benchmark suite
comprising MiBench and Tinymembench is also built for benchmarking this board.
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Chapter 1

Introduction

Traditional Dynamic Random-Access Memory (DRAM) is playing an important role
as main memory in computer systems. Due to its low cost, simple construction, high
capacity and byte-addressability, it serves as a bridge between expensive but fast Static
Random-Access Memory (SRAM) and cheap but slow flash memory or hard disk drive.
But in recent years, its intrinsic shortcomings are hindering it from further development.

First, DRAM will reach its scaling limit by 2024[1]. As DRAM keeps being scaled
down, the cell capacitance will also be scaled down, which is a crucial parameter determing
the storing-ability of a cell. Since DRAM is in a one-transistor one-capacitor (1T1C)
structure and utilizes the capacitance of a cell to store data, if the cell capacitance is too
low, many problems will occur. Data retention time will become too short to meet JEDEC
specification of refresh period, as well as sensing margin will be insufficient for accessing a
DRAM cell[2].

Moreover, interference between neighboring cell transistors will increase and lead
to unexpected degradation. Furthermore, requirement for high performance peripheral
transistor is also preventing DRAM to be further scaled down[2]. Though scaling down
DRAM continually is difficult, at the same time, demand on main memory with larger
capacity and higher density is always increasing.

Second, due to the 1T1C structure of DRAM cell, it utilizes the charge state of the
capacitor to store information. As the electric charge of the capacitor will slowly leak
off, in order to preserve the information, a DRAM cell has to be charged periodically.
This procedure is called self-refresh and consumes a great amount of eletrical power. In
the meanwhile, main memory with lower power-consumption is needed both in general
computers and embedded systems, what is becoming difficult to be fulfilled by DRAM.

Therefore, more and more researchers are turning their focus on some emerging
Non-Volatile Memory (NVM) technologies, such as Phase-Change RAM (PRAM)[3]
and Spin-Transfer Torque RAM (STT-RAM)[4], to find a way to satisfy the increasing
demand on main memory. These NVM technologies are byte-addressability. In contrast to
DRAM memory, which needs to be refreshed after each short time interval, these memory
technologies can provide non-volatile storage so that refresh procedure is no longer needed
and power consumption for refreshing is saved. Moreover, they offer greater density than
DRAM and faster access time than flash memory or hard disk drive. With such advantages,
the emerging NVM technologies are attracting attention of researchers to themselves.

Different NVM is derived from different physical principles. PRAM utilizes a chalco-
genide glass, whose state can be changed to store information. Ge2Sb2Te5 (GST) is the
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2 CHAPTER 1. INTRODUCTION

most commonly used material for chalcogenide glass. It is a material which can switch
between amorphous and crystalline state by heating it in specific ways. When GST is
in amorphous state, it produces high resistance, while in crystalline state, it is in low-
resistance state. Hence it can represent binary 0 and 1 with its two states. Furthermore,
it can even be in a number of distinct intermediary state, such that being able to hold
multiple bits in just one memory cell. Currently, PRAM is already available[5] on the
market.

STT-RAM utilizes Magnetic Tunnel Junction (MTJ) as its memory cell to store data.
MTJ consists of a free ferromagnetic layer, a reference ferromagnetic layer and a tunnel
barrier layer. The magnetic orientation of the reference layer is fixed while the one of the
free layer can be changed to have a magnetic field being parallel or anti-parallel to the one
of reference layer. With the magnetic field of the free layer being parallel to the one of
fixed layer, the MTJ will produce low eletrical resistance and represent binary 0, while it
will has high eletrical resistance and represent binary 1 if it is anti-parallel to the reference
layer. With these two states of the magnetic field, data can thereby be stored.

Except for the two memory types listed above, there still exist some other NVM
technologies, such as Ferroelectric RAM (FeRAM)[6], ReRAM[7] and so on. As these
NVM technologies are derived from different physical principles, they have different
characteristics. Since most of them are currently prototypical NVM technologies and are
not available on the market (except for PRAM), in order to make further research on them
possible as well as fully explore their strengths and deficiencies, a hardware emulation
platform is needed.

Compared to simulation platform, an emulation platform can provide faster experi-
ments, tangible results and often reproducible debug function[8]. Moreover, though there
already exist some prototypical emulator designs, such as Quartz[9], Write-back Aware
Emulator[10], TUNA 1/2[11][8] and NVMM emulator[12] with coarse- and fine-grain delay
injection, but all of them are utilizing processors based on close-source Instruction Set
Architecture (ISA), which may affect the flexibility and extensibility of further research.
Thus, in this thesis, a new prototypical NVM emulation board was built.

The emulation board is based on the Reduced Instruction Set Computer Five (RISCV)
System on Chip (SoC) FU500, which is implemented on Xilinx Virtex-7 FPGA VC707
Evaluation Kit. Additional delay modules with parameterizable delay cycles and asymmet-
ric read/write latency adjustment are inserted to this emulation board to delay memory
accesses so that system with NVM of different bandwidth and latency can be emulated.
Users can tune this emulation platform to achieve different latency models, emulate and
analyse the behaviours of different NVM.

Besides building the emulation board, a benchmark suite comprising MiBench and
another open-source benchmark called Tinymembench was also packaged to benchmark and
evaluate the emulation board. Important behaviour parameters like memory access latency,
memory bandwidth and application run time can be reported by this benchmark-suite.

The contribution of this thesis is summarized as follows.

• An emulation board was built upon FU500 platform, which utilizes the open-source
ISA RISCV. With parameterized and adjustable main memory read/write latency,
it can be used to provide a hardware environment for further research on NVM
technologies, for evaluating performance of operating systems and applications aiming
at running upon the emerging NVM.

• A benchmark suite was built to benchmark and evaluate the emulation board.
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• The memory access latency, memory bandwidth and application run time reported
by the benchmark suite was analysed and the relation between system performance
and additional delay cycles was figured out.
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Chapter 2

Background

2.1 SiFive FU500 Platform

The emulation board is based on SiFive FU500 platform, whose SoC is generated by
Rocket Chip SoC Generator developed by University of California, Berkeley (UCB) in
2016. As seen in Figure 2.1, the FU500 platform has a U54-MC coreplex as its central
processing unit, which is based on RISCV ISA and consists of one E51 core and four
U54 cores. According to the manual[14], each U54 core owns 32KB 8-way L1 instruction
cache and 32KB 8-way L1 data cache. E51 core owns 32KB 2-way L1 instruction cache
and 64 KB L1 data tightly integrated memory. All the cores share a 2MB 16-way L2
cache. The U54-MC coreplex supports physical memory protection and virtual memory
management, therefore Linux can boot on it. Components of the platform such as cores,
memory controller and peripherals are connected via TileLink, a protocol designed by
UCB to be a substrate for cache coherence transactions[15].

2.2 Xilinx Virtex-7 FPGA VC707 Evaluation Kit

The Xilinx Virtex-7 FPGA VC707 Evaluation Kit is a full-featured, highly-flexible,
high-speed serial base platform utilizing the Virtex-7 XC7VX485T-2FFG1761C FPGA,
which contains 485,760 logic cells and 700 pins. As shown in Figure 2.2, the evaluation
board consists of a 1GB DDR3 memory, SD card slot, FMC connectors and other common
peripherals. As the RTL code of FU500 platform is open-source and designed to be mapped
onto a VC707 evaluation board, thus it is set as the base board of the NVM emulation
board.

2.3 AXI Protocol

In order to make a reliable and effective connection between the memory bus and
memory controller on the FU500 platform, the AXI4, which is a part of the ARM Advanced
Microcontroller Bus Architecture specification, is introduced into the design. It is one of
the most widely used protocol in today’s SoC design because of its simplicity, royalty-free
of use and reliablity. This section will provide an overview of how Advanced eXtensible
Interface 4 (AXI4) works.
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6 CHAPTER 2. BACKGROUND

Figure 2.1: SiFive FU500 architecture[13]

Figure 2.2: VC707 Evaluation Board[16]
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2.3. AXI PROTOCOL 7

Figure 2.3: AXI4 read transaction[17]

2.3.1 The Five Channels of AXI4

According to the AXI4 standard, communication is established between two chip
components, one among which has a master interface and the other has a slave interface.
Five channels are set up for data transfer, which are:

• Read Address channel (AR)

• Read data channel (R)

• Write Address channel (AW)

• Write data channel (W)

• write response channel (B)

These five channels can be grouped into two groups in terms of their purposes: AR and
R are for read transaction; AW, W and B are for write transaction. AR and AW are for
read/write address and control signals transfer, R and W are for read/write data transfer,
and B is for write reponse transfer, which indicates the completion of a write transaction.
Each channel has a number of control signals, data signals and xValid/xReady signals. As
Figure 2.3, 2.4 shows, in read transaction, master interface will send address and control
signals to slave interface through AR, then slave interface response with data from the
specified memory address via R. In write transaction, address and data will be placed in
AW and W respectively by master interface and slave will response with the completion
state of the write transaction through B.

Therefore, data will be transfered in R channel only after the address data is transfered
successfully in AR. But there is no such restriction between AW and W, because both
write address and write data come from the master interface. Only the response signal of
B will be transfered from slave interface to master interface after the transactions in AW
and W are completed. These dependencies are achieved by the xValid/xReady signals,
which also contribute to the two-way handshake mechanism below.
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8 CHAPTER 2. BACKGROUND

Figure 2.4: AXI4 write transaction[17]

2.3.2 Two-Way Handshake Mechanism

AXI4 has adopted a two-way handshake mechanism to enable flow control. Each
channel of AXI4 utilizes its own xValid/xReady signal to ensure every transfer will only
start after the two-way handshake is finished, which indicates that both sides of the
connection are ready to send or receive data. The xValid signal is set by the side that
trigger a transaction and the xReady signal is set by the receiving side. As Figure 2.5
depicts, data transfer starts immediately when the xValid/xReady signals are both asserted.
The control signals and data must be retain until the next rising edge of clock after the
assertion of the xValid/xReady signals. In order to prevent deadlock, the xValid signal
must be asserted once the data to be transfered is ready and can not deassert after that,
while the xReady signal doesn’t have this restriction and can be asserted or deasserted
any time.

Furthermore, there are dependencies between handshake signals of different channels.
As shown in Figure 2.6 and 2.7 (single-headed arrows point to signals that can be asserted
before or after the signal at the start of the arrow while double-headed arrows point
to signals that must be asserted only after assertion of the signal at the start of the
arrow), in read transaction, the RValid signal depends on the assertion of ARValid and
ARReady signal; in write transaction, the BValid signal can only be asserted when
AWValid/AWReady and WValid/WReady are asserted.

2.3.3 Asynchronous Bridge

As it is illustrated in Figure 2.8, when a master interface needs to establish a connection
with a slave interface in different clock domain, they need an asynchronous AXI-to-AXI
bridge to solve this problem. The master interface and the slave interface will connect to
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2.3. AXI PROTOCOL 9

Figure 2.5: Two-way handshake mechanism[17]

Figure 2.6: Read dependencies of handshake signals from different channels[17]

Figure 2.7: Write dependencies of handshake signals from different channels[17]
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10 CHAPTER 2. BACKGROUND

Figure 2.8: Connection of AXI Subsystems through a Asynchronous AXI to AXI Bridge[18]

the corresponding interface of the asynchronous bridge via AXI bus and send/receive data
to/from each other, while the bridge will solve the different clock domain problem.

On the FU500 platform, the memory bus is implemented with TileLink bus, which is a
chip-scale interconnect standard designed for use in SoCs. Then the memory bus connects
itself to a wrapper of the memory controller, which provides buffer and TileLink-to-AXI4
infrastructure to link both interconnect standards. Due to the incompatibility of the clock
frequency of the memory controller and DRAM, an asynchronous bridge is employed in
this wrapper to deal with request sent to the memory controller and response sent back to
the memory bus. In the emulation board, the delay module is applied on the AXI4 bus,
to be specific, on the AR and B, between the memory controller and the sink node of the
asynchronous bridge.
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Chapter 3

Related Work

There already exist some prototypical NVM emulators, such as Quartz[9], Write-back
Aware Emulator[10], TUNA 1/2[11][8] and NVMM emulator[12] with coarse- and fine-grain
delay injection. A short introduction to their respective basic design and precision will be
given below.

3.1 Quartz

Quartz is a lightweight performance emulator for NVM based on Intel processors. It is
developed in 2015 and its basic idea is to dynamically inject software created delays after
a specified time interval, which is called epoch. As seen in Figure 3.1, applications will
run without any delay in an epoch. When Last Level Cache (LLC) miss occurs, which
indicates that a memory access should be generated, a counter will record it until the end
of the epoch. When the epoch elapsed, the emulator will figure out the extra latency ∆i

should be injected to the system based on the following formula:

∆i = Mi · (NVMlat −DRAMlat) (3.1)

where i represents the ith epoch, Mi represents the recorded memory accesses, NVMlat

represents the average NVM access latency and DRAMlat represents the average DRAM
access latency. The system will stall for the additional delay cycles and start a new epoch
after that.

As a result, this emulator delivers an average overhead of 4000 cycles for each creation
of epochs. Such calculation overhead will be compensated by decreasing the injected delay.

Figure 3.1: Delay injection model of Quartz[9]
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Figure 3.2: Different read and write latency of write-back aware emulator[10]

If the injected delay is less than this overhead, this overhead will be carried over to the
next epoch. This emulator can deliver an emulation result with error rate between target
latency and measured one of less than 9% on Intel Sandy Bridge processors, 2% on Ivy
Bridge processors and 6% on Haswell processors respectively.

3.2 Write-back Aware Emulator

Write-back Aware Emulator is another emulator which is developed in 2017 and also
injects software created delays to the system. It is also based on Intel processors. Its
latency-injection model is based on the epoch model of Quartz, but has add an extension
to it. The emulator divides the LLC misses into two groups: one group for reading data
and one group for writing data. As seen in Figure 3.2, this emulator defines different
NVM latency for the two groups because the write latency in a NVM environment is
much greater than the read latency. The additional delay is calculated with the following
formula:

∆
′

i = MAWB
i · (NVMWrite

lat −DRAMlat) + MARO
i · (NVMRead

lat −DRAMlat) (3.2)

With this extension the write-back aware emulator can perform a more precise NVM
emulation.

As shown in Figure 3.3, this emulator can produce measured write latency of 112.1ns,
244.6ns, 376.4ns, 510.0ns and 642.5ns for target write latency of 100ns, 200ns, 300ns, 400ns
und 500ns, leading to error rate of 12.1%, 22.3%, 25.5%, 27.5% and 28.5% respectively.

3.3 TUNA 1/2

TUNA 1/2 are ARM-FPGA-based emulation boards developed respectively in 2014
and 2017. As shown in Figure 3.4 and 3.5, TUNA 1 is an emulation board based on
Xilinx Zynq XC7Z020, which consists of a Processing System (PS) based on an ARM
processor and a FPGA Programable Logic (PL). Both the PS and the PL have their own
DRAM. The emulation model is implemented on the PL-side DRAM. As the DRAM
controller utilizes AXI bus to communicate with the PL-side DRAM, a delay module
is placed inbetween to delay handshake signals on AW and AR of the AXI bus so that
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Figure 3.3: Error rate between target write latency and measured write latency[10]

Figure 3.4: TUNA 1 architecture[11]

address information tranfer of read/write transactions are delayed independently. The
impact of additional delay cycles on memory read/write latency and bandwidth can be
seen in Figure 3.6, 3.7 and 3.8.

Furthermore, the researchers of TUNA 1 have implemented a separate NVM power
switch for PL memory so that if main power is down, data stored in PL memory will not
get lost and thus non-volatility of NVM is also emulated.

But this emulator board can only perform a rough latency emulation due to its coarse
implementation. As DRAM has rank/bank parallelism and memory controller has buffers
and schedulers to achieve better performance, in order to get a more accurate latency
emulation, the researchers of TUNA 1 have developed the TUNA 2 later. They have
augmented the RTL code of the Memory Interface Generator (MIG) and adjusted the
memory timing parameters accordingly to construct a better emulation model. In this
way, the emulator board can inject delay to ACT and PRE commands that are issued by
the memory controller when triggering a read or write transaction. In addition, user can
adjust the memory timing parameters tRCD and tRP in run time via U-boot or mmap
system call to change delay cycles on ACT and PRE commands. The average response
time of random memory read/write access in terms of different tRCD and tRP is shown
in Figure 3.9, 3.10.
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Figure 3.5: TUNA 1 board[11]

Figure 3.6: TUNA 1 read latency with different additional AR and AW delay cycles[11]
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Figure 3.7: TUNA 1 write latency with different additional AR and AW delay cycles[11]

Figure 3.8: TUNA 1 bandwidth of 4kB memset with different delay cycles[11]

Figure 3.9: TUNA 2 average response time of random memory access in terms of different
tRP long[8]
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Figure 3.10: TUNA 2 average response time of random memory access in terms of different
tRCD[8]

Figure 3.11: NVMM average read latency in terms of N memory banks[12]

3.4 NVMM emulator with fine-grain delay injection

The NVMM emulator with coarse- and fine-grain delay injection is also an ARM-
FPGA-based emulation board, which is developed in 2019. It inherits mainly the idea of
TUNA 1/2, but extends it by providing custom memory allocation and cache eviction
functions for the emulation environment.

The coarse-grain delay injection of this emulator board is implemented by inserting
a delay module between the LLC and the MIG, while the fine-grain delay injection is
implemented by modifying the RTL code of MIG and the memory timing parameters
tRCD and tRP. With this emulator, the read/write latency of memory with different
number of banks is also benchmarked. The result is shown in Figure 3.11, 3.12.

Figure 3.12: NVMM average write latency in terms of N memory banks[12]
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Chapter 4

Design

As discussed in the previous chapter, an emulation board with an open-source ISA
based SoC should be of benefit to further research, therefore the emerging RISCV based
SoC platform is chosen to be the base platform for implementing the emulation board. To
achieve the emulation, delay modules are inserted to the platform so that DDR memory
can emulate the slower emerging NVM technologies. In this chapter, the selection of an
appropriate RISCV based platform and a discussion about the two options of placements
of the delay modules are presented.

4.1 RISCV Platform

There are already some RISCV projects under development. At the beginning of the
design, the lowRISC project[19], the Parallel Ultra Low Power (PULP) Ariane project[20]
and the SiFive FU500 project[21] were under consideration. lowRISC is a not-for-profit
company in Cambridge, UK. After investigation, it is found that the lowRISC project only
maintains a type of RISCV core developed in the PULP project and does not provide any
SoC platform currently. Thus implementation upon the lowRISC project is not feasible.

PULP is a RISCV joint project started and developed by Eidgenössische Technische
Hochschule Zürich (ETH Zürich) and University of Bologna. In its Ariane project, a
Linux-capable core called Ariane is under development, but as shown in its Github
website, building of this core is still problematic. Furthermore, PULP does not provide a
platform that runs on Ariane. Therefore, the PULP Ariane project is not suitable to the
implementation of the emulation board.

SiFive is a company founded by Krste Asanović, who is currently the chairman of
the board of the RISCV foundation. SiFive FU500 SoC can boot Linux and shares the
same design of FU540 SoC, the first Linux-capable RISCV SoC in the world, and can be
evaluated on Xilinx VC707 evaluation board. In addition, the RTL code of FU500 is easily
available on Github with active community support. Most of all, the FU540 is already
taped out and on sale, which means that FU500 also has a robust, reliable and stable
design. Hence this platform is chosen as the base platform for the emulation board.
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4.2 Placement of Delay Module

In order to achieve additional latency for read/write memory access, inserting a
hardware delay module with parameterizable delay cycles is a feasible solution, not only
because it adds less overhead to the system, but also because it outputs a more precise
emulation. Under consideration of not bringing too many unpredictable factors to the
system and not making the modification of the platform too complicated, the delay module
should be placed somewhere outside the CPU. So the interconnect that connects the
memory controller with the other components of the system would be a good choice for
placement of the delay module.

For this emulation board design, there are two placement options for the delay modules.
One of them is placing the delay modules on the DDR3 bus that connects the memory
controller and DRAM, the other one is inserting them on the AXI4 bus, which is a part of
the interconnect that connects the memory controller with the LLC.

4.2.1 Delay Module on DDR Bus

Theoretically placing the delay modules on the DDR3 bus can deliver a more accurate
emualtion result, because on this bus there are no extra system components or even a
single electronic component. If a delay module is placed there, the factors that influence
the relationship between the delay cycles and the resulting latency can be minimized
and the impact of each additional delay cycle is more predictable, In addition, the delay
module would be adjusted by delay command signals sent from the memory controller to
DRAM, instead of by the delayed two-way handshake signals of the AXI4 bus. In this
way, the behaviour of the DRAM could be totally under control, so that fine-grain delay
injection can be realized.

4.2.2 Delay Module on AXI Bus

Besides inserting the delay module on the DDR3 bus, placing it on the AXI bus is
a feasible alternative. As AXI4 bus is a technically mature bus widely used in on-chip
communication and its functionalities are well documented, it eases the difficulty of the
implementation. Besides, the AXI4 bus is not connected with any physical pins of the
FPGA, hence it does not need to make modification on the FU500 route and placement
design. Therefore, placing delay modules on AXI4 bus and exploiting its strengths is also
a good solution.

4.2.3 Final Decision of Placement

Even though a delay module placement on DDR3 bus can achieve a theoretically better
result, such a placement is difficult to be realized on FU500 platform. First, for such a
design, the floorplan of the platform should also be adjusted accordingly. Otherwise, as
shown in a try of this implemention, Vivado would throw Design Rule Checking (DRC)
errors regarding the ports that are connecting with the delay module. Second, when a
memory controller command is delayed, the timing parameters of the memory controller
should also be adjusted accordingly to synchronize the behaviour of the memory controller
and the memory cell. Both changing the floorplan and adjusting the memory timing
parameters would lead to unpredictable consequences and are time-consuming. In contrast,
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4.2. PLACEMENT OF DELAY MODULE 19

placing the delay module on AXI bus does not need much effort to modify the platform,
so that the main focus can be concentrated on implementing the delay module and
development effort and time can be saved. Thus, implementing a delay module on AXI
bus is the final decision of the placement. In the next chapter, details of delay module
implementation will be further presented.
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Chapter 5

Implementation

In this chapter, the exact location of the delay module, its implementation in detail
and the way it works will be presented.

5.1 Location of the Delay Module

On the FU500 platform, an AXI asynchronous bridge is employed to connect the MIG
island module, which is a wrapper of the blackbox module containing the actual memory
control unit, and the other neccesary components of the memory controller. As shown
in the Figure 5.1, the delay module is placed between the sink node of the asynchronous
bridge and the blackbox module because such a way does not require great change in the
Chisel source code of the FU500 platform.

5.2 Selection of Control Signals

Data transmission on the AXI bus is controlled by various control signals defined in the
AXI protocol. Thus the goal of delaying data transmission is achieved by delaying specific
control signals of the five channels of the AXI bus. There are three optional groups of
control signals to be delayed.

Figure 5.1: Delay module placement on FU500
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Figure 5.2: Delay module on AR and AW

5.2.1 First Option: AR and AW

The first option is delaying the xValid/xReady signals of the AR and AW channels,
inspired by [11]. As mentioned in chapter 2, in read transaction, data in R will only be
transfered when the address in AR are transfered successfully, while write transaction
can only be completed when both address/control information in AW and data in W are
tranfered to memory controller. In addition, the transfer of read address and write address
obeys the two-way handshake mechanism and will only succeed after the both interfaces
have found that the ARValid/ARReady and AWValid/AWReady are asserted. Therefore,
as shown in Figure 5.2, by the first option delay modules that adds extra delay cycles to
xValid/xReady signals are inserted both on AR and AW.

5.2.2 Second Option: AR, AW and W

The second option can be seen in Figure 5.3. Similar to the first option, in this option
delay modules are inserted on AR and AW channels. Additionally, the xValid/xReady
signals of W channel are also delayed, so that the whole transfer issued by the master
interface is delayed. This option can be considered as an alternative of the first option.

5.2.3 Third Option: AR and B

The last option is delaying the xValid/xReady signals of the AR and B channels. By
delaying AR channel, the read transaction will be delayed, while by delaying the B the
response of a write transaction will be delayed, so that the write transaction is also delayed.

5.2.4 Final Decision

Although the first option is used in [11] and can already deliver an emulation without
problems, there is a drawback that can impact its emulation accuracy greatly on this
platform and therefore the emulation board can not deliver the desired latency and
bandwidth by write transaction. Assume that the master interface would like to start a write
transaction. As in chapter 2 described, unlike in a read transaction, in a write transaction
the address/control information and data can be tranfer to slave interface independently.
Hence, when the master interface completes its preparation of address/control information
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Figure 5.3: Delay module on AR, AW and W

Figure 5.4: Delay module on AR and B
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Figure 5.5: Wasted delay cycles of AW. Delay cycles have no influence because the write
address channel has to wait for the write data channel

earlier, and the completion of data preparation follows a few cycles later, some extra delay
cycles will make no sense. And in an extreme situation, as seen in 5.5, assume that the
master interface would like to start a write transaction, and the additional delay cycles on
the write address channel are four cycles. In addition, assume that the master interface
always finishes its data transfer on write data channel four cycles after its address transfer
on write address channel. When the write address channel can originally finish its transfer
after the first cycle, then the additional delay cycles will be added to it so that it actually
finishes the transfer after the fifth cycle. But as the write data channel can only finish its
transfer after fifth cycle, so the additional delay cycles will have no influence to the bus.
Thus, this option is not good enough.

The second option deliver an even worse emulation result. It results in great changes
in latency and bandwidth even only a small amount of delay cycles are added. It is due
to the delayed write access. By write transaction, data is grouped into an amount of
transfers, each transfer consists of 64 bits data, conforming to the width of data lane. To
trigger one transfer, the master interface and slave interface have to make an agreement
through WValid/WReady each time. Therefore, assume that the master interface has
4KB data to be transfered (which is also the maximum transfer size of a write transaction
burst), this data will be transfered in 64 transfers. For each 64 bits data transfer the same
delay cycles will be injected, which results in great impact on the system even though
the delay module is configured only with a few cycles delay. Figure 5.6 and 5.7 show the
bandwidth and latency benchmark result between design without delay module, design
with delay modules of 200 delay cycles on AR and B, which will be presented later, and
design with delay modules of five delay cycles on AR, AW and W. As seen in these figures,
a delay module with only five delay cycles already leads to very small bandwidth and high
memory access latency. Hence this design is coarse-granular and not chosen for further
implementation.

The third option is a feasible solution. Since a write transasction can only be completed
after the master interface has received a write reponse coming from B, and this channel
also obeys the two-way handshake mechanism, two delay modules are inserted in AR and
B separatedly to delay read and write transaction, as shown in Figure 5.4. In this way,
if the delay module adds N delay cycles to B, the master interface must wait for exact
N additional cycles until it receives response from slave interface in a write transaction.
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Figure 5.6: Bandwidth comparison of three groups of delayed control signals: design
without delay module, design with 200 delay cycles on AR and B, design with 5 delay
cycles on AR and AW and W(benchmarked with Tinymembench). A delay module delaying
AR, AW and W with a small amount of delay cycles causes much more bandwidth decrease
than a delay module delaying AR and B with a great amount of delay cycles
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Figure 5.7: Read latency comparison of three groups of delayed control signals: design
without delay module, design with 200 delay cycles on AR and B, design with 5 delay cycles
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AW and W with a small amount of delay cycles causes more additional read latency than
a delay module delaying AR and B with a great amount of delay cycles
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Figure 5.8: Independent shift registers on Valid/Ready signal lanes

Therefore, this option is selected to be implemented.

5.3 Implementation of Delay Module in details

Shift register is employed as the central component of the delay module to delay specific
signals of the bus. Shift register is actually a chain of flip flops that are synchronous
with the same clock, each flip flop takes the output of previous flip flop as input, and
propagating its value to the next flip flop in each clock cycle. With such a characteristic
the number of flip flops of a shift register can be parameterizable in source code and
adjusted accordingly to the user’s demand. The implementation of the delay module with
shift register is presented below.

The delay module has two inputs and two outputs. Valid and Ready signals flow into the
inputs, get processed by the delay module, and then come out from the delay module and
reach the other side. When implementing such a delay module, attention for coordination
between the xValid and the xReady signals is needed, as simple implementation shown in
Figure 5.8 can not achieve additional delay cycles to the system and can cause the system
down. As mentioned in chapter 2, each AXI channel implement the two-way handshake
mechanism. The xValid signal of a channel will not change after it is asserted, while the
xReady can still be deasserted before both side are aware of the assertion of xValid signal.
After xValid signal is asserted, xReady signal can not be changed anymore if it is asserted,
and then transaction begins.

Therefore, in the implementation of the delay module, the xValid signal is delayed
by the shift register, while xReady signal remains undelayed but blocked, as shown in
Figure 5.9. The barrier is implemented with an AND gate. When the xValid signal has
gone through all flip flops and has reached the output of shift register, it will not only
go directly to the slave interface but also release the barrier that blocks the xReady lane.
That means, when xValid signal has reached the other side, the xReady signal can also be
detected by the other side if it is asserted. And when the xValid is deasserted, the barrier
will be activated again until next removal by the xValid signal.

In addition, besides the system reset that is attached to the shift register, the xValid
signal together with a NOT gate will be added as another reset for the shift register,
as seen in Figure 5.10. When the xValid signal is active, flip flops of the shift register
can propagate the signal one cycle after another. And when the signal is deasserted, the
new reset will be active and all the flip flops are reset to their default value immediately,
producing a logical low to the slave interface. If a transaction is completed, the deassertion
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Figure 5.9: Delay module implementation

Figure 5.10: Shift register with input signal as one of its reset

of both xValid and xReady signals can be triggered immediately. The simulation waveform
of such a shift register with 24 delay cycles is shown in Figure 5.11. In this simulation, the
clock period was 5ns. The Valid signal occured on 50ns and was reset on 200ns, while the
Ready signal was set to 1 for the whole time. The Ready signal can not reach its output
until the Valid signal, which was delayed for 120ns, has reached its output on 170ns. When
the Valid signal was reset to 0 on 200ns, its corresponding output and the output of Ready
were also reset to 0 immediately, although the Ready signal still remained set.

Moreover, the shift register of the delay module is coded with an adjustable parameter
so that the delay cycles can be adjust. It helps the users to tune this emulation board
conveniently. And as different channels are delayed by different delay modules, different
read and write latency can be achieved independently.

As this implementation uses a shift register along with a barrier, it helps to coordinate
the xValid and xReady signal. It also saves the logic cells of another shift register to delay
the xReady signal. In addition, using the xValid signal itself as reset signal helps to make
the shift register to react immediately to the deassertion of the xValid signal. Without
such a design, the deassertion of xValid signal will only be aware by the other side after
some delay cycles which equals the amount of flip flops. The xValid signal from previous
transaction would be regarded as from current transaction and xReady sigal would be

Figure 5.11: Simulation waveform of the shift register
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transfered freely in this time interval, which lead to read/write errors.
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Chapter 6

Result

6.1 Benchmark Suite

MiBench[22], Tinymembench[23] and a self-written write latency benchmark are the
three benchmarks for evaluating the impact of delay module with different delay cycles.
In this thesis, they are packaged together, along with a shell script, so that benchmarking-
convenience is ensured. This benchmark-suite can be transmitted to the emulation board
via SCP program. Instead of running every programs in the benchmark-suite manually,
the shell script can run all the programs one after another and write their results to
a well-organized directory so that the user can obtain the results by only copying this
directory to the local host.

6.1.1 MiBench

MiBench is an open-source embedded benchmark developed in 2001 and is available from
this website[24]. MiBench consists of six categories: Automotive and Industrial Control,
Network, Security, Consumer Devices, Office Automation, and Telecommunications. For
each benchmark application, small and large data sets are provided for benchmarking. The
small data set represents light-weight application and the large data set represents stressful,
real-world application. For benchmarking the emulation board, 5 of 25 applications (Figure
6.1) are chosen which can be built successfully and run on the board. They are namely
basicmath, bitcount, FFT, Adaptive Differential Pulse Code Modulation (ADPCM) and
stringsearch. Basicmath performs basic mathmatical calculation, bitcount tests the bit
manipulation abilities of a processor, FFT performs a Fast Fourier Transform and its
inverse transform on an array of data, ADPCM is a variation of the well-known standard
Pulse Code Modulation (PCM) and stringsearch searches for given words in phrases using
a case insensitive comparison algorithm. The real run time of these applications will be
recorded to evaluate the system performance.

6.1.2 Tinymembench

Tinymembench, developed in 2018, is another open-source benchmark for benchmarking
memory bandwidth and latency. It performs the memset and memcpy function of C library
to test the memory bandwidth and random read access on a block with specified size to
test the memory read latency. For a larger block, more LLC misses will be issued by read
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Table 6.1: Build state of MiBench’s applications

Build and Run State Application Name
Build Success adpcma, basicmath, bitcount,

FFT, stringsearch
Failed, segmentation

fault (run state)
qsort

Failed, read input file
error (run state)

rijndael, susan, tiff2bw,
tiff2rgba, tiffdither, tiffmedian

Build Failed, can not be
built for RISCV

architecture

blowfish, CRC32, ghostscript,
gsm, ispell, jpeg, lame, mad,

pgp, rsynth, sha, sphinx,
typeset

Table 6.2: Lookup-Table usage of each build

Delay Cycles Total LUT Usage Logic LUT Usage
0 149490 142326
25 149556 142392
50 149637 142473
100 149670 142506
150 149764 142600
200 149777 142613
300 150090 142926
500 150225 143061

access and thus main memory will be accessed more often. Read access consists of two
types, namely single random read and dual random read. Dual random read means that
two independent memory accesses with large gap are performed simultaneously on the
same block of data while single random read means only one memory access is performed
at a time.

6.1.3 Self-Written Write Latency Benchmark

Because the above two benchmarks do not provide tests for write latency, in this thesis,
a write latency benchmark utilizing the memset function to test the emulation board with
a 4MB block size is written.

6.2 Resource Utilization

In the following Table 6.2, the Lookup-Table usage of each build is presented. The
Lookup-Table usage growth compared to original design is shown in Figure 6.1.
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Figure 6.1: Lookup-Table usage growth compared to original design

6.3 Result Analyse

While benchmarking, the same amount of delay cycles is both inserted into AR and B
of the AXI bus. In the following subsections, the impact of the additional delay cycles
is presented. The result of bandwidth and read access latency impact is measured by
Tinymembench, while MiBench shows the impact on real world applications.

6.3.1 Bandwidth

Tinymembench has two ways to measured the bandwidth of a system, to be specific,
it executes the two standard C functions memcpy and memset to benchmark the target.
Since by memcpy function both memory read access to a memory address and memory
write access to the other memory address are triggered, and by memset function only one
memory write access is issued, therefore memset always produces a higher bandwidth than
memcpy.

By this design, as seen in Figure 6.2, when additional delay cycles are increasing from
0 to 500, the bandwidth of memory is decreasing from 23.9 MB/s to 5.8 MB/s tested by
memcpy, and from 38.1 MB/s to 8.9 MB/s tested by memset. As shown by Figure 6.3,
as total delay cycles are increasing, although the memory bandwidth is decreasing, the
bandwidth loss caused by each delay cycle is also decreasing.

Especially by delay modules with not greater than 100 delay cycles, the impact of each
additional delay cycle is weakened more significantly than that by delay modules with
more than 100 delay cycles. For example, by memset, bandwidth loss per delay cycle is
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Figure 6.2: Memory bandwidth benchmarked with function memcpy and memset

282.624 KB/s by delay modules with 25 delay cycles and 151.552 KB/s by delay modules
with 100 delay cycles, resulting in a 131.072 KB/s reduction, while the reduction between
that of 100 and 200 delay cycles is only 42.496 KB/s. The impact of delay cycles on
bandwidth becomes gradually weaker.

6.3.2 Read Access Latency

The same as memory bandwidth, random read access latency is also increasing as the
delay cycles are rising. As delay cycles are increasing from 0 to 500, latency of single
random read access with a block of 4KB is rising from 1515.1ns to 5412.3ns, and from
2105.2ns to 7636.2ns when the block size is 64KB. For dual random read access, latency of
read access with a block size of 4KB is increasing from 2977.4ns to 10736.4ns, and from
4144.3ns to 15185.3ns for a 64KB block.

But as seen in Figure 6.5, the latency impact of each delay cycle on read access with the
same block size is rather stable compared to impact of a single delay cycle on bandwidth.
For single random read access, every additional delay cycle leads to around 7.670ns and
10.913ns delay time with the small and large block respectively. For dual random read
access, these values are about 15.269ns and 21.764ns. Therefore, the additional latency
caused by each delay cycle is on account of block size and read access mode (single or dual
read access).

Because the dual read latency is always about two times of the single read latency with
the same block size, according to the specification of Tinymembench, it can be concluded
that the memory subsystem can not handle two memory accesses simultaneously. Besides,
since the emulation board run at frequency of 50MHz, every additional delay cycle should
cause extra latency of 20ns for each memory access. The error between target latency and
measured latency can be seen in the following Table 6.3 and 6.4. As seen in these two
tables, larger block can cause less error because it can trigger more cache misses and thus
more memory accesses are issued.

Chair for Embedded Systems



6.3. RESULT ANALYSE 33

0

50

100

150

200

250

300

0 100 200 300 400 500 600ba
nd

w
id

th
im

pa
ct

of
ea

ch
de

la
y

cy
cl

e
(K

B/
s)

additional delay cycles

standard memcpy standard memset

Figure 6.3: Memory bandwidth impact of each delay cycle with delay modules of different
additional delay cycles
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Figure 6.5: Memory read access latency impact of each additional delay cycle with different
block size and delay modules of different additional delay cycles

Table 6.3: Error between target latency and measured latency with block size of 4KB of
single read access

Delay Cycles Target Latency (ns) Measured Latency (ns) Error (ns)
25 500 207.1 -292.9
50 1000 383.4 -616.6
100 2000 741.3 -1258.7
150 3000 1131.2 -1868.8
200 4000 1490.3 -2509.7
300 6000 2270.5 -3729.5
500 10000 3897.2 -6102.8

Table 6.4: Error between of target latency and measured latency with block size of 64KB
of single read access

Delay Cycles Target Latency (ns) Measured Latency (ns) Error (ns)
25 500 294.2 -205.8
50 1000 546.7 -453.3
100 2000 1051.3 -948.7
150 3000 1608.9 -1391.1
200 4000 2128.7 -1871.3
300 6000 3236.4 -2763.6
500 10000 5531 -4469
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Figure 6.6: Memory write access latency with 4 MB block size and delay modules of
different additional delay cycles

6.3.3 Write Access Latency

As for write access latency, the benchmark result can be seen in the following Figure
6.6. As additional latency is increasing from 0 to 500 cycles, the write access latency is
also increasing almost linearly from 6.9 to 29.61 millisecond.

6.3.4 Real World Applications

Benchmark results of MiBench applications are shown in the following Figures 6.7a,
6.7b, 6.7c, 6.7d and 6.7e respectively.

As shown in these graphs, the additional delay cycles on memory traffic have slowed
down the applications, even though they do not perform memory-consuming operations.
In addition, applications running large data set will be affected more significantly by
the increasing delay cycles than running small data set, because they will perform more
memory read/write accesses. Especially, the execution time of basicmath with large data
set has increased from 1449.11 seconds by zero delay cycles to 2066.82 seconds by 500
delay cycles on both AR and B.
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Figure 6.7: Benchmark result of MiBench
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Chapter 7

Conclusion and Future Work

To emulate NVM, an emulation board based on FU500, which implements the open-
source ISA RISCV, is built. Delay module utilizing parameterizable shift register is
inserted into the system to inject delay cycles to memory access, so that the slower NVM
can be emulate upon faster DRAM. In addition, compared to the existing NVM emulators,
this emulation board has more flexibility for further development because it is based on the
open-source RISCV ISA. A benchmark suite comprising open-source benchmarks MiBench
and Tinymembench is also packaged and used to benchmark the emulation board. It is
shown that this emulation board can emulate computer system with main memory of
different bandwidth and latency.

Future work about this emulation board is listed here: First, except for slower access
speed compared to DRAM, non-volatility is also an important characteristic of NVM,
which is not implemented in this thesis. Second, NVM would be used along with DRAM
in the future memory hierarchy[25], thus an emulation board with cooperating separated
DRAM and emulated NVM will be closer to real-world usage. Third, an emulation board
with runtime delay cycles adjustment will be helpful to speed up the emulation process.
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