
Bachelorthesis

Towards Exact Analysis of EDF-Like Scheduling

Komron Abdulloev

16.08.2024

Supervisors:
Prof. Dr. Jian-Jia Chen
Mario Günzel, M.Sc.

Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl Informatik 12 (Eingebettete Systeme)
Design Automation for Embedded Systems Group
https://daes.cs.tu-dortmund.de

https://daes.cs.tu-dortmund.de/

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2
1.3 Research Questions . 2

2 Background 3
2.1 Task Models . 3
2.2 Scheduling Algorithms . 4

2.2.1 Static-Priority Scheduling . 4
2.2.2 Dynamic-Priority Scheduling . 6

2.3 EDF-Like Scheduling . 8
2.3.1 Issues with Self-Suspension . 8
2.3.2 Applied EDF-Like Con!guration 9

2.4 Exact Schedulability Tests . 10
2.4.1 Time-Demand Analysis . 10

3 Methodology 13
3.1 Execution of Research . 13
3.2 Task Generation . 13

4 Comparison to Exact Tests 15
4.1 Objective of the Experiment . 15
4.2 Anticipated Outcomes . 15
4.3 Resulting Data . 16

4.3.1 Follow-up Experiments . 17
4.4 Summary . 17

5 Impact of Task!antity 19
5.1 Objective of the Experiment . 19
5.2 Anticipated Outcomes . 19
5.3 Resulting Data . 19
5.4 Summary . 22

6 Impact of Period Variation 23
6.1 Objective of the Experiment . 23
6.2 Anticipated Outcomes . 23
6.3 Resulting Data . 24
6.4 Formal Proof . 26
6.5 Summary . 30

i

Contents

7 Conclusion 31

Bibliography 33

ii

1 Introduction

This !rst chapter introduces the problems we are inspecting in this thesis and motivates
our work, outlines its structure and states the research questions we set out to answer.

1.1 Motivation

In the realm of real-time systems, ensuring that tasks are executed within strict timing
constraints is crucial for maintaining system reliability and performance. This plays a
signi!cant role speci!cally for hard real-time tasks, where missing a task’s deadline can
cause massive consequences on the system. Therefore, scheduling algorithms are designed
to manage these tasks e"ectively, ensuring that deadlines are met and system resources are
utilized e#ciently.

Hard real-time scheduling algorithms can be broadly categorized into static and dynamic
approaches. The static approach, otherwise known as o$ine scheduling, creates a sched-
uler before runtime, needing complete prior knowledge about the task set characteristics.
The dynamic approach, otherwise known as online scheduling, makes scheduling deci-
sions during execution, choosing from the currently available tasks. Dynamic schedulers
are adaptable and can adjust to changing task conditions, but they are not determinis-
tic[KS22; But24].

Dynamic schedulers execute tasks based on a priority system. Furthermore, there ex-
ists static-priority and dynamic-priority. Static-priority scheduling algorithms, such as
Deadline-Monotonic Scheduling [LW82], assign priorities to tasks based on !xed criteria
determined before the actual system execution. Dynamic-priority scheduling algorithms,
on the other hand, like Earliest-Deadline-First[LL73], adjust priorities at runtime based on
changing parameters, meaning that over time, the priorities of the tasks change.

In this thesis, we focus on the exactness of a scheduling algorithm, namely EDF-Like. EDF-
Like scheduling is a class of scheduling algorithms. More speci!cally, a set of so-called
relative priority points !i determines the behavior of the EDF-Like scheduling. With a
proper con!guration of the priority points, the scheduler can behave like many established
scheduling algorithms, including Fixed-Priority (FP) scheduling [LL73], First-In-First-Out
(FIFO), and EDF as well.

From the previous work of Günzel et al. [Gün+22], a unifying suspension-aware schedula-
bility test for uniprocessor EDF-Like has been provided, guaranteeing that no task misses
its deadline using the EDF-Like scheduling algorithm.

1

1 Introduction

However, it is unclear how close that test is to achieving exactness. Therefore, the pri-
mary objective of this thesis is to evaluate the performance of this schedulability test by
conducting a comprehensive analysis through simulations.

1.2 Structure

This Section 1 brie%y introduces our work and states the research questions we seek to
answer.

The Section 2 addresses the background knowledge required to understand our work. This
includes explaining static-priority and dynamic-priority scheduling and their di"erences.
Then, afterward, we will explain how EDF-Like scheduling itself works.

In Section 3, we review our research approach. Wewill brie%y explain howwewill evaluate
the performance of the schedulability test and themethodswe use to synthetically generate
task sets.

In Section 4, we cover our !rst research question by comparing the schedulability test of
EDF-Like with exact tests. That would be the utilization-based test for dynamic-priority
scheduling and Time-Demand Analysis (TDA)[JP86][LSD89] for static-priority analysis.

In Section 5, we dive further into evaluating the schedulability test of EDF-Like by exper-
imenting with varying quantities of tasks given to the test to determine their impact.

In Section 6, we determine whether changing a task’s period signi!cantly impacts its
schedulability.

We wrap up our work in Section 7, where we draw conclusions and brie%y discuss possible
future work to improve the performance of the schedulability test.

1.3 Research!estions

Themain focus of this thesis is to evaluate the exactness of the EDF-Like schedulability test.
However, to this moment, only su#cient but not necessary tests exist for self-suspending
tasks. Since such a benchmark does not exist for us to compare the schedulability test of
EDF-Like, we will consider tasks without self-suspension.

Bearing this in mind, we will !rst and foremost question the exactness of EDF-Like’s
schedulability compared to other exact tests but with tasks that lack self-suspension, which
is covered in Section 4. Afterward, we look closer into the impact of varying the param-
eters on the schedulability. Namely, in Section 5, the task quantity of a task set, and in
Section 6, the task’s period.

2

2 Background

In this chapter, we provide background knowledge to understand the work of this thesis.
We start by reviewing task models and scheduling algorithms essential to the !eld, as
well as the schedulability test of EDF-Like. This foundation will help contextualize the
following discussions and analyses presented in later chapters.

2.1 Task Models

Many real-time systems work around periodic or sporadic activities, such as sensory data
acquisition or system monitoring. For this reason, these activities’ tasks have their own
models. The tasks of periodic activities recur in pre-de!ned !xed intervals, so they are
periodic. The main di"erence between sporadic and periodic tasks is that sporadic tasks
occur irregularly. However, they do have aminimum inter-arrival time. Thismeans there is
a guaranteed minimum time between consecutive instances of the task. For the following,
we go over the classical task model for real-time systems.

A set of tasks can be denoted by T = {ω1, ..., ωn} for n → N. A single instance of a task ωi
is called a job and can be denoted as ωi,j . The !rst job of a task ωi would then be ωi,1.

A periodic[LL73] or sporadic[Mok83] task ωi itself can be characterised by a 3-tuple
(Ci, Ti, Di), where

• the execution time Ci, denotes the worst-case execution time of a single job

• the period Ti, denotes the period or the minimum inter-arrival time, which is es-
sentially the time between consecutive releases of a job

• the deadline Di, denotes the relative deadline for each job from task ωi

For this thesis, we assume that the !rst job of every task will be released simultaneously
at the start. So overall, a task ωi can be viewed as releasing an endless series of jobs that
get released at Ti intervals with an execution time of Ci and a deadline Di.

The utilization Ui of a periodic task ωi is de!ned to be the ratio of its execution require-
ment to its period: Ui :=

Ci
Ti
. The total utilization for the task system T is the sum of the

utilization of all tasks in T: U(T) :=
∑

ω i→T Ui.

Another important de!nition is the response time Ri,j of a job ωi,j , which is the amount
of time that has passed between the release of the job and the moment it has !nished its
execution.

3

2 Background

Since we have reviewed the classical task model, we can introduce self-suspension task
models. Two main models are present when considering self-suspension: dynamic and
segmented. The dynamic self-suspension model is used in the paper from Günzel et al.
[Gün+22].

Self-suspending tasks are those that voluntarily suspend their execution during runtime,
typically to wait for external events or resources before resuming and completing their
execution. A dynamic self-suspending task is similar to a sporadic task but with an addi-
tional parameter. Therefore a task ωi can be described as a 4-tuple (Ci, Si, Ti, Di), where
Si would be the maximum suspension time. Each job ωi,j can then suspend itself whenever
it needs to and, however, as often, as long it does not exceed Si.

2.2 Scheduling Algorithms

Scheduling algorithms themselves can be either non-preemptive or preemptive. Non-
preemptive scheduling algorithms do not allow interruption of a currently executing task.
Once a task starts, it runs to completion before the scheduler considers the next task. With
preemptive scheduling algorithms, the system can interrupt the currently executing task
to allocate the CPU to a higher-priority task that arrives or becomes ready. This allows the
system to adapt to changing conditions and prioritize urgent tasks. We will only consider
preemptive scheduling since the EDF-Like schedulability test is for preemptive scheduling.

2.2.1 Static-Priority Scheduling

In static-priority or !xed-priority scheduling, all the jobs generated by a single task must
be assigned to a single priority. This priority should di"er from the priorities assigned
to other jobs generated by other tasks. Priorities are assigned as numbers to tasks. So
therefore, a task ωi has priority i. The lower the value of i, the higher the priority of that
speci!c task. This allows us to represent the priorities of tasks in a clear and simple way.
So, for instance, the highest priority task would be ω1.

So now the question remains: Given a set of tasks, how should we assign the priorities?
One of the most well-known priority assignment algorithms for !xed-priority scheduling
is rate-monotonic (RM)[LL73]. It is based on assigning priorities to tasks based on their
request rates, so in this case, those would be their periods: shorter-period tasks receive
higher priorities.

For task sets con!guredwith implicit-deadline, meaning every task has its relative deadline
parameter Di equal to its period Ti, RM was shown to be optimal. This means that given
a set of tasks, if any static-priority scheduling method can successfully meet all deadlines,
then the RM algorithm will likewise achieve this.

RM has a utilization bound, otherwise known as the Liu and Layland Bound [LL73], which
is de!ned as follows:

UB = n(21/n ↑ 1)

4

2.2 Scheduling Algorithms

where n is the number of tasks. This bound is derived from the mathematical properties
of RM and represents the maximum CPU utilization at which the set of n periodic tasks
is guaranteed to be schedulable. When n converges to in!nity, then UB = ln 2 ↓ 0.693.
Therefore, if the total utilization of all the tasks is less than or equal to UB , all tasks are
guaranteed to meet their deadlines. Otherwise, it is unclear if the tasks can be scheduled
if U(T) > UB .

For the task set T with tasks ωi = (Ci, Ti, Di):

• ω1 = (2, 6, 6)
• ω2 = (2, 8, 8)
• ω3 = (4, 12, 12)

for the time interval [0, 24], we would obtain the following schedule produced by RM:

ω1

ω2

ω3

0 2 4 6 8 10 12 14 16 18 20 22 24

We can observe from the above schedule that the tasks are prioritized by their periods,
i.e., ω1 always preempts other lower-priority tasks in order to be executed since it has
the smallest period. Here, U(T) = U1 + U2 + U3 ↓ 0.917 and the utilization bound is
UB = 3 · (21/3 ↑ 1) ↓ 0.78. As we can observe, although U(T) > UB , the task set is still
schedulable. That is because the utilization bound is only a su#cient test.

Although Rate-Monotonic is a simple way of !nding out if a set of tasks is schedulable
or not, most of the time, real-time systems can encounter complex scenarios where task
deadlines do not align perfectly with their periods. To deal with such constrained-deadline
(Di ↔ Ti) task sets, Deadline-Monotonic (DM), an extension of Rate-Monotonic, can be
applied[LW82].

DM sets task priorities based on their deadlines. Therefore, the task with the shortest rel-
ative deadlineDi is executed at any point in time. Similarly to Rate-Monotonic, Deadline-
Monotonic is optimal for !xed-priority scheduling.

From the same example task set T that we used for RM, we get the following schedule
produced by DM:

5

2 Background

ω1

ω2

ω3

0 2 4 6 8 10 12 14 16 18 20 22 24

Since, in the example, the relative deadline of the tasks is equal to their period, DM sched-
ules the tasks similarly. Here, the deadline is prioritized instead of their periods. However,
if we would consider the same task set T, but lower the deadline of every task by 2:

• ω1 = (2, 6, 4)
• ω2 = (2, 8, 6)
• ω3 = (4, 12, 10)

we get the following schedule:

ω1

ω2

ω3

0 2 4 6 8 10 12 14 16 18 20 22 24

We notice that for ω3, after starting to execute at t = 4, ω1 preempts ω3 and afterward ω2
executes since it becomes ready, therefore ω3 misses its deadline at t = 10. Another thing
to notice is that both for RM and DM, the priorities of the tasks do not change once they
are assigned to them.

2.2.2 Dynamic-Priority Scheduling

When it comes to dynamic-priority scheduling, Earliest Deadline First (EDF) takes the spot-
light. EDF is quite similar to DM when it comes to assigning priorities to tasks. However,
these priorities may change throughout the scheduling process. EDF chooses the currently

6

2.2 Scheduling Algorithms

active job with the smallest deadline at each instant in time. To put it di"erently, it assigns
priorities to the task according to their absolute deadline:

di,j = (j ↑ 1)Ti +Di

For periodic implicit deadline task sets, the schedulability test of EDF consists of using the
processor utilization factor[LL73]:

n∑

i=1

Ci

Ti
↔ 1

Therefore, EDF can guarantee a task set ωi is schedulable if and only if the system total
utilization is not more than 100%, making EDF optimal.

For the same task set T with tasks ωi = (Ci, Ti, Di) used for RM:

• ω1 = (2, 6, 6)
• ω2 = (2, 8, 8)
• ω3 = (4, 12, 12)

for the time interval [0, 24], we would obtain the following schedule produced by EDF:

ω1

ω2

ω3

0 2 4 6 8 10 12 14 16 18 20 22 24

Since we know that the total utilization of the task set is 0.917, which is smaller than 1,
with EDF, we know that it is schedulable, and as we can see from above, that is the case.
Whenever a scheduling event occurs, i.e., a task !nishes or a new task gets released, EDF
searches for the task that is closest to its deadline and executes it. At t = 6, we can observe
that both ω1 and ω3 have the same absolute deadline. Therefore, EDF may schedule either
one of them by choosing arbitrarily.

7

2 Background

2.3 EDF-Like Scheduling

Now, let us introduce the EDF-Like (EL) schedulability test, which will be the main focus
of this thesis. The work by Günzel et al. [Gün+22] provides the !rst suspension-aware
schedulability test for uniprocessor EDF-Like scheduling that generalizes both Fixed Pri-
ority (FP) and Earliest Deadline First (EDF)[LL73] scheduling algorithms. Therefore, by
analyzing EL, we could potentially identify scenarios where it outperforms both FP and
EDF, leading to a deeper understanding of the trade-o"s and bene!ts of various schedul-
ing strategies.

We can look at EDF-Like scheduling as a class of scheduling algorithms. More speci!-
cally, a set of so-called relative priority points !i determines the behavior of the EDF-Like
scheduling. Each job ωi,j is assigned its own priority point εi,j which is created as follows:

εi,j = ri,j + !i

where ri,j is the release time of the job and !i is the relative priority point of task ωi.
Therefore a job ωi,j has higher priority than ωi→,j→ if εi,j < εi→,j→ .

With a proper con!guration of the priority points, the scheduler can behave like many
established scheduling algorithms including Fixed-Priority (FP) scheduling, First-In-First-
Out (FIFO), and EDF as well. Hence, by assigning!i = Di, we would get an EDF scheduler,
and by having !i =

∑i
j=1 Dj , the schedulability test behaves as DM.

2.3.1 Issues with Self-Suspension

The su#cient schedulability test provided works on self-suspending tasks with arbitrary-
deadline, meaning their relative deadline Di could be larger than the period Ti for some
task ωi. However, adding self-suspension to tasks introduces complexities that can lead to
problems when using scheduling algorithms like EDF and RM [Che+19].

It has already been shown that both EDF and RM are optimal. However, this property does
not hold anymore when self-suspending tasks are applied. Furthermore, it was shown by
Ridouard, Richard, and Cottet [RRC04] that even when the suspending behavior of the task
set is known, !nding an optimal schedule is NP-Hard.

The duration of the suspension can be unpredictable, leading to di#culties in accurately
predicting the remaining time for task completion. Therefore, this a"ects the accuracy of
the worst-case response time (WCRT) analysis, which becomes more complicated because
it must now consider the suspension periods, which can vary widely.

Since there are no exact tests under self-suspension, it is di#cult to evaluate the perfor-
mance and exactness of EDF-Like’s schedulability test. However, to somehow evaluate the
schedulability test, we will be considering task sets without self-suspension. That way,
we can use the already well-known exact tests that exist for !xed-priority and dynamic-
priority scheduling.

8

2.3 EDF-Like Scheduling

2.3.2 Applied EDF-Like Configuration

The test works around the idea of bounding the worst-case response time of a task ωi by
analyzing a job ωi,l. This is achieved by bounding the time it takes the job to run, the time
it can be suspended, and also taking into account the possible interference from tasks with
higher priority and as well as jobs of the same task ωi, all during a speci!c interval [c, di,l)
with di,l being the absolute deadline of the task ωi.

We will mostly focus on applying the su#cient schedulability test of EDF-Like to implicit-
deadline task sets (Di = Ti), and since we will not cover self-suspending tasks, the maxi-
mum suspension time Si of each task will be set to 0.

The paper [Gün+22] presents two di"erent versions of the suspension-aware schedulabil-
ity test that can be applied to EL scheduling algorithms. The !rst one is the !xed analysis
window, where c is restricted to the release time of the job ωi,l, giving us the following
interval, which will be analyzed: [ri,l, di,l). The other version is the variable analysis win-
dow, where active intervals are used. Here, the release times of earlier jobs are applied as
c, therefore increasing the analysis window.

In addition, the paper has shown that if constrained-deadline task sets are used, then the
variable analysis window matches the !xed analysis window method. Regardless, for our
work, we will center our attention on the !xed interval algorithm:

Algorithm 1 Schedulability test with !xed analysis window [Gün+22, Algorithm 1]]
Input: T = {ω1, ..., ωn}, (!1, ...,!n), ϑ, depth
Output: True: schedulable, False: no decision

1: Order ω1, ..., ωn, such that D1 ↗ · · · ↗ Dn.
2: Set R̃i := Di for all i.
3: for i = 1, 2, ..., depth do
4: solved := True
5: for k = 1, 2, ..., n do
6: cand := []; step := ϑ ·Dk

7: for b = 0, step, 2 · step, · · · < Dk do
8: cand.append(R̃k(b)) using Equation (2.1).
9: R̃k := min(cand)
10: if R̃k > Dk then
11: solved := False; R̃k := Dk; break
12: return solved

As input, the algorithm takes in a task setT, their relative priority points (!1, ...,!n), a step
parameter ϑ → (0, 1] and the parameter depth, that speci!es the number of improving runs.
By iterating depth-times, the algorithm re!nes the response times by considering di"erent
values of bk in the range [0, Dk). The ϑ parameter in%uences the step size in the loop. Then,
the algorithm evaluates the possible response times for each task using Equation (2.1) and
selects the minimum to de!ne the new R̃k. If for any task ωk, the minimum response time
exceeds its deadlineDk, the algorithm returns False, meaning that it is undecidable if the
task set is schedulable or not. Otherwise, it returns True.

9

2 Background

The given algorithm utilizes the following theorem of the schedulability test:

Theorem 1 (Su#cient Schedulability Test [Gün+22, Theorem 12]). Let T = {ω1, . . . , ωn}
be an arbitrary-deadline task set with relative priority points {!1, . . . ,!n}. If for all k =
1, . . . , n there exists some bk → [0, Dk) such that

R̃k(bk) ↔ Dk, (2.1)

where

R̃k(bk) :=
∑

i ↑=k

max

(⌈
Gi

k + R̃i ↑ bk
Ti

⌉
, 0

)
Ci +

⌈
Dk ↑ bk

Tk

⌉
(Ck + Sk) + bk

and Gi
k = min(Dk ↑ Ci,!k ↑ !i), then the task set is schedulable by EL scheduling with

the given relative priority points and the worst-case response time of ωk is upper bounded by
R̃k := R̃k(bk).

2.4 Exact Schedulability Tests

So far, we covered that there are utilization bounds both for FP and EDF. For the case that
we need an exact test for dynamic-priority scheduling, we use as a comparison for EDF-
Like, the utilization bound of EDF[LL73], sincewe are dealingwith only (constrained/implicit)-
deadline task sets.

For !xed-priority scheduling, however, we have covered that rate-monotonic has the uti-
lization bound, which can be used to determine if a task set is schedulable. However, as
shown in the example for scheduling with RM, this utilization bound is only a su#cient
test, meaning there can be false negatives. Therefore, we need an exact test, such as Time-
Demand Analysis (TDA) [LSD89].

2.4.1 Time-Demand Analysis

Beforewe explain TDA, one crucial part of the schedulability is theCritical Instant Theorem,
which was introduced by Liu and Layland [LL73]. The theorem states that the worst-case
response time for a task in a preemptive, !xed-priority scheduling system occurs when the
task is released simultaneously with all higher-priority tasks. This scenario is referred to
as the critical instant.

TDA uses this concept to compute the worst-case response time by evaluating the demand
on the processor during this critical instant. It calculates the cumulative processor time
required by a job released at a critical instant of a task, along with the processor time
demanded by all other higher-priority tasks, as a function of time from the critical instant.

The time-demand function itself is de!ned as follows:

Wi(t) = Ci +
i↓1∑

j=1

⌈
t

Tj

⌉
Cj.

10

2.4 Exact Schedulability Tests

If the tasks are sorted by priority, then the schedulability test can be expressed by the
following theorem:

Theorem 2 (Lehoczky, Sha, Ding, 1989 [LSD89]). A set of fully preemptive periodic tasks
can be scheduled by a !xed priority algorithm if and only if:

↘i = 1, ..., n ≃t → (0, Di] : Wi(t) ↔ t

11

3 Methodology

In this chapter, we will brie%y explain the con!gurations of EDF-Like being used and how
we will conduct our experiments.

3.1 Execution of Research

We use empirical methods to compare the schedulability tests. This involves assessing
them by analyzing a wide range of task sets with varying levels of utilization. By generat-
ing properly designed task sets to examine the performance of schedulability tests, we can
provide a fair and unbiased comparison. Then, by presenting graphs, it makes it possible
to interpret the results that we receive from applying the schedulability tests on the task
sets[Dav16].

To illustrate the performance of the schedulability tests, we plot the acceptance/success
ratio. This is the proportion of task sets that are deemed to be schedulable by each test
against utilization. This means that for each speci!c value of the utilization from 0% to
100%, the proportion of schedulable task sets is plotted. This is the primary method we
use to conduct the tests. However, for some tests, we have di"erent approaches, which we
explain in detail in those chapters.

We also provide the code that we have written for all the following tests, which is available
on GitHub1.

3.2 Task Generation

Let us go through the process of how the task sets that will be used for the experiments
are created.

We generate a n-dimensional vector using the Dirichlet-Rescale (DRS) algorithm [GBD].
This vector will then be used as the utilization for a task set T. As input to the algorithm,
we give the number of tasks per task set as n and as well as the utilization target sumU(T).
In return, the algorithm generates a uniformly distributed n-dimensional vector, where the
values of it sum up to U(T)[GBD20]. Thus, a task ωi would have the utilization Ui.

Now, it is left to create an array of task periods of size n. Therefore, a log-uniform distri-
bution with the range of [1, 100] will be applied to generate them[ESD].

1https://github.com/komronm8/BachelorThesis

13

https://github.com/komronm8/BachelorThesis

3 Methodology

Once we have the generated utilization array and the task period array, we use these two
arrays to create the worst-case execution time Ci of task ωi. Since Ui = Ci

Ti
, we simply

multiply the value at index i from our utilization array with the value at index i of our
generated array of periods to get Ci.

Since this thesis will work primarily with implicit-deadline task sets, the deadlines will
be equal to their periods. Therefore, we now have a suitable set of tasks to conduct our
experiments and obtain reliable data to analyze.

14

4 Comparison to Exact Tests

In this chapter, we compare the schedulability test of EDF-Like with other known schedu-
lability tests, and we assess the accuracy of EL.

4.1 Objective of the Experiment

The experiment aims to evaluate the e"ectiveness of the EDF-Like algorithm, con!gured
in di"erent ways (as EDF[LL73] and as a !xed-priority scheduler like Deadline-Monotonic
[LW82]), by comparing its schedulability outcomeswith those of exact tests like TDA[JP86;
LSD89]. Also understand how over-approximation in the EDF-Like algorithm a"ects its
ability to correctly determine whether a set of tasks is schedulable, especially under vary-
ing utilization levels. The experiment also slightly explores how the performance of both
the EL schedulability test and exact tests changes when di"erent parameters are applied.

4.2 Anticipated Outcomes

We look into con!guring the relative priority points of EDF-Like such that it will behave
like EDF (!i = Di) and FP (!i =

∑i
j=1 Dj), then evaluate its performance. As mentioned,

we will use the utilization-based test for the comparison with EL-EDF (EDF-Like con!g-
ured as EDF), and for EL-DM (EDF-Like con!gured as Deadline-Monotonic), TDA will be
the opposing exact test.

We know from the paper that the EL schedulability test uses over-approximation to com-
pute the following two values:

•
∑

j<l WSk,j the total amount of interference from previous jobs of ωk

•
∑

i ↑=k B
i
k,l the total amount of interference from all other jobs of ωi

that have higher priority than ωk

during the interval [c, dk,l). This is done since computing their exact values leads to high
complexity.

With this in mind for both EL-EDF and EL-DM, we can forecast that for low to moderate
utilization, the outcome of the schedulability test should be most of the time schedulable
since the system is underutilized and has su#cient capacity to handle the tasks. For mod-
erate to high utilization, we can expect that the success ratio will start to fall because of
the over-approximation. Hence, it becomes problematic for the algorithm to !nd a valid
bk such that the R̃k ↔ Dk.

15

4 Comparison to Exact Tests

4.3 Resulting Data

Figure 4.1: Overall Exact Test Comparison

For Figure 4.1, a total of 500 task sets, with each set containing 50 tasks, was generated
to obtain the acceptance ratio per utilization, starting from 0% to 100% with a utilization
step of 2.5. As we can observe, the acceptance ratios at the beginning are at 1.0, meaning
that all of the 500 task sets were deemed schedulable, then at around 65-75% utilization, the
success ratio for both tests starts to drop, which was expected.

We can see that TDA outperforms both EL-DM and EL-EDF. As the paper has already
pointed out that Theorem 2.1 has similarity with TDA, we can likewise notice that EL-
DM has resembling patterns with TDA. However, because of the over-approximation by
EDF-Like, the schedulability ratio di"ers in the area with high utilization. The shaded area
between EL-DM and TDA highlights the di"erences between the two.

Additionally, we’ve included the utilization bound from Liu and Layland [LL73], serving
as a benchmark. Considering the utilization bound, we notice that the success rate of EL-
DM starts to drop right after it exceeds the utilization bound. TDA, on the other hand,
goes beyond the L&L bound, indicating that it can handle high utilization compared to the
theoretical limit set by L&L. For EL-EDF, however, the schedulability begins to decrease
even before the bound.

16

4.4 Summary

4.3.1 Follow-up Experiments

Next, we look into the results obtained from the tests with di"erent parameters.

First, we only varied the number of tasks. We carried out three tests for quantities 5, 10,
and 20. From the sub!gures in Figure 4.2, we notice that with only !ve tasks per task set,
both tests perform better. However, with the increase in the number of tasks in a task set,
the schedulability of both EL-EDF and EL-DM decreases, and the di"erence (shaded area)
between TDA and EL-DM becomes larger.

Next, we varied the period range when generating the period array of a task set with the
log-uniform distribution. In Figure 4.3, there are two sub!gures, one where the period
range was con!gured to [1,10] and another with [1,1000]. By increasing the upper bound
of the period range from 10 to 1000, we observe that the schedulability of EL-EDF, EL-DM,
and TDA increases substantially. Additionally, we can notice that EL-DM performs slightly
worse for the period range [1,10] than [1,1000] when compared to TDA.

4.4 Summary

The primary focus of this chapter was to assess how accurate EDF-Like’s schedulability
test was to exact tests. The experiment’s results reveal that while the EDF-Like algorithm
performs similarly to TDA under low to moderate utilization, its accuracy diminishes as
utilization increases due to the inherent over-approximation in its calculations. However,
it performs pretty well considering that EDF-Like’s schedulability test is su#cient only.
For instance, it was shown that EL-DM outperforms the utilization bound of !xed-priority
scheduling. All in all, EL-DM is not far o" from the exact test TDA, whereas EL-EDF has
a much larger di"erence in accuracy when compared to the utilization-based test.

Moreover, we explored the e"ects of varying task set parameters, such as the number of
tasks and the period range. In contrast to TDA, increasing the number of tasks per set
decreased schedulability for both EL-EDF and EL-DM con!gurations. On the other hand,
signi!cantly expanding the period range improved the schedulability outcomes across all
algorithms. Therefore, to analyze these e"ects in depth, we dedicate a chapter to each one:
Sections 5 and 6.

One unresolved question that we did not address is why EL-DM appears to outperform EL-
EDF, which was not expected from our side. Therefore, we noticed this only after the data
was presented. Due to time constraints, we could not investigate this unresolved question
and !nd the necessary answer thoroughly. However, given the required time, this would
certainly be an essential area for further research.

17

4 Comparison to Exact Tests

(a) 5 tasks (b) 10 tasks

(c) 20 tasks

Figure 4.2: Impact of task quantity on schedulability

(a) Period range [1, 10] (b) Period range [1, 1000]

Figure 4.3: Impact of period range on schedulability

18

5 Impact of Task!antity

In this chapter, we analyze the impact of varying the task quantity per task set on the
performance and behavior of EDF-Like’s schedulability.

5.1 Objective of the Experiment

As already discussed in Section 4, we further explore the schedulability impact by looking
into these parameters. The procedure for conducting this experiment will be similar to
that of the previous chapter. We generate task sets and run the schedulability test on them
to determine if they are schedulable. However, we pay attention to the number of tasks
per task set in this case. The quantity of the tasks themselves will vary, but the number
of task sets will not change. For all tests, we will be generating a total of 100 task sets for
each run.

5.2 Anticipated Outcomes

As previously mentioned, EDF-Like works based on computing the worst-case response
time of a job ωk by estimating the total interference from previous jobs of ωk and higher
priority tasks. Therefore, with more tasks, each task may experience more interference
from other tasks, increasing the likelihood of blocking and leading to delays and potential
missed deadlines. With this in mind, we can anticipate that with the rise in task quantity,
the schedulability of the task set will decrease.

5.3 Resulting Data

First, we consider starting with small quantities of tasks per set, speci!cally the range 1 to
10. We will begin with 1 task and gradually increase by one until we have 10 tasks.

As expected, we immediately notice from Figure 5.1a that the acceptance ratio decreases
step by step for each run as the task quantity per set increases. It represents the results
in a satisfactory manner. However, the plotted data seems messy since we have many
runs. Therefore, to visualize the graph better, we applied a di"erent approach. Figure 5.1b
shows the total success ratio of each run against the task quantity, meaning starting from
the utilization level 0 to level 100, their acceptance ratios have been aggregated.

19

5 Impact of Task Quantity

(a) Initial approach (b) Alternative approach

Figure 5.1: Quantity Test EL-EDF with [1-10] tasks

As we can observe, the decline of the total schedulability ratio is clearly depicted in Figure
5.1b in comparison to Figure 5.1a. Now we examine EDF-Like con!gured to !xed-priority
(FP) scheduling:

(a) Initial approach (b) Alternative approach

Figure 5.2: Quantity Test EL-DM with [1-10] tasks

Here, we observe the same pattern in Figures 5.2a and 5.2b as EDF-Like con!gured to EDF.
The only di"erence is !xed-priority outperforming EDF, which we noted in the previous
chapter.

Next, we consider applying more signi!cant amounts of tasks in Figure 5.3. We start with
10 tasks per set and gradually increase by 40 tasks until we reach 210 tasks per set. At
!rst glance, the run with only 10 tasks per task set has the highest schedulability ratio
compared to the others. As expected, with increasing task quantity, the schedulability
gradually drops. However, in Figure 5.3a, we notice that the last !ve runs with the highest
task quantities (50 to 210) seem to have clustered together. It appears that the success ratio
doesn’t decrease anymore, and some lower bound seems to exist. Furthermore, in Figure
5.3b, we see that the total acceptance ratio converges to approximately 0.67.

20

5.3 Resulting Data

(a) Initial approach (b) Alternative approach

Figure 5.3: Quantity Test EL-EDF with large amounts of tasks

Next, we examine the outcome of EDF-Like con!gured to !xed-priority in Figure 5.4:

(a) Initial approach (b) Alternative approach

Figure 5.4: Quantity Test EL-DM with large amounts of tasks

As usual, !xed-priority is outperforming EDF. Here, we can similarly point out that the
total acceptance ratio decreases with the increase in task quantity. However, again, only
in the beginning do we observe a more or less substantial drop with the rise in the number
of tasks, but then the decline immensely slows down.

Nevertheless, the same behavior from Figure 5.3a repeats itself in Figure 5.4a, with the
higher quantity tasks grouping up together and having a similar success ratio pattern.
Similarly to EDF, it appears that the decrease of the total success ratio with respect to the
increase in task quantity has diminished and converged to around 0.76.

21

5 Impact of Task Quantity

5.4 Summary

In this chapter, we covered the impact of varying task quantities per task set on the schedu-
lability of the EDF-Like algorithm. The results from the quantity test between the range
[1,10] revealed a clear trend: as the number of tasks per set increases, the overall schedu-
lability decreases, which we anticipated.

This decline was evident in smaller task sets. However, larger sets showed a convergence
in schedulability, indicating a possible lower bound. This suggests that as task quantity
increases beyond a certain point, additional tasks have a diminishing impact on schedu-
lability, leading to a stabilized success ratio, which converged to around 0.67 for EDF and
0.76 for !xed-priority scheduling. One possible reason could be that the system reached a
point where the interference caused by new tasks no longer substantially increased since
the maximum possible delays bound the worst-case interference. However, due to the lack
of time in this thesis, this could be further explored and should be considered for future
work.

22

6 Impact of Period Variation

In this chapter, we further study the impact of the periods on the schedulability.

6.1 Objective of the Experiment

Similarly to Section 5, we explore in depth the phenomenon that we noticed in Section 4
while increasing the period range. Therefore, to reduce the scope to fewer parts and have
a clear setup, we will consider only two tasks and vary the periods between them. This
will allow us to have a better view of what is happening.

6.2 Anticipated Outcomes

As we have already explained, we know that the schedulability test takes into account the
interference from higher priority jobs ωi when upper bounding the worst-case response
time of ωk. This can be further visualized by the following !gure:

Figure 6.1: Visualization of interference from higher priority jobs from [Gün+22]
©2022 IEEE

The gray boxes represent the permitted region where jobs from ωi that have a higher pri-
ority than ωk,l can be executed within the analysis interval [c, dk,l). Bearing this in mind, it
suggests that the analysis heavily depends on the period of the tasks, as the key question
is how many jobs can !t in the gray region, including the carry-in job at the start right
before rk,l. This carry-in region is upper-bounded by the period of the higher-priority job
and depends on how well the periods are aligned. Therefore, if ωk’s period becomes larger
and larger, the carry-in job becomes insigni!cant in comparison to the job under analysis
ωk,l.

As already mentioned, we will be examining only two tasks per task set. In this case, the
!rst task ω1 will always be assigned the period T1 = 100, and the period of the second task
ω2, starting with T2 = 100, will be gradually increased. The utilization levels, on the other
hand, will stay !xed.

23

6 Impact of Period Variation

6.3 Resulting Data

To start out, we plotted the results from the tests as usual, with each run increasing the
period of ω2 by a certain degree. We noticed that for both EL-EDF and EL-DM, increasing
the period of ω2 led to the acceptance ratio oscillating back and forth. Just by looking at
the graph, the oscillation looked random at !rst, but with further inspection, it showed a
speci!c pattern. Namely, whenever the period T2 is furthest from being a multiple of T1,
the total schedulability ratio is at its lowest. Conversely, the overall success ratio increases
as T2 gets closer to being a multiple of T1.

Therefore, plotting the acceptance ratio as a function of the utilization doesn’t illustrate
the oscillation e"ectively. For this reason, similar to the last chapter, we plotted the results
di"erently. Speci!cally, we considered the total acceptance ratio as a function of the pa-
rameter a, which comes from the mathematical expression T2 = a · T1. For the following
we !rst consider only the interval a → [1, 3]:

Figure 6.2: Period Variation Test EL-EDF with a → [1, 3]

Figure 6.3: Period Variation Test EL-DM with a → [1, 3]

24

6.3 Resulting Data

Wenotice straight away in Figure 6.2 that in the beginning, with an increase in the parame-
ter a, the success ratio keeps decreasing until a certain point, after which the schedulability
ratio starts to rise as soon as a gets closer to becoming a factor of T2. Additionally, we can
see that the lowest point for EL-EDF is when a = 2.3. Therefore, intuitively speaking, this
parameter a represents the worst-case interference from the higher-priority job. Since it
varies the period of T2 and therefore a"ects how well the carry-in region can be aligned.

Figure 6.3 shows a similar pattern for EL-DM. However, in this case, the total acceptance
ratio rises immensely compared to EL-EDF and reaches 100%. Here, the lowest point for
EL-DM is at a = 1.4, which is much smaller than EL-EDF.

We observe that for EL-EDF, the second time that a becomes a factor of T2 (a = 3), the total
acceptance ratio is higher than when a = 2. For EL-DM, we can notice that the dip after
a = 2 becomes much smaller. This suggests that by increasing a, the total schedulability
ratio for both tests may keep increasing. Therefore, we turn our attention to the case where
the parameter a continues to grow:

Figure 6.4: Period Variation Test EL-EDF with a → [1, 20]

Figure 6.5: Period Variation Test EL-DM with a → [1, 10]

25

6 Impact of Period Variation

As anticipated, in Figures 6.4 and 6.5, we immediately notice that for both tests, the total
schedulability keeps increasing for larger values of a. For EL-EDF, we can see that with
shallow values for a, the success ratio is at its lowest, and when a = 19 or a = 20, we
already observe that the total schedulability reaches 100%. For EL-DM, with low values
such as a = 2.25 or a = 1.5, the total schedulability ratio is at its minimum. And whenever
a is a factor of T2, the schedulability ratio is at its fullest. Furthermore, the total acceptance
ratio no longer drops after a becomes larger than 4.5.

6.4 Formal Proof

Figures 6.4 and 6.5 indicate that by continuously increasing the parameter a, the total
schedulability ratio reaches 100% for both tests. With the graphical representation in place,
we turn to the formal proof to verify these properties.

We consider the given su#cient schedulability test (Theorem 1) from the paper [Gün+22].
We will focus on a special case by selecting bk = 0. Since we are dealing with two non-
self-suspending implicit-deadline tasks ω1 and ω2, the theorem simpli!es as follows.

Corollary 2.1. If R̃1 ↔ T1 and R̃2 ↔ T2 with

R̃1 = max

(⌈
G2

1 + R̃2

T2

⌉
, 0

)
C2 + C1 (6.1)

R̃2 = max

(⌈
G1

2 + R̃1

T1

⌉
, 0

)
C1 + C2 (6.2)

then the task set is schedulable using EDF-Like scheduling.

In the following, we want to prove that if T2
T1

⇐ ⇒, the task set becomes schedulable under
EDF and !xed-priority (FP) scheduling. For the proof, we provide the following su#cient
condition to !nd a reasonable solution for R̃1 and R̃2 of the previous Corollary 2.1.

Lemma 3. If there exist constants K1 ↔ T1 and K2 ↔ T2 such that

R̃1 ↔ K1 ⇑⇓ R̃2 ↔ K2, (6.3)

then there exists a solution for R̃1 and R̃2 such that R̃1 ↔ T1 and R̃2 ↔ T2.

Proof. We already know that R̃1 depends on R̃2 and vice versa. For convenience, we denote
the corresponding functions from Corollary 2.1 as:

R̃1 = f(R̃2) (6.4)

R̃2 = g(R̃1) (6.5)

26

6.4 Formal Proof

By considering the function f ⇔ g, we know that f ⇔ g : [0, K1] ⇐ [0, K1], with Equation
(6.3). Furthermore, f ⇔ g is monotonically increasing since both f and g are monotonically
increasing. We even know that f either stays constant or increases by at leastC2 whenever
we increase the input for the function f . If the !xed-point iteration starting at R̃1 = 0
does not converge after i iterations, then (f ⇔ g)i(0) ↗ i · C2 → [0, K1] after i iterations.
Hence, if !xed-point iteration never converges, then K1 ↗ limi↔↗ i · C2 = ⇒, which
contradicts K1 ↔ T1. Therefore, the solution gives us R̃1 and R̃2 = g(R̃1) with R̃1 ↔ K1

and R̃2 ↔ K2.

Before we delve into the formal proof, we must introduce two analytical properties that
will be utilized.

lim
a↔↗

G2
1

T2
↔ ↑1 (P1)

lim
a↔↗

G1
2

T2
↔ 1 (P2)

These two properties will be instrumental in establishing the overall theorem:

Theorem 4. Let T = {ω1, ω2} be a task set with the relative priority points !1 and !2,
such that the Properties P1 and P2 holds. Assume that U1 = C1

T1
and U2 = C2

T2
are !xed. If

U1 + U2 < 1, then there exists an a → R>0 such that T is schedulable if T2
T1

↗ a.

Proof. Since U1 + U2 < 1, we know that

U1 + U2 < 1↑ ϖ (6.6)

for some ϖ > 0. We chooseK1 := T1 and K2 := (1↑ ϖ)T2 and prove Equation (6.3).

First, we prove ⇓: Assume that R̃1 ↔ T1. Then

R̃2 ↔ max

(⌈
G1

2 + T1

T1

⌉
, 0

)
C1 + C2. (6.7)

In the following we show that there exists an a1 → R such that

max

(⌈
G1

2 + T1

T1

⌉
, 0

)
C1 + C2 ↔ (1↑ ϖ)T2 (6.8)

↖ max

(⌈
G1

2 + T1

T1

⌉
, 0

)
C1

T2
+

C2

T2
↔ 1↑ ϖ (6.9)

for all a ↗ a1.
We only have to show that the over-approximation for the left-hand side falls below the

27

6 Impact of Period Variation

value on the right-hand side. Therefore, we will use the limiting behavior of the over-
approximation, namely ↙x∝ ↔ x+ 1. We consider max

(⌈
G1

2+T1

T1

⌉
, 0
)

C1
T2
:

max

(⌈
G1

2 + T1

T1

⌉
, 0

)
C1

T2
↔ max

((
G1

2 + T1

T1
+ 1

)
, 0

)
C1

T2
(6.10)

= max

((
G1

2

T1
+ 2

)
C1

T2
, 0

)
(6.11)

= max

(
G1

2

T1

C1

T2
+ 2

C1

T2
, 0

)
(6.12)

= max

(
G1

2

T2

C1

T1
+ 2

C1

aT1
, 0

)
(6.13)

a↔↗
↔ C1

T1
(with P2) (6.14)

We then get the following for the left-hand side of Equation (6.9):

max

(⌈
G1

2 + T1

T1

⌉
, 0

)
C1

T2
+

C2

T2

a↔↗
↔ C1

T1
+

C2

T2
(6.15)

= U1 + U2 (6.16)

And since we know that U1 + U2 < 1 ↑ ϖ, we have shown that Equation (6.9) is correct
and therefore R̃2 ↔ K2 for all a ↗ a1.

Second, we prove⇑: We assume that R̃2 ↔ (1↑ ϖ)T2. Then we have

R̃1 ↔ max

(⌈
G2

1 + (1↑ ϖ)T2

T2

⌉
, 0

)
C2 + C1 (6.17)

We need to show that there exists an a2 → R such that

max

(⌈
G2

1 + (1↑ ϖ)T2

T2

⌉
, 0

)
C2 + C1 ↔ T1 (6.18)

↖ max

(⌈
G2

1 + (1↑ ϖ)T2

T2

⌉
, 0

)
C2

T1
+

C1

T1
↔ 1 (6.19)

for all a ↗ a2.

We consider
⌈
G2

1+(1↓ε)T2

T2

⌉
:

⌈
G2

1 + (1↑ ϖ)T2

T2

⌉
=

⌈
G2

1

T2
+

(1↑ ϖ)T2

T2

⌉
(6.20)

a↔↗
↔ ↙↑1 + 1↑ ϖ∝ (with P1) (6.21)

= ↙↑ϖ∝ (6.22)
= 0 (6.23)

28

6.4 Formal Proof

Therefore, for Equation (6.19) we get the following:

0 · C2

T1
+

C1

T1
↔ 1 (6.24)

↖ U1 ↔ 1 (6.25)

Since we know that U1 + U2 < 1, we have shown that Equation (6.19) is correct, and,
therefore, R̃1 ↔ K1 for all a ↗ a2.

We conclude that R̃1 ↔ K1 ⇑⇓ R̃2 ↔ K2 holds for all a ↗ max(a1, a2). Hence, the task
set is schedulable for all a ↗ max(a1, a2) by Lemma 3.

Corollary 4.1. For a given task set T = {ω1, ω2} and relative priority points (!1,!2). If
EDF-Like is con!gured as EDF (!i = Di) and U1 + U2 < 1, then there exists an a → R>0

such that T is schedulable if T2
T1

↗ a.

Proof. Since we know that Gi
k = min(Dk ↑ Ci,!k ↑ !i) from Theorem 1. With !i = Di

and because we have implicit-deadline (Di = Ti) we get Gi
k = min(Tk ↑ Ci, Tk ↑ Ti) =

(Tk ↑ Ti). We show that Property P1 and P2 hold.

First for P1:

G2
1

T2
=

T1 ↑ T2

T2
(6.26)

=
T1

T2
↑ 1 (6.27)

=
T1

a · T1
↑ 1 (6.28)

↑↑↑⇐
a↔↗

↑1 (6.29)

Now for P2:

G1
2

T2
=

T2 ↑ T1

T2
(6.30)

= 1↑ T1

a · T1
(6.31)

↑↑↑⇐
a↔↗

1 (6.32)

We have shown that P1 and P2 hold for EDF-Like con!gured as EDF. Therefore, by applying
Theorem 1, we have proven that there exists an a → R>0 such that T is schedulable.

Corollary 4.2. For a given task setT = {ω1, ω2} and relative priority points (!1,!2). If EDF-
Like is con!gured as DM (!i =

∑i
j=1 Dj) and U1 + U2 < 1, then there exists an a → R>0

such that T is schedulable if T2
T1

↗ a.

29

6 Impact of Period Variation

Proof. We know that Gi
k = min(Dk ↑Ci,!k ↑!i) from Theorem 1. With !i =

∑i
j=1 Dj

and since we have implicit-deadline (Di = Ti) we get Gi
k = min(Tk ↑ Ci,

∑k
j=1 Tj ↑∑i

j=1 Tj). We show that the Property P1 and P2 hold.

First for P1:
We get G2

1 = min(T1 ↑ C2, T1 ↑ (T1 + T2)) = min(T1 ↑ C2,↑T2) = ↑T2.

G2
1

T2
= ↑T2

T2
= ↑1 (6.33)

Now for P2:
We get G1

2 = min(T2 ↑ C1, T1 + T2 ↑ T1) = min(T2 ↑ C1, T2) = T2 ↑ C2.

G1
2

T2
=

T2 ↑ C2

T2
(6.34)

= 1↑ C2

a · T1
(6.35)

↑↑↑⇐
a↔↗

1 (6.36)

We have shown that P1 and P2 hold for EDF-Like con!gured as DM. Therefore, by applying
Theorem 1, we have proven that there exists an a → R>0 such that T is schedulable.

We successfully proved that for a given task set T = {ω1, ω2} with relative priority points
(!1,!2) if T2

T1
⇐ ⇒, the task set becomes schedulable under EDF and FP scheduling.

6.5 Summary

In this chapter, we focused on a simpli!ed setup with two tasks, where the period of the
!rst task was !xed, and the period of the second task was varied. The results showed that
the schedulability ratio oscillates as the period of the second task changes, with the lowest
schedulability observed when the periods are not multiples of each other, suggesting the
worst-case alignment of the carry-in job.

Further analysis extended this observation, showing that for larger period ratios, the sys-
tem tends to reach full schedulability, particularly when the period of the second task
becomes much larger than the !rst. This pattern was observed for both EDF and DM con-
!gurations of the EDF-Like algorithm.

We also included formal proof verifying this observation and showing that the task set
becomes fully schedulable as the period ratio increases. Therefore, we were successful
in proving our expectations that we had. Additionally, there is potential to extend the
!ndings to consider multiple tasks. However, this extension would be more complex due
to the increased interference among tasks and themore intricate interactions between their
periods.

30

7 Conclusion

This is the last chapter of this thesis. Here, we summarize the work that we have accom-
plished and the questions that were answered.

The primary purpose of this thesis is to evaluate the performance of EDF-Like[Gün+22]
scheduling under EDF[LL73] and !xed-priority[LW82] for preemptable sporadic/periodic
task systems with implicit deadlines on a uniprocessor. Since exact tests currently do not
exist for self-suspension task sets, we focused solely on non-self-suspending task sets.

We !rst examined the performance of EDF-Like in comparison to other exact tests, such
as the utilization-based test for EDF and TDA for !xed-priority. Our !ndings indicate that
EDF-Like performs similarly to exact tests at low to moderate utilization levels. However,
its accuracy diminishes as utilization increases, primarily due to the over-approximation
used in its analysis. One unexpected observation from our side was that EL-DM outper-
formed EL-EDF. Additionally, we carried out mini-experiments to inspect the impact of
modifying di"erent parameters, such as the task quantity and period range of the tasks.
The insights from these experiments pushed us to analyze them further in depth.

The investigation into the impact of task quantity on schedulability further highlighted
that contrary to initial assumptions, the schedulability did not decrease linearly with the
increase in the number of tasks. Instead, the reduction plateaued after a certain point.

Last but not least, our further analysis of period variations, focusing only on two tasks,
demonstrated that the alignment of task periods is critical in determining schedulability.
Our results showed that when task periods are not multiples of each other, schedulability
is at its lowest, while signi!cantly increasing the period of one task relative to the other
can lead to full schedulability. This observation was further validated by a formal proof,
con!rming that the task sets converge toward complete schedulability as the period ratio
approaches in!nity.

Another !eld that we seek to explore is task sets with constrained-deadlines since we only
focused on implicit-deadlines. Nevertheless, we implemented a test for them as well. To
evaluate the performance of EDF-Like with constrained-deadlines, we planned to compare
the outcome with Processor Demand Analysis (PDA)[But24], which we also implemented.
However, we didn’t include it in this thesis due to the lack of time.

Based on the !ndings presented in the thesis, the EL (EDF-Like) schedulability test appears
to be fairly close to being exact under certain conditions, particularly for low to moderate
utilization levels. The performance of EL-DM was considerably good since the di"erence
between its exact test TDA was relatively small. However, there is a more signi!cant gap
for EL-EDF when compared to the utilization-based test, which indicates that there are still
improvements to be made.

31

7 Conclusion

While this thesis has provided valuable insights into the behavior of EDF-Like schedul-
ing, several questions remain unanswered. Notably, the unexpectedly better performance
of !xed-priority con!guration and the plateauing of schedulability with increased task
quantity suggest areas for future research. Additionally, extending this work to include
self-suspending tasks or tasks with non-implicit deadlines could further enhance the un-
derstanding of EDF-Like scheduling, leading to further improved algorithms or analyses
that could increase the accuracy of EDF-Like’s schedulability test, bringing it closer to
being an exact tool for the !eld of hard real-time scheduling.

32

Bibliography

[But24] Giorgio Buttazzo. Hard Real-Time Computing Systems - Predictable Scheduling
Algorithms andApplications, 4th Edition. Springer, 2024. !"#$: 978-3-031-45409-
7. %&!: 10.1007/978-3-031-45410-3. ’(): https://doi.org/10.1007/978-3-
031-45410-3.

[Che+19] Jian-Jia Chen, Geo"rey Nelissen, Wen-Hung Huang, Maolin Yang, Björn B.
Brandenburg, Konstantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard,
Neil C. Audsley, Raj Rajkumar, Dionisio de Niz, and Georg von der Brüggen.
“Many suspensions, many problems: a review of self-suspending tasks in real-
time systems”. In: Real Time Syst. 55.1 (2019), pp. 144–207. %&!: 10 . 1007 /
S11241-018-9316-9. ’(): https://doi.org/10.1007/s11241-018-9316-9.

[Dav16] Robert I. Davis. “On the Evaluation of Schedulability Tests for Real-Time Schedul-
ing Algorithms”. In: 2016. ’(): https://api.semanticscholar.org/CorpusID:
14995939.

[ESD] Paul Emberson, Roger Sta"ord, and Robert I Davis. “Techniques for the syn-
thesis of multiprocessor tasksets”. In: proceedings 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS 2010), pp. 6–11.

[GBD] David Gri#n, Iain Bate, and Robert I. Davis. dgdguk/drs. Version latest. %&!:
10.5281/zenodo.4264857. ’(): https://doi.org/10.5281/zenodo.4118058.

[GBD20] David Gri#n, Iain Bate, and Robert I. Davis. “Generating Utilization Vectors
for the Systematic Evaluation of Schedulability Tests”. In: 41st IEEE Real-Time
Systems Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020. IEEE,
2020, pp. 76–88. %&!: 10.1109/RTSS49844.2020.00018. ’(): https://doi.org/
10.1109/RTSS49844.2020.00018.

[Gün+22] Mario Günzel, Georg von der Brüggen, Kuan-Hsun Chen, and Jian-Jia Chen.
“EDF-Like Scheduling for Self-Suspending Real-Time Tasks”. In: IEEE Real-
Time Systems Symposium, RTSS 2022, Houston, TX, USA, December 5-8, 2022.
IEEE, 2022, pp. 172–184. %&!: 10.1109/RTSS55097.2022.00024. ’(): https://
doi.org/10.1109/RTSS55097.2022.00024.

[JP86] Mathai Joseph and Paritosh K. Pandya. “Finding Response Times in a Real-
Time System”. In: Comput. J. 29.5 (1986), pp. 390–395. %&!: 10.1093/COMJNL/
29.5.390. ’(): https://doi.org/10.1093/comjnl/29.5.390.

[KS22] Hermann Kopetz and Wilfried Steiner. Real-Time Systems - Design Principles
for Distributed Embedded Applications, Third Edition. Springer, 2022. !"#$: 978-
3-031-11991-0. %&!: 10.1007/978- 3- 031- 11992- 7. ’(): https://doi.org/
10.1007/978-3-031-11992-7.

33

https://doi.org/10.1007/978-3-031-45410-3
https://doi.org/10.1007/978-3-031-45410-3
https://doi.org/10.1007/978-3-031-45410-3
https://doi.org/10.1007/S11241-018-9316-9
https://doi.org/10.1007/S11241-018-9316-9
https://doi.org/10.1007/s11241-018-9316-9
https://api.semanticscholar.org/CorpusID:14995939
https://api.semanticscholar.org/CorpusID:14995939
https://doi.org/10.5281/zenodo.4264857
https://doi.org/10.5281/zenodo.4118058
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS55097.2022.00024
https://doi.org/10.1109/RTSS55097.2022.00024
https://doi.org/10.1109/RTSS55097.2022.00024
https://doi.org/10.1093/COMJNL/29.5.390
https://doi.org/10.1093/COMJNL/29.5.390
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/978-3-031-11992-7
https://doi.org/10.1007/978-3-031-11992-7
https://doi.org/10.1007/978-3-031-11992-7

Bibliography

[LL73] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment”. In: J. ACM 20.1 (1973), pp. 46–61.
%&!: 10.1145/321738.321743. ’(): https://doi.org/10.1145/321738.321743.

[LSD89] John P. Lehoczky, Lui Sha, and Y. Ding. “The Rate Monotonic Scheduling Al-
gorithm: Exact Characterization and Average Case Behavior”. In: Proceedings
of the Real-Time Systems Symposium - 1989, Santa Monica, California, USA, De-
cember 1989. IEEE Computer Society, 1989, pp. 166–171. %&!: 10.1109/REAL.
1989.63567. ’(): https://doi.org/10.1109/REAL.1989.63567.

[LW82] Joseph Y.-T. Leung and JenniferWhitehead. “On the complexity of!xed-priority
scheduling of periodic, real-time tasks”. In: Perform. Evaluation 2.4 (1982), pp. 237–
250. %&!: 10.1016/0166-5316(82)90024-4. ’(): https://doi.org/10.1016/
0166-5316(82)90024-4.

[Mok83] Aloysius Ka-Lau Mok. “Fundamental design problems of distributed systems
for the hard-real-time environment”. PhD thesis. Massachusetts Institute of
Technology, Cambridge, MA, USA, 1983. ’(): https://hdl.handle.net/1721.
1/15670.

[RRC04] Frédéric Ridouard, Pascal Richard, and Francis Cottet. “Negative Results for
Scheduling Independent Hard Real-Time Taskswith Self-Suspensions”. In: Pro-
ceedings of the 25th IEEE Real-Time Systems Symposium (RTSS 2004), 5-8 De-
cember 2004, Lisbon, Portugal. IEEE Computer Society, 2004, pp. 47–56. %&!:
10.1109/REAL.2004.35. ’(): https://doi.org/10.1109/REAL.2004.35.

34

https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1016/0166-5316(82)90024-4
https://hdl.handle.net/1721.1/15670
https://hdl.handle.net/1721.1/15670
https://doi.org/10.1109/REAL.2004.35
https://doi.org/10.1109/REAL.2004.35

	Introduction
	Motivation
	Structure
	Research Questions

	Background
	Task Models
	Scheduling Algorithms
	Static-Priority Scheduling
	Dynamic-Priority Scheduling

	EDF-Like Scheduling
	Issues with Self-Suspension
	Applied EDF-Like Configuration

	Exact Schedulability Tests
	Time-Demand Analysis

	Methodology
	Execution of Research
	Task Generation

	Comparison to Exact Tests
	Objective of the Experiment
	Anticipated Outcomes
	Resulting Data
	Follow-up Experiments

	Summary

	Impact of Task Quantity
	Objective of the Experiment
	Anticipated Outcomes
	Resulting Data
	Summary

	Impact of Period Variation
	Objective of the Experiment
	Anticipated Outcomes
	Resulting Data
	Formal Proof
	Summary

	Conclusion
	Bibliography

