technische universitat
dortmund

This is SPATEM! A Spatial-Temporal Optimization
Framework for Efficient Inference on ReRAM-based
CNN Accelerator

Yen-Ting Tsou*, Kuan-Hsun Chen', Chia-Lin Yang*, Hsiang-Yun Cheng?,
Jian-Jia Chen?, Der-Yu Tsai*

*National Taiwan University, Taiwan,
tUniversity of Twente, Netherlands
tAcademia Sinica, Taiwan
§Technical University of Dortmund, Germany
Corresponding author: Chia-Lin Yang, yangc@csie.ntu.edu.tw

Citation: TBD

BIBTEX:

@inproceedings{spatem,

author={Y.-T. Tsou and K.-H. Chen and C.-L. Yang and H.-Y Cheng and J.-J. Chen and D.-Y. Tsai},
booktitle={27th Asia and South Pacific Design Automation Conference (ASP-DAC) },

title={This is SPATEM! A Spatial-Temporal Optimization Framework for Efficient Inference

on ReRAM-based CNN Accelerator},

year={2022},

volume={},

number={},

pages={},

doi={}

©2022 |EEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

G I 2 computer
science 12

yangc@csie.ntu.edu.tw
TBD

This is SPATEM! A Spatial-Temporal Optimization Framework for Efficient
Inference on ReRAM-based CNN Accelerator

Yen-Ting Tsou®, Kuan-Hsun Chen', Chia-Lin Yang*, Hsiang-Yun Chengi, Jian-Jia Chen®, Der-Yu Tsai*
*National Taiwan University, Taiwan, TUniversity of Twente, Netherlands
f Academia Sinica, Taiwan, §Technical University of Dortmund, Germany
Corresponding author: Chia-Lin Yang, yangc@csie.ntu.edu.tw

Abstract—Resistive memory-based computing-in-memory (CIM) has
been considered as a promising solution to accelerate convolutional neural
networks (CNN) inference, which stores the weights in crossbar memory
arrays and performs in-situ matrix-vector multiplications (MVMs) in an
analog manner. Several techniques assume that a whole crossbar can
operate concurrently and discuss how to efficiently map the weights onto
crossbar arrays. However, in practice, the accumulated effect of per-cell
current deviation and Analog-to-Digital-Converter overhead may greatly
degrade inference accuracy, which motivates the concept of Operation
Unit (OU), by which an operation per cycle in a crossbar only involve
limited wordlines and bitlines to preserve satisfactory inference accuracy.

With OU-based operations, the mapping of weights and scheduling
strategy for parallelizing CNN convolution operations should take the cost
of communication overhead and resource utilization into consideration
to optimize the inference acceleration. In this work, we propose the
first optimization framework named SPATEM, that efficiently executes
MVMs with OU-based operations on ReRAM-based CIM accelerators. It
decouples the design space into tractable steps, models the expected infer-
ence latency, and derives an optimized spatial-temporal-aware scheduling
strategy. By comparing with state-of-the-arts, the experimental result
shows that the derived scheduling strategy of SPATEM achieves on aver-
age 29.24% inference latency reduction with 31.28% less communication
overhead by exploiting more originally unused crossbar cells.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have been widely used
for a wide range of tasks in artificial intelligence applications. These
neural networks often consist of lots of parameters and matrix-vector
multiplications (MVMs) about the parameters, motivating tremendous
studies on computing-in-memory (CIM) neural network accelerators
to execute neural network applications efficiently [1]. The CIM
architectures using resistive random access memory (ReRAM) have
been a promising solution for accelerating Convolutional Neural
Networks. The crossbar structure performs MVMs by storing weights
in crossbar cells, supplying inputs in wordline drivers and reading
outputs in bitlines, which greatly reduce data movements and boost
the energy efficiency of neuromorphic computation.

Despite the promising potential, recent work about technology of
ReRAM [2], [3] has shown that the imperfect circuits and devices
might weaken the performance of the ReRAM-based CNN acceler-
ator. The accumulated effect of per-cell current deviation and ADC
overhead might degrade inference accuracy when operating entire
crossbar array within a single cycle. To achieve satisfactory inference
accuracy, rather than utilizing all wordline inputs and bitline cells,
only limited wordlines and bitlines in a crossbar should be operated
at once, namely Operation Unit (OU) [3], [4]. For example, only 9
wordlines and 8 bitlines can be turned on at a time within a 512x256
crossbar array in a state-of-the-art ReRAM macro designed for CNN
acceleration [2]. Nevertheless, the cycle time can be reduced due
to less Analog-to-Digital-Converter overhead [4], [5]. Such an OU-
based acceleration raises new challenges during deployment.

By assuming that the entire crossbar array can be operated per
cycle, state-of-the-arts [1], [6] map all weights of a layer onto
the same crossbar and and replicate weights onto more crossbars
to exploit parallel computing ability. ISAAC replicates weights to

balance the layer-wise throughput because of the data dependency
between adjacent layers [1], whereas HitM decides the number of
weight replication by formulating the layer-wise crossbar allocation
problem into bin-packing problem [6]. However, considering that
only one OU per crossbar can be activated per cycle in practice,
executing a convolution layer or fully connected layer in a single
crossbar requires multiple cycles, whereas many available crossbar
cells are in fact unused. To fully exploit the available resource, the
OU-induced challenge is in twofold:

o Spatial issues: MVMs must be split into different partitions and
assigned onto different crossbar cells to maximize the parallel
degree. How to pack multiple partitions on each crossbar is
essentially the key of achieving highly parallel computing.

o Temporal issues: The order of MVMs must comply with the data
dependencies between layers. In order to minimize inference
latency, the balance between input consumption and output
production should be considered.

However, these issues are not independent. A solution solely for
resolving spatial issues, e.g., only mapping weights onto crossbars,
may put unnecessary restrictions on possible MVM execution orders
and impose additional communication overhead between adjacent
layers. An unoptimized order of MVMs might also result in an
unbalanced input consumption rate to output production rate, such
that the inference might be hindered by the synchronization over
dependent partitions. To fully accelerate CNN, a joint solution taking
both spatial and temporal issues into consideration without imposing
restrictions to each other is thus desired.

In this work, we propose an optimization framework SPATEM
that executes MVMs by OU-based operations in parallel. The goal is
to reduce CNN inference latency by tackling the spatial and temporal
issues jointly. It decouples the spatial deployment into three steps:
partitioning MVMs with an analytical cost model based on the longest
execution path, packing them onto virtual crossbars ideally and
mapping them onto physical crossbars. For the temporal deployment,
an ordering step is conducted to derive an global MVM sequence
in the perspective of input windows to fulfill data dependency
between adjacent layers as soon as possible. Afterwards, an optimized
scheduling strategy can be systematically derived under given CNN
structures and hardware constraints.

Our contributions in a nutshell:

o We explore the design space of inference optimizations under
OU-based operations. To exploit parallelism capability, relevant
spatial and temporal issues are considered (see Section III).

« An optimization framework (SPATEM) consists of 1) a spatial
module employing several algorithms considering the trade-off
over computation parallelism, resource utilization and commu-
nication cost, and 2) a temporal module deriving an MVM exe-
cution sequence under the layer dependencies (see Section IV).

o We extensively evaluate the inference of SPATEM on different
relevant aspects for five pre-trained CNNs, comparing with state-
of-the-arts [1], [6] (see Section V).

II. BACKGROUND AND SYSTEM MODELS

In this section, we introduce the considered CNNs and the
ReRAM-based accelerator. Specifically, we highlight the practical
limit on ReRAM-based accelerators, which motivates the usage of
OU-based operations and its relevance to this work.

A. Convolutional Neural Network (CNN)

Given a trained CNN model, we denote the number of layers as
L. For each layer [, the number of input windows is denoted as
W, respectively. Also, for layer /, the number of input feature map
elements needed in an input window is denoted as IR;, while the
number of output feature map elements generated by the convolution
of an input window is denoted as OW;. They are typically composed
of three types of layers: convolution layer, pooling layer and fully
connected layer. A convolution layer consists of dot-products between
input windows sliding through input feature map and filters, to extract
features from the data. Pooling layers subsample the feature map
to reduce the size of feature map while maintaining the extracted
features. At the end of the CNNss, fully connected layers employ clas-
sic deep learning algorithm which consists of neurons and synaptic
weights to classify the input based on the features extracted from
convolution layers.

Most computations in CNNs are independent, which can be paral-
lelized to reduce the inference latency. For example, the convolution
of different input windows does not depend on the input or output of
each other. However, there are data dependencies between adjacent
layers, since the output of a layer are the input of its subsequent
layer. Such dependent layers cannot be executed concurrently.

B. ReRAM-based CNN Accelerator

We consider the CIM architecture of ReRAM-based CNN accel-
erator (Fig. 1) proposed in [1], which consists of multiple processing
engines (PEs). PEs consist of multiple computing units (CUs) and
communicate through packet routing interconnection. CUs are com-
posed of multiple crossbar arrays which can efficiently accelerate
matrix-vector multiplications in CNN [3], [4]. We denote the number
of available crossbars as C. A digital-to-analog converter (DAC) is
connected to each wordline of the ReRAM crossbar array to convert
the input feature map data into input voltages. By storing weights
as the conductance in cells and supplying inputs as the wordline
voltages, the dot-production can be performed between inputs sup-
plied from wordlines and weights in the same bitline. Afterwards, the
accumulated currents on the bitlines (sum-of-products results) are fed
to the analog-to-digital converters (ADCs). In addition, there is one
on-chip eDRAM buffer in each PE to store needed input and output
feature maps generated by the PE. A non-linear activation unit and a
pooling unit are also included in the PE to execute the corresponding
layers in CNNs. Like in [1], once the weight values are preloaded
into crossbar cells statically, the crossbar cells will not be modified
during the whole inference execution.

C. Operation Unit

In practice, only limited wordlines and bitlines in a crossbar array
can be activated per cycle [2], [3], [5]. To this end, we consider the
concept of Operation Unit (OU) proposed in [3], [4] as a hardware
constraint, which enforces the computation to be operated in a unit of
OU for each crossbar, by which only the limited number of wordlines
and bitlines that can be turned on. Nevertheless, the Analog-to-digital
overhead can be reduced [4], [5] and the parallel computing of MVMs
can be still conducted on multiple crossbars. We denote the number
of OUs needed for layer I’s convolution of an input window as OU;.

CPU

Memory ReRAM-based
Neural
Network

accelerator

Input register i
Shift-and-add
B unit
Output register

unit

D) D) D >
XB A XB E XB XB .
1

Fig. 1. Architecture of ReRAM-based CNN accelerator, based on [1].

Computation assignment

inputs weights
Replicate input
X X
E =N ==
ou 1 -
M Output
X|g] 1 oU aggregation oU
1 <L <L
H =]
— ———
Replicate input ADC
Execution ! !
X
1 1
1 1
X
X
————————— time .
! 4 OUs !

"1ou'’

time

Fig. 2. Partitioning weights onto 4 crossbars to execute concurrently.

For example, if a layer ’s MVM mapped to 1 crossbar requires 4 OU
operations sequentially, i.e., OU; = 4, the MVM might be partitioned
into 4 parts and executed in parallel, as shown in Fig. 2, whereas the
induces communication overhead, i.e., input replication and output
aggregation, should also be taken into consideration.

III. DESIGN SPACE EXPLORATION

Given a trained CNN model with L layers, required number of
OU; for each layer and hardware configuration of ReRAM-based
CIM accelerator with C' available crossbars, the design space for the
deployment of CNN inference on ReRAM-based accelerator can be
divided into two parts:

o The spatial deployment copes with the mapping of weight values
and multiplication results onto crossbar cells. In our studied
problem, one crossbar cell stores one weight value and generates
one multiplication result.

o The temporal deployment deals with the execution order of
MVMs. In our studied problem, MVMs are partitioned into
multiple parts on different crossbars, so the execution order
should preserve the data dependencies between adjacent layers.

To optimize the inference latency jointly, both spatial and temporal
deployments require extremely high complexity if a brute-force
approach is trivially adopted. The eventual scheduling strategy will be
generated as a script like [1], followed by each hardware component
on the accelerator. In the following, we discuss our insights about
how to tackle the complex solution space.

Computation assignment
Execution

MVM1 | X —1

E x | x

ADC

MVM2 X

time

Fig. 3. Example of packing partial weights from two MVMs onto the same
crossbar, by which the same crossbar can be utilized at different time points.

A. Spatial Deployment

In summary, there are three steps to decide the spatial deployment
in our framework. The partitioning step decides how to partition
the MVMs and how many parts should be partitioned. The packing
step decides how to pack partitioned MVMs onto virtual crossbars,
which ideally omits the communication overhead. The assigning step
decides the assignment of virtual crossbars onto physical crossbars.
In the following, we discuss their difficulties and required treatments:

1) Partitioning Step: The convolution and fully connected layers
in CNNs can be executed in parallel by ReRAM-based accelerator
in the form of MVM. After transforming them into MVM by
flattening, the filters are concatenated to form weight matrices and
input windows are flattened to form input vectors. Different size
of the weight matrix and input vectors in the MVMs will result in
various execution latency with various crossbar and cell requirements.
Considering the overhead of replication and aggregation, there are 4
distinct dimensions to partition all MVMs of a layer, as follows:

o Partition weight matrix in height (hwm) equally splits the
weight matrix into upper and lower parts. The output of the
partitioned MVMs needs an aggregation, since the partial values
of the same input window and the same weight matrix column
need to be added to generate the output feature map.

« Partition weight matrix in width (wwm) equally splits the
weight matrix into left and right parts. The input vector needs
a replication, since both partitioned weight matrices require the
whole input vectors.

o Partition input windows (iw): replicates the whole weight
matrix and equally divide input windows to the replicated weight
matrices. Each replicated weight matrix is only multiplied by
half of the input windows.

« Partition input bits (ib): replicates the whole weight matrix and
equally divide the input bits of all windows into the replicated
matrices. Each replicated weight matrix is multiplied by half of
the bits over all input windows. The output of the partitioned
MVMs needs an aggregation to generate the output feature map.

One partitioning decision should consider the above 4 degrees. Each
degree represents how many parts the MVMs of the layer is split into
in the respective dimension.

2) Packing Step: One crossbar can store the weights from multiple
layers to exploit unused cells. As shown in Fig. 3, one crossbar
can execute multiple MVMs with different weights at different
times. After the partitioning decision is made, there are lots of
partitioned MVMs. To exploit each crossbar, this packing step has to
group suitable partitioned MVMs like tiles together on each virtual
crossbars to improve the resource utilization.

However, the positions of the assigned crossbars also affect the
communication overhead induced by the distance between dependent
MVMs. To simplify the solution space, we leverage on virtual
crossbars omitting taking crossbar positions into consideration, and
impose the following two constraints: 1) MVMs of the same layer
must be in different virtual crossbars, so that the decided partitions
can be deployed to multiple crossbars without redundant replication

CNN Model | | PIM Hardware Configuration

SPATEM

]
Spatial Module

Partitioning
Inference latency model

Packing

Temporal Module

Ordering |

Assigning

|
i

Scheduling Strategy

Fig. 4. Overview of the proposed framework — SPATEM

and aggregation, and 2) the number and the cell requirements of
virtual crossbars must not exceed the given hardware configuration.

3) Assigning Step: After the packing decision is conducted, parti-
tioned MVMs have been packed on virtual crossbars. The assigning
step subsequently map these virtual crossbars onto physical crossbars
provided in the given ReRAM-based CIM architecture. Considering
the communication overhead between actual crossbars, the decision
should account for the communication amount and distance to ideally
optimize the inference latency. Since the communication amount
between partitioned MVMs are determined after the partitioning step,
the assignment can arrange these partial MVMs in descending order.

B. Temporal Deployment

Since hardware components on the ReRAM-based CIM architec-
ture follow the generated script to execute all MVM computations in
a predefined order, an ordering step is needed to arrange the MVM
execution sequence under their data dependencies. An important
observation is that, no matter how the spatial deployment is, the
dependencies between adjacent layers are not changed. Hence, the
ordering step can be conducted independently without involving the
decisions of the spatial deployment.

Since the MVM execution sequence decides the order of input
consumption and output production, the ordering step should ensure
that the precedence constraint imposed by the data dependencies
between MVMs must be preserved. Otherwise, a deadlock might
potentially take place to hinder the parallel computation. To prevent
from such deadlocks, the MVM execution sequence must avoid cir-
cular waiting by making all dependencies follow the MVM sequence,
e.g., concatenating layer-wise MVM sequences.

IV. SPATEM: SPATIAL-TEMPORAL OPTIMIZATION FRAMEWORK

Fig. 4 illustrates an overview of the spatial-temporal optimization
framework, namely SPATEM. It consists of two independent mod-
ules for spatial and temporal deployments. With the given inputs,
i.e., a pretrained CNN model and CIM hardware configuration, spatial
and temporal modules address for the aforementioned steps involving
the presented insights. Afterwards, the output of the framework, the
scheduling strategy, is generated to drive the corresponding hardware
components that steer inputs and outputs. In the following, we present
an estimation model for inference latency used in the partitioning
step, and the detailed design of each step respectively.

A. Inference Latency Estimation Model

To quantify the expected inference latency for a layer with possible
partitioning decisions, we propose an estimation model for end-to-
end inference latency. Since the execution of a CNN inference on

ReRAM-based CIM accelerator is pipelined, except for the first layer,
the critical path contains computation latency of one MVM and
communication latency about the output of the MVM for each layer.
As for the first layer, the critical path includes the computation latency
of all MVMs in the longest part and the communication latency about
fetching input for the first MVM in the part. Given a possible partition
for layer [derived from the partitioning step, which has partition
degrees {hwm,wwm,iw,ib}, we define the maximal number of
partitioned MVMs this partition can have as max;, that is:
Wi
mar; = {iw 1

As the partitioning step partitions each MVM in the same layer
evenly, which results in the same latency for all partitioned MVMs,
we define lat; as the latency of one partitioned MVM by the
following:

ou;
hwm X wwm X b

wwm * ib hwm * b

lat; = IR; X + OW; x

hwm wwm

Since at this step, the positions of the final assignment are still
unknown, the communication overhead is estimated by the amount
of transferred data multiplied with the average communication latency
between 2 crossbars in the ReRAM-based CIM architecture, where
the average communication latency (avgLat) is derived from the la-
tency value between 2 random crossbars from the CIM configuration.

The inference latency estimation (IL) is calculated by the com-
putation time about layer [(7)), the overhead of the required
communication about layer [I’s output (TY) and the overhead of
fetching input for the first layer (Tfc¢cn) as follows:

L
IL = Z(TZ + Té) + Tfetch

=1

where
. max; X lat; =1
) laty , otherwise
h ib
T(l, = OW,; x omx avgLat
ib
Treten = IRy X WUMED avgLat

hwm

B. Spatial Module

In the following, we present the design principle of three three
steps: partitioning, packing and assigning, respectively.

1) Partitioning Step: To minimize the inference latency for each
layer, we need to know what is the best partition strategy for the layer
under a given number of crossbars. However, a crossbar can be used
by multiple layers at different time points. To check if the number of
required crossbars exceeds the given hardware constraint, we have
to wait until the subsequent step decides which partitions should
be packed on which crossbars. Although it is possible to determine
the best strategy for each layer by checking all possible packing
strategies, and choosing the combination that all partitions of layers
together yield the minimal inference latency while satisfying the
given number of crossbars, this straightforward method is definitely
not tractable. Instead, we develop a dynamic programming algorithm
to determine the best partition strategy of each layer. Instead of taking
the given number of available crossbars into consideration, we relax
the number of available crossbars to L x C', such that each layer can
use as many crossbars as the number of available crossbars C' given
in the CIM architecture. Hence, all possibilities of the best partition
strategies can be preserved and recorded as a look-up table for the
subsequent packing step to incorporate the demand of all layers under
the real number of available crossbars.

Algorithm 1: Partitioning Algorithm

Input: Number of layers L, number of available crossbars C'
Output: Best partitioning strategies table ILR
Initialize ILR[z][y] to 0, Vo € [0,L x 4), y € [0, L x C);
for [< O0to L —1 do
for d + {hwm = 0,wwm = 1,iw = 2,ib = 3} do
for r < 0to L x C do
tmp_ILR = ILR[l x 4 + d][r] ;
while True do
increase layer [’s dimension d with new requirement
tmp_r and latency reduction tmp_ILR.
if tmp_r > L x C then
‘ break;
else
if tmp_ILR > ILR[l X 4+ d + 1][tmp_r] then
| ILR[l x 4+ d + 1][tmp_r] = tmp_ILR
end
end

end

end

end
end

By treating the available crossbars as the capacity of the knapsack,
the partition dimensions as bounded items and the latency reduction
as the item value, Alg. 1 shows the pseudo code as to solve a bounded
knapsack problem. The algorithm uses a 2-D array to store the best
strategies in inference latency reduction (ILR):

ILR = the reference latency — the estimated latency,

where the reference is calculated by the strategy with the least
dimension degrees, which is to partition every layer’s weight matrix
to fit in crossbars without weight replication.

Each entry of the data structure with indices [x 4 + d and r
represents the partitioning strategy with the best ILR, which can only
utilize first I x 4 + d partitions to split MVMs under the available
number r of crossbars. Please note that here r is up to L x C due
to the assumption that each layer can adopt up to C crossbars.

To fill the entry with indices [X 4 + d + 1 and r, the algorithm
generates partitioning strategies by increasing the dimension d of
layer [’s partition in all partitioning strategies with index [x 4 + d,
and records the one with the most inference latency reduction among
strategies which requires r crossbars.

2) Packing Step: By taking the best partitioning strategies found
in the above step, this step employs a two-level greedy algorithm
to pick the partitioning strategy. First, the algorithm adopts worst-fit
bin packing, starting from the entry with the most relaxed resource
requirement in table ILR, where » = L x C, to greedily pack
the partitions to fit in resource limitation based on the partitioning
strategies. The partitioned MVMs provided by the table entry are
sequentially packed to the most emptiest virtual crossbars from the
first layer to the last layer, while reducing structural hazards by
assigning MVMs of close layers to different virtual crossbars.

Although one crossbar can be utilized by multiple MVMs, the
required number of crossbars can only be decided via the above
packing procedure. If the initial strategy is not feasible, this greedy
approach iteratively follows the next best strategies in the look-up
table, requiring less number of crossbars to find a feasible strategy,
which fits the given available crossbars C.

3) Assigning Step: This step assigns virtual crossbars to physical
crossbars to shorten the communication distance between correspond-
ing producer and consumer by two greedy algorithms. The first
greedy algorithm hierarchically merges virtual crossbars in a bottom-
up manner. Similar to the concept of using virtual crossbars in the

L1 Feature map L2 Feature map L3 Feature map

Filter

< EEEEEE-- 2 Filter
(<] “““—~_
= N
= e |
z
[T = = i
1st 2nd 3rd 4th 5th 6th 7th 8th
[+
8 |, [ESuedd HEEEE faat hd
: b S)
=
g =
(/7] |:| /
=
S]
s H

Fig. 5. Illustration of the ordering step.

partitioning step, we also adopt virtual CU and virtual PE to derive the
actual mapping of all crossbars, CU, and PE on the CIM architecture.

Initially, virtual crossbars with the least amount of shared data is
picked as many as the number of physical CUs provided in the CIM
configuration to form virtual CUs. Afterwards, each virtual crossbar
is iteratively assigned to the virtual CU which currently has the most
amount of dependent data to reduce the communication across CUs,
by which the intra-CU data can be reused as much as possible. A
similar method is also applied to merge virtual CUs to Virtual PEs
to reduce the data communication across PEs. The second greedy
algorithm assigns virtual PEs to physical PEs. It picks virtual PEs
with the most amount of shared data and assigns the virtual PE onto
the physical PE in the descending order.

This step reduces the communication overhead required by the data
dependencies between MVM as much as possible and avoid hindering
the MVM execution sequence decided by the independent ordering
step in the next subsection. Eventually, a feasible mapping between
CNN computation and hardware resource given in the ReRAM-based
CIM architecture can be derived for the final scheduling strategy.

C. Temporal Module

We design an ordering step to derive a global MVM execution
sequence in the perspective of input windows to fulfill data depen-
dency between adjacent layers as soon as possible. The global MVM
execution sequence is listed in a column-major order of the feature
map from the last layer of MVMs and iteratively arrange MVM
sequence of the former layer to fulfill the dependency of the later
layer as soon as possible.

Fig. 5 demonstrates the ordering step on 3 layers, i.e., L1, L2 and
L3. To arrange L3 in column-major order, we arrange L2 to generate
the feature map in the order of the frames in red, purple and green
for L3. Therefore, we append the MVM with the input window in the
L2 red frame to the L2 sequence, and iteratively append the MVMs
with input windows in the L1 red frame to the L1 sequence. After
arranging MVMs through the first layer of the red frames, we arrange
MVMs of the purple frames and the green frames progressively.

D. Spatial-Temporal Scheduling Strategy

Once the computation mapping from the spatial module and the
MVM execution sequence are derived from the temporal module, we
can generate a script to load weights into corresponding memristor
cells, and deploy the partitioned MVMs accordingly. On top of the
configured CIM architecture, the computation of MVMs should start
from the first layer of the given CNN. The communication may
take place within the steering of feature map between producer and

consumer crossbars. A crossbar can only execute when all MVM
executions prior to its execution on the global sequence are ready
and all dependent inputs are placed in the eDRAM.

V. EVALUATION

In this section, we compare the inference latency of the scheduling
strategy obtained by SPATEM, with two previous work which are the
baseline method [1] and the state-of-the-art method [6]. We evaluate
all three methods to inference five pre-trained CNNS, including Lenet
[7], DeeplD [8], Deepface [9], Caffenet [10] and Overfeat [11] on the
OU-based ReRAM CIM accelerator configured in [1]. We analyze the
inference latency improvement with computation parallelism degree,
resource utilization and communication cost of the three methods to
show that the proposed algorithms can optimize inference latency
with consideration of those factors respectively.

A. Experimental Setup

The evaluation is carried out on an in-house event-driven OU-
based ReRAM CIM simulator that uses the configuration of [1]: The
number of PEs, CUs per PE and crossbars per CU are 12x14, 12 and
8 respectively (see Fig. 1). The size of a crossbar array is 128x128,
where only 9 wordlines and 8 bitlines can operate per cycle, resulting
in 3-bit ADC resolution due to lower range of values [2], [4]. The
resolution of DAC and crossbar cells are 1-bit and 2-bit respectively.
The clock rate of the accelerator is 1.2GHz. The bus-width is 384-bit
and the on-chip embedded DRAM has 64GB capacity.

In the literature, the scheduling strategies proposed by the baseline
method, noted as ISAAC [1], and the state-of-the-art, noted as HitM
[6] both consider that whole crossbar can operate per cycle. To fairly
evaluate our work, we implement their original methodologies but
only adapt their throughput estimation models with the considered
OU concept, i.e., instead of 1-cycle latency for arbitrary MVMs, the
number of MVM execution cycles is derived by the number of OUs
needed to perform the MVM.

B. Evaluation Result

We first show the inference latency of the three scheduling strate-
gies. Fig. 6 shows that SPATEM achieves 29.24% improvement in
average. In general, the larger the given CNN structure, the lower
the improvement. This is because with the same number of available
crossbars given by the CIM architecture configuration, smaller CNN's
may obtain much more spatial freedom to deploy their MVMs on
available crossbars. Since the improvements vary across different
CNNs, we further analyze each affecting factor of inference latency,
i.e., parallelism degree, communication cost and resource utilization.

1) Parallelism Degree: Fig. 7 shows that the average number
of active crossbars when executing smaller CNNs, i.e., Lenet and
DeeplD, is significantly small compared to other networks. Even if
small networks can be fully parallelized, it may not activate a large
amount of crossbars. We also note that allowing storing weights
of different layers in a single crossbar through the packing step
significantly increases the computation parallelism since there are
more effective crossbars to be allocated for computations of layers.

2) Communication Cost: As shown in Fig. 8, SPATEM indeed
reduces the data transfer between PEs, resulting in a significant
reduction of communication cost. We observe that the amount of
data when executing Deepface has a different trend from other large
CNNs. One explanation is that Deepface possesses a great number of
neurons in fully connected layers, producing lots of intermediate data
with partitioning weights. Note that the intra-PE data transfer does not
incur extra latency, because all data generated by the computations
within a PE will be stored in the embedded DRAM.

1

0.7
0.6
05
0.4
03
0.2
0.1

0

o
©

y

Normalized
Inference Latenc

Lenet DeepID Deepface Caffenet Overfeat
B ISAAC mHitM m SPATEM
Fig. 6. Normalized inference latency
0.025
o 0o
=
©
L L5
5
©
?’, o 001
2
O o005 I
o —mm _H
Lenet DeeplD Deepface Caffenet Overfeat

HISAAC mHitM m SPATEM

Fig. 7. Average percentage of active crossbars during execution

3) Resource Utilization: When applying SPATEM, those origi-
nally unused crossbars by the state-of-the-art methods can be ex-
ploited now, which results in better inference latency with 3.19x more
utilized resource in average as shown in Fig. 9. When the size of NNs
is smaller like Lenet and DeepID, the improvement is not significant.

VI. CONCLUSION

Several inherent issues of ReRAM may degrade CNN inference
accuracy on the CIM architecture. To keep the accuracy acceptable,
only limited wordlines and bitlines are allowed to operate concur-
rently in each crossbar, forming operating unit (OU). Our work
shows that spatial and temporal issues must be overcome on ReRAM-
based accelerators. Our framework decouples the design space into
tractable steps, models the expected inference latency for partitioned
MVMs, and addresses each step thoughtfully. Comparing to the state-
of-the-arts, we show that the derived scheduling strategy over five
representative CNNs achieves 29.24% inference latency reduction on
average, by utilizing 3.19x more originally unused crossbar cells with
31.28% less communication overhead.

ACKNOWLEDGEMENT

We thank the DFG (405422836 and 124020371), the MXIC
Technology (109-S-C24), the MOST (107-2923-E-001-001-MY3 and
109-2221-E-002-147-MY3), the NTU (110L880603) and the Delta
Electronics (110HT907002) for supporting this work.

REFERENCES

[1] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in International Symposium on Computer Architecture, 2016, pp. 14-26.

1

@ 09
Bos
Tz
Y
Oos
Eos
=
Eos
<o,
0.1
0

DeepID Deepface Caffenet
N ISAAC M HitM ® SPATEM

Normalized

Lenet Overfeat

Fig. 8. Normalized amount of data transfer between PEs

1

0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1 I
0 — —

DeepID Deepface Caffenet
B ISAAC m HitM m SPATEM

Crossbar
Utilization Rate

Lenet Overfeat

Fig. 9. Rate of Crossbar utilization

[2] W.-H. Chen, K.-X. Li, W.-Y. Lin, K.-H. Hsu, P.-Y. Li, C.-H. Yang, C.-
X. Xue, E.-Y. Yang, Y.-K. Chen, Y.-S. Chang, T.-H. Hsu, Y.-C. King,
C.-J. Lin, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, and M.-F. Chang, “A
65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-
16ns multiply-and-accumulate for binary DNN Al edge processors,” in
International Solid - State Circuits Conference, 2018, pp. 494-496.

[3] M.-Y. Lin, H.-Y. Cheng, W.-T. Lin, T.-H. Yang, I.-C. Tseng, C.-L. Yang,
H.-W. Hu, H.-S. Chang, H.-P. Li, and M.-F. Chang, “DL-RSIM: A
Simulation Framework to Enable Reliable ReRAM-based Accelerators
for Deep Learning,” in International Conference on Computer-Aided
Design (ICCAD), 2018, pp. 1-8.

[4] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S.
Chang, and H.-P. Li, “Sparse reram engine: Joint exploration of activa-
tion and weight sparsity in compressed neural networks,” in International
Symposium on Computer Architecture (ISCA), 2019, pp. 236-249.

[5] G. Yuan, P. Behnam, Z. Li, A. Shafiee, S. Lin, X. Ma, H. Liu, X. Qian,
M. N. Bojnordi, Y. Wang, and C. Ding, “FORMS: Fine-grained polarized
reram-based in-situ computation for mixed-signal dnn accelerator,” arXiv
preprint arXiv:2106.09144, 2021.

[6] B. Li, Y. Wang, and Y. Chen, “Hitm: High-throughput reram-based
pim for multi-modal neural networks,” in Proceedings of the 39th
International Conference on Computer-Aided Design, 2020.

[7]1 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

[8] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation
from predicting 10,000 classes,” in Conference on Computer Vision and
Pattern Recognition, 2014, pp. 1891-1898.

[9] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in Conference on
Computer Vision and Pattern Recognition, 2014, pp. 1701-1708.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[11] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2014.

