
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 1

HW/SW Codesign for Approximation-Aware
Binary Neural Networks

Abhilasha Dave, Fabio Frustaci Senior Member, IEEE, Fanny Spagnolo Member, IEEE, Mikail Yayla,
Jian-Jia Chen Member, IEEE, and Hussam Amrouch Member, IEEE

Abstract—Binary Neural Networks (BNNs) are rapidly gain-
ing remarkable attention due to their superiority in shrinking
the model size, which outstandingly mitigates the fundamental
“memory wall” bottleneck that is attributed to the existing von-
Neumann architectures. This work investigates how principles
from approximate computing can be effectively employed to
further optimize BNNs. It demonstrates that HW/SW codesign,
in which BNNs are either proactively trained in the presence
of approximation-induced errors (i.e. design-time optimization)
and/or augmented with an appropriate error-mitigation scheme
(i.e., run-time optimization), is a key to realize energy-efficient
yet robust BNNs.

We unveil, for the first time, that although the underlying
HW of BNNs can be implemented using simple XNOR gates,
the complexity of the required “Popcount” circuit super-linearly
grows with the filter kernel size. This largely impacts the area
footprint, inference time, energy, and hence it severely constricts
the prospective efficiency gains from BNNs. To overcome this
challenge, we replace the accurate full adders constructing the
Popcount with Majority gates that approximately perform the
required additions. Then, our carefully-crafted error-mitigation
scheme along with activations tuning considerably minimizes
the induced errors. Afterward, abstracted error probabilities
are derived and employed during BNN training to obtain
approximation-aware BNNs, that are inherently robust against
the underlying HW approximation. Differently from the typical
approaches, the proposed HW/SW codesign methodology has
the merit of allowing a training of the approximate BNN
without the need to modify the existing software frameworks (i.e.,
PyTorch). This is of great importance since existing tools rely on
efficient built-in functions that can be difficult and/or inefficient
to be modified. An FPGA-based SoC realizing both accurate
and approximation-aware BNNs is developed for validating our
proposed methodology. With merely a 4.7% loss in the inference
accuracy, our HW/SW codesign leads to 64% and 80.2% savings
in the area and energy, respectively, at the parity of the latency.
Our results are obtained using commercial EDA tool flows
employing a commercial 28nm FDSOI technology node.

Index Terms—Approximate computing, Neural network, low-
power design, FPGA.

I. INTRODUCTION

IN the past few years, Deep Neural Networks (DNNs) have
emerged as a powerful methodology to enable artificial

intelligence in several application fields such as computer

Corresponding authors: Fabio Frustaci and Hussam Amrouch
F. Frustaci and F. Spagnolo are with the DIMES Department, University

of Calabria, Italy, Email: {f.frustaci, f.spagnolo}@dimes.unical.it
M. Yayla and J.-J. Chen are with the Design Automation for Embedded

Systems Group, TU Dortmund University, Germany, Email: {mikail.yayla,
jian-jia.chen,}@udo.edu

A. Dave and H. Amrouch are with the Chair for Semiconductor Test
and Reliability (STAR), University of Stuttgart, Germany, Email: {daveaa,
amrouch}@iti.uni-stuttgart.de.

vision, speech recognition, scientific computing, and many
others [1]. Nevertheless, DNNs are still challenging for the
existing von-Neumann architectures because the model size
of DNNs is often very large. DNNs, in fact, demand not
only a massive amount of data to be in parallel computed
but, also a huge communication with memories. The former
imposes a serious challenge when it comes to on-chip tem-
peratures due to excessive power densities [2] caused by the
multiply-accumulate (MAC) operations and the latter induces
a profound source of efficiency loss [3], that needs to be
indispensably avoided due to the inevitable “memory wall”.
The aforementioned challenges are further aggravated when
it comes to embedded systems and edge computing not only
because hardware resources are very limited in such systems,
but also because cooling capability and energy budgets are
tightly restricted.

After they were introduced in late 2016 [4], BNNs are
continuously attracting remarkable attention due to their supe-
riority in constructing ultra-lightweight deep learning models
in which weights and activations are represented by merely a
single bit. This significantly shrinks the model size leading to
much less memory communication. In addition, the dominant
power-hungry MAC operations in traditional DNNs can be
replaced by simple XNORs followed by a population count
(Popcount) circuit. Therefore, BNNs offer significant reduc-
tions in energy consumption and memory requirements. This
considerably improves the efficiency and makes BNNs suitable
for many edge-AI applications [5].

A. Our Novel Contributions and Findings within this Paper

This work originates from a preliminary analysis of the energy
breakdown due to the components of a BNN convolutional
layer. Our analysis demonstrates how the major bottleneck in
BNN HW stems, in fact, from the Popcount circuit because
its complexity super-linearly grows with the filter kernel size,
contrary to the other components like XNOR gates and com-
parators. This severely constricts the efficiency gains obtained
from binarizing the NN model. Towards further optimizing
BNNs in which the efficiency is boosted while inference
accuracy is marginally impacted:
1 We propose a novel approximation-aware hardware-

friendly activation function that drastically reduces the prob-
ability of errors induced by approximation on the outputs of
the BNN layers (Perror). Thanks to the effectiveness of the
proposed error-mitigating scheme, we are able to aggressively
approximate the Popcount circuit through employing Majority
gates in the deeper layers of the Popcount adder tree to



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 2

enhance the energy efficiency. In such a case, BNN re-training
can be avoided for a certain accuracy envelope. Compared
with the simple case when the approximate BNN does not
exploit any countermeasure against errors, our approximation
reduces the Perror of the convolutional operation from 41.8%
to merely 2.4% (with no energy penalty) when, for instance,
a 3×3×64 convolutional hardware accelerator is examined.
2 We develop an evaluation setup using an FPGA-based

SoC in which PyTorch [6] runs on top of the ARM CPU,
and the latter is augmented by customized (both accurate and
approximate) HW accelerators to realize BNNs. Our FPGA
platform serves a dual purpose. (i) On the one hand, it enables
us to validate the correct execution of BNNs on top of an
actual accurate and approximate HW, instead of relying only
on a pure SW execution (i.e., just PyTorch) that mimics HW
approximation though injecting errors at a certain probability
(Perror) during the BNN inference. (ii) On the other hand,
our implemented FPGA platform is employed to efficiently
explore the existing design space and find optimal parameters
according to our approximation strategy, as well as to construct
the (Perror) models.
3 We demonstrate how our developed Perror models open

doors for BNN HW/SW codesign. On the one hand, in-
vestigating, at the SW level, the sensitivity of every BNN
layer against errors, enables designers to selectively employ
different approximations at the HW level. On the other hand,
employing the information about Perror allows an easy BNN
re-training process that, differently from the state-of-the-art
approach [7], does not need modifications of the typically used
software tools (i.e. PyTorch). This is an important feature of
the proposed approach since such tools rely on built-in soft-
ware routines that can be difficult and/or inefficient to modify
in order to mimic the intended hardware approximation. The
presented approach provides designers with approximation-
aware BNNs that are inherently more robust against the
underlying HW approximation.
4 We perform a deep analysis of the energy saving achiev-

able by the proposed approximate approach under different
conditions, employing a commercial 28nm FDSOI technology.
We demonstrate that, when applied to implement a VGG3-
based model, our approximation-aware BNN provides 80.2%
less energy, while the accuracy drops by merely 4.7% with
respect to the accurate implementation.

II. RELATED WORK

Due to the ultra-low precision representations of parameters
in BNNs (i.e., 1-bit representation of weights and activations),
BNNs exhibit an intrinsic resiliency against bit errors, com-
pared to quantized (e.g., 8-bits) NN models. Several works
have recently investigated the bit-error tolerance of BNNs.
In [8], the impact of the voltage scaling on the bit-error rate
caused by write and read failures in the activations/weights
memory is analyzed. It showed that BNN could tolerate the
errors caused by voltage scaling without a sensible degradation
in the classification accuracy. A similar analysis is carried
out in [9] for BNNs where the activations/weights memories
are implemented using emerging non-volatile ferroelectric
memory. The work presented in [9] proposed a bit-flip based

retraining framework useful to recover the BNN inference
accuracy when the bit-error rate is too high.

Drawback of NN re-training: Although NN retraining is
a powerful way to compensate for the reduction in accuracy
due to errors, it may not always be preferable or feasible.
The major drawback is that one needs to modify the built-in
routines on which the software design tools rely for back-
propagation step during the training process in order to take
into account the effects of the approximation. This may be
particularly difficult since it implies a deep technical knowl-
edge about how such tools work. Moreover, the computational
optimization of the built-in routines may be lost once they are
customized for the intended approximation. Finally, retraining
might not be possible because, in some cases, the training set
might not even be available (e.g., proprietary models) [10].
The bit-error tolerance property of BNNs makes them suitable
to be implemented while applying approximate computing
concepts [11], which aim at trading-off accuracy with energy.

In approximate BNNs, errors are due to the employed
approximation in the underlying HW. Several works have
focused on replacing the multiplication operation in MACs
with simple XNORs. Nevertheless, little research has been so
far conducted w.r.t the Popcount operation, which turns to be
the most energy-consuming component in BNN hardware, as
we demonstrate in Section III. Since the Popcount circuit is
basically an adder tree, a straightforward approximation is to
substitute the Full-Adders (FAs) of the first stage of the adder
tree with majority gates, as recently proposed in [7]. How-
ever, [7] does not explore the impact of further approximation
in the deep layers of the adder tree, which limits its energy
saving. Further, [7] does not employ any error mitigation,
which makes BNN inference suffers from larger accuracy
drops. Finally, the only way proposed in [7] to recover
an acceptable accuracy is re-training based on customized
modification of the training frameworks, such as PyTorch. As
above mentioned, this maybe unfeasible because a) sometimes
one has access to only the BNN pre-trained model, without
the knowledge of the training set; b) customizing the typically
available training frameworks, such as PyTorch, implies diffi-
cult modification of the code that can lead to a drastic increase
of the execution time, since the conventional operations rely
on efficient built-in functions. Moreover, defining a software
model of the backward propagation based on the adopted
approximation is not trivial.

Different from the state of the art [7], our approximation-
aware BNN does not need retraining for a given accuracy
envelope because it exploits a simple error recovery strat-
egy. Further, when higher accuracy is needed, the proposed
approximation-aware approach relies on a straightforward re-
training process that is based on the developed Perror model.
Due to its error resiliency, our approach achieves a very high
accuracy (close to the nominal baseline accuracy) without
retraining. At the same conditions, the strategy described in [7]
leads to a BNN accuracy close to zero (∼ 10%), as Section VII
later illustrates, when it is performed without model retraining.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 3

A
0

A
1

A
N-1

W
0

W
1

W
N-1

ADDER 
TREE

Popcount
Comparator

Out

1b

( log
2
N + 1) 1b

Threshold
( log

2
N + 1)

1b

1b

1b

1b

1b

1b

n

n

m

n

n m

n x n windows from 
m input channels n x n x m 

kernel filter

convolution 
outputa)

b)

1b

1b

Fig. 1. (a) Convolutional operation with filter kernel size of N = n×n×m.
(b) The correspondent BNN hardware architecture demonstrating the XNORs,
adder tree, and comparator that does the thresholding required for activation.

III. MOTIVATIONAL CASE-STUDY

Activations (A) and weights (W) in CNNs are represented in
floating-point (e.g., 32 bits) or fixed-point (e.g., 8 bits) nota-
tion. On the contrary, they are quantized to the extreme level of
a single bit in BNNs. Besides the large reduction in the model
size, binarization allows replacing the expensive multiplication
in MACs with simple XNORs, as Fig. 1 illustrates. In such a
case, given a set of N = n × n ×m activations and weights
(with n× n and m being the size of each kernel window and
the number of input channels respectively), the convolution
operation can be described as:

Popcount =

N−1∑
j=0

XNOR(Wj , Aj) (1)

The addition, in this case, is a Popcount operation because
it aims at counting the number of 1’s among the outputs of
all XNORs. The Popcount is then followed by the activation
function defined as:

2× Popcount−N > T (2)

where T is a threshold value obtained during the training
phase of BNN. The 1-bit activation output is ‘1’ whether the
condition in Eq. (2) is satisfied (‘0’ if it is not).

The XNORs substitute the complex multipliers in MACs
leading to high reductions in area, power, and delay. The
outputs of the XNORs are composed of a single bit. Hence,
an adder tree performing the Popcount operation can be
employed. This is much simpler than its counterpart in a
traditional CNN. Further, it is relatively easy to design such
a Popcount with a high number of inputs. Importantly, the
convolutional layer of a BNN usually operates on a relative
high number of input channels (m) in parallel. In addition, the
number N of the adder tree inputs is also high. Therefore, it
can be straightforwardly predicted that the critical bottleneck
in the “MAC” in a BNN HW with respect to area, latency, and
energy moves from the multiplication (i.e., XNOR) towards the
addition (i.e., Popcount), unlike the original situation in the

Fig. 2. Energy breakdown of the accurate and approximate convolutional
layer (n=3) for different values of m.

“MAC” in a traditional CNN HW in which the multiplication
does form the major bottleneck.

Fig. 2 depicts the energy breakdown of the binary convo-
lutional layer of Fig. 1 for n=3 and different values of m.
The characterized hardware designs have been synthesized
with Cadence Genus and mapped to a commercial 28nm
FDSOI technology at their maximum operating frequency.
As expected, the energy consumption of the XNOR layer has
a linear relation with m because the number of XNORs is
N = n × n × m. Importantly, the major contribution in the
energy of convolutional layer comes from the Popcount: 48%,
66%, and 69% for m=1, m=3 and m=9, respectively. From
Fig. 2, the Popcount’s energy grows as mα, with α that can
be empirically set to 1.25 (since α >1, we can say that the
Popcount energy is superlineraly dependent on m). The last
component of the convolution operation, i.e., the comparator,
is less affected by m because the number of bits of its inputs is
proportional to blog2Nc. Therefore, its energy exhibits a sub-
linear relation with m. As an example, when m goes from 1
to 3 (9), the number of bits of the comparator inputs increases
by one (three) unit(s) and the energy accordingly increases by
about 1.2× (3.6×).

In summary: The Popcount is the most energy consuming
operation in the convolutional layer of a BNN. To further
optimize the efficiency of BNN, we aim in the next Section
at applying principles from approximate computing to the
Popcount circuit. The challenge is, nevertheless, how such
approximations can be applied to minimize area, latency, and
energy without degrading the inference accuracy.

IV. OUR POPCOUNT APPROXIMATION

The hardware architecture of the Popcount operation is essen-
tially an adder tree summing N 1-bit inputs. This is different
from an N -bit adder, of which several approximate designs
have been proposed in the past [12]. The existing approximate
techniques for N -bit adders focus on decreasing the mean error
value of the addition result (i.e., the mean of the difference
between the correct and approximate result) and the error
variance. On the contrary, when approximating the Popcount
in a BNN, the focus should not be on how to keep the
approximate result of the sum as close as possible to the
exact value but rather on how to ensure that the condition
described by the activation function Eq. (2) is still satisfied



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 4

as often as possible, for various threshold T values. Hence,
more approximations (i.e., more levels in the adder tree) can
be applied.

A popular way to approximate the operation of counting
the number of 1’s in a N -bit bus is through adopting the
Majority gate (MAJ) [7]. The latter has an odd number k of
1-bit inputs and one 1-bit output whose value equals the value
of the majority of the inputs. Fig. 3(a) depicts the use of MAJ
gates for the case k=3 [7]. It is noteworthy that the number
of inputs to the accurate adder is reduced by a factor of 2
(since the MAJ gate has one output bit whereas the FA has two
output bits), thus, reducing its hardware complexity, delay, and
energy as a result. In practice, the MAJ gates substitute the
accurate Full-Adders (FAs) by computing only the carry-out
signal. Hence, the final result of the Popcount should be left-
shifted by one-bit position. As a further benefit, the MAJ gate is
more performing than a FA: in the adopted 28nm technology,
its area, delay and energy consumption are 50%, 24% and
21% lower, respectively.

A. Mathematical model

In the following, we give a mathematical insight about the
effect of using MAJ gates in place of FAs in terms of the error
committed in evaluating Popcount and the error probability
in verifying the inequality (2). For a given number on input
activation bits N , a particular value of Popcount=x ∈ [0, N ]
can be generated by a set of input bits configurations whose
number Qx can be expressed as:

Qx =
N !

x!(N − x)!
(3)

With the term input bits configuration we refer to a particu-
lar input bits sequence (in0, in1, in2, . . . , inN−1), with inj=0
or 1 ∀j ∈ [0, N − 1]. Moreover, without lost of generality, we
suppose to group the bits of a particular input configuration
into N

3 sets of three consecutive bits (ah, ah+1, ah+2), with
h=0, 3, 6, . . . ,(N -3), and that the generic h-th set is inputted to
the FAh (3-input MAJh gate) for the case of accurate (approxi-
mate) Popcount operation. In the following, the decimal result
of the generic FAh (MAJh gate) will be indicated as Sh (Ŝh).

A
0

A
1

A
N-1

W
0

W
1

W
N-1

( log
2
N/3 + 1)

a) b)

MAJ

MAJ

MAJ

S
Popcount

A
2

W
2

A
3

A
4

W
3

W
4

A
5

W
6

A
N-3

W
N-3

A
N-2

W
N-2

( log
2
N/9 + 1)

S
Popcount

3-XNOR block 3-XNOR block

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

Level 1

Level 2

Fig. 3. Approximating the Popcount circuit: a) conventional approach in
which merely one level is approximated through the majority gates, b)
proposed approach in which multiple levels are approximated through the
majority gates The figures shows the case of 2 levels (L = 2) as an example.

It is worth noting that Eq. (3) gives the number of x-element
combinations of N objects, without repetition, and that Qx =
QN−x. When MAJ gates are used in place of FAs, the error
committed by the approximate Popcount operation in calculat-
ing x (after the aforementioned one-bit left-shifting) depends
on the particular input bits configuration among all the possible
Qx ones. As an example, for N = 9 and x = 2, there are 36
possible inputs configurations, such as C1=(1,1,0,0,0,0,0,0,0)
and C2=(0,0,1,1,0,0,0,0,0). According to the adopted grouping
convention, in the case of the approximate design, C1 would
give the approximate result x̂=2 (i.e. with an error equal to
0) whereas C2 would furnish x̂ = 0 (i.e. with an error equal
to -2). In general, the error errh = Ŝh − Sh committed by
the generic MAJh gate is in the range [-1, 0], Indeed, for
Sh = 0, 1, 2, 3, errh = 0,−1, 0,−1, respectively. It follows
that the error Errx=x̂ − x in computing the approximate
Popcount value x̂ is ∈ [−N3 , 0] and that it depends on how the
N input bits are grouped. Towards the aim of finding Errx, it
is useful to point out that a generic input configuration Ci
(with i=0,. . . ,Qx-1) leading to a Popcount value x can be
uniquely associated to a sequence seq=(S0,S3,S6,. . . ,SN−3)
with Sh ∈ [0, 3] and

∑N−3
h=0 Sh = x, where, as stated above,

Sh is the result of the h-th FA. For a given x, the problem
of finding all the possible sequences associated to that value
of x is equivalent to find all the partitions of x into N

3 parts
in {0, 1, 2, 3}. There is no general mathematical expression
for calculating the number Seqx of such partitions, but some
closed-form expressions can be derived following a recursive
process, as described in [13]. As an example, for N = 9, the
following closed-form expression can be used:

Seqx =

{
1 + bx

2+6x
12 c, if x ≤ 3.

1 + bx
2+6x
12 c −

∑x−4
i=0 1 + b i2c, otherwise.

(4)

It is worth noting that once a partition for x has been found,
let’s say Sxi =(Sx0,i,S

x
3,i,S

x
6,i,. . . ,SxN−3,i) (with i = 0,. . . ,Seqx−

1), each other sequence with the same terms Sxh,i but placed
in a different order can be also associated to x, and all these
equivalent sequences lead to the same error errxi when MAJ
gates are employed instead of FAs. With nxi being the number
of such equivalent sequences, the mean error committed by
approximating the FAs with MAJ gates for each of the Sxi
sequences can be expressed as:

Errxi = nxi × Probxi × errxi (5)

where Probxi =
∏N−3
h=0 Prob(S

x
h,i) and Prob(Sxh,i) be-

ing the probability of each term Sxh,i. From the FA
truth table and assuming an uniform probability distribu-
tion for the input configurations, it can be easily found
that Prob(Sxh,i) = { 18 ,

3
8 ,

3
8 ,

1
8} for Sxh,i = {0, 1, 2, 3},

respectively. Finally, it should be noted that each sequence
SN−xi =(SN−x0,i ,SN−x3,i ,SN−x6,i ,. . . ,SN−xN−3,i) associated with the
Popcount value (N − x) can be obtained from each sequence
Sxi associated to the Popcount value x by making the following



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 5

substitutions (with h=0, 3, 6, . . . ,(N − 3)):
SN−xi,h = 3 if Sxi,h = 0.

SN−xi,h = 0 if Sxi,h = 3.

SN−xi,h = 1 if Sxi,h = 2.

SN−xi,h = 2 if Sxi,h = 1.

(6)

and that errxi + errN−xi = −1× N
3 , where -1 is equal to the

maximum error committed by a MAJ gate. From (5) and (6)
it follows that the mean error Êrr committed when the MAJ
gates are employed is:

Êrr =

dN2 e∑
j=0

Seqj−1∑
i=0

Errji = −
1

2
× N

3
(7)

Just as an example, let’s take the case N = 9 and x = 7. There
are two possible partitions S0 = (3, 3, 1) (with a probability
of 1

8 ×
1
8 ×

3
8 = 3

512 and an error equal to -3) and S1 =
(3, 2, 2) (with a probability of 1

8 ×
3
8 ×

3
8 = 9

512 and an error
equal to -1). The partition S0 (S1) can be ordered into n20 =
3 (n21 = 3) ways, so that the mean error committed in the
Popcount function by using MAJ gates is, according to (5):
3× 3

512 × (−3) + 3× 9
512 × (−1) = - 54

512 . As described at the
beginning of Section IV, approximating the Popcount function
may cause errors when evaluating the inequality (2). Taking
into account that Errx = x̂−x ≤ 0, the approximate Popcount
circuit will produce a failure in evaluating (2) when T − (2×
x̂−N) ≥ 0. As an example, with N=9 and T=4, the number
of failure occurrences would be 36, 9 and 1 for x=7, 8 and 9,
respectively.

We analyzed the effect of the MAJ-based approximation on
the output of the activation function by exhaustively evaluating
the condition Eq. (2) for the simple case N=9 and k=3 that
is the smallest block composed of 3 XORs followed by 1 MAJ
(3XORs-1MAJ block). All the possible 29 inputs have been
considered with the threshold T varying in [−9, 9]. As shown
in Fig. 4, the error probability in evaluating Eq. (2) is not
negligible, and it can be as high as 41%, whereas its mean
value is 15%.

B. The proposed error mitigation technique

To reduce the Perror, we propose to add a simple correction
factor M equal to the mean error of the left term of Eq. (2)
(i.e. M = −2× Êrr):

2× Popcount−N +M > T (8)

Note that Eq. (8) does not introduce any hardware modi-
fication of the Popcount circuit because the correction factor
M can be easily integrated through modifying the threshold
value itself. It is worth pointing out that the approximate
Popcount function causes an erroneous thresholding result
when (2 × x̂) − N ≤ T < (2 × x − N). In such a case,
the proposed error mitigation scheme is able to correct the
errors introduced by the approximation if the condition (9)
occurs:{

2× (x−N)− T > 0

2× (Errx) +M + (2× x−N)− T > 0
(9)

On the other hand, when (2 × x̂) − N ≤ (2 × x − N) ≤ T ,
the proposed error mitigation scheme increases the number of
error occurrences if:{

2× (x−N)− T ≤ 0

2× (Errx) +M + (2× x−N)− T > 0
(10)

It follows that the proposed activation function (8) is actu-
ally able to reduce the number of error occurrences if condi-
tion (9) occurs more often than condition (10). This depends
on the particular value of N and T . As an example, for N=9
and T=4, the number of errors using the activation function (2)
is 46, as described in the example at the end of Section IV.a.
When using the proposed activation function (8) (with M=3,
as for (7)), the condition (9) occurs 37 times (27, 9 and 1 for
x=7, 8 and 9, respectively), whereas condition (10) occurs
27 times (only for x=6). As a consequence, the proposed
activation function (8) is able to correct 10 errors over 46
(i.e. about 27%). Fig. 4 shows the error probability of the
activation function (8) for the case N=9 as the value of T
varies. The figure demonstrates that Eq. (8) reduces Perror
for almost every value of T : its maximum and mean values
are 25% and 8%, respectively. The error mitigation capability
of Eq. (8) is able to reduce the mean error probability of the
approximate function by almost 50%.

In order to further validate the proposed approach, Fig 5
shows the error probability of the activation functions (2)
and (8) for a larger value of N (N=24). As expected, the
proposed error mitigation scheme is able to reduce the number
of errors for almost each value of the threshold T ∈ [−24, 24]:
the mean error probability is reduced from 16% to only 4%.

The above analysis showed that the proposed error correc-
tion methodology drastically reduce the error probability due
to the MAJ-based approximation. That suggests the possibility
of using a more aggressive approximation strategy.

Fig. 3(b) describes our proposed approximation in which
we use MAJs to approximate the FAs belonging to the first L
levels of the adder tree, contrary to just L = 1, as done in the
state of the art [7]. The value of L can be leveraged to further

 

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Er
ro

r p
ro

ba
bi

lit
y

Threshold value (T)

Eq. (2)

Eq. (8)

Fig. 4. Convolutional layer probability of error comparison for the case of
n = 3 and m = 1. Approximating the first layer (i.e., L = 1) of the
adder-tree Popcount through using majority gates results in a considerable
error probability (see the red curve) that can be, however, mitigated (see the
black curve) after using our proposed correction factor. The correction factor
is employed at zero-cost through modifying the threshold value itself.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 6

 

0%

10%

20%

30%

40%

50%

60%

70%

-24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24

Er
ro

r P
ro

ba
bi

lit
y

Threshold value (T)

Eq. (2)
Eq. (8)

Fig. 5. Convolutional layer probability of error comparison for the case of
N = 24. The correction factor M is 8, as calculated from Eq. (7)

Fig. 6. Energy breakdown of the accurate and approximate convolutional
layer (n = 3, m = 3) at different approximation levels of L = 1, 2, 3. Total
energy saving: L = 1→60%; L = 2→72%; L = 3→73%.

tradeoff the energy saving with Perror. For instance, Fig. 3(b)
depicts the case for L = 2, where three 3XORs-1MAJ blocks
are grouped in a macro-block whose outputs results eventually
in one single bit. When creating such macro-blocks unless the
approximation is applied to all the levels of the adder tree,
a final accurate adder is needed, as shown in Fig. 3.b. Since
the MAJ approximates the FA by computing just the carry-
out bit, the inputs to the final accurate adder should be left-
shifted by L bit positions and the Popcount result has at least
blog2N/3Lc+ 1 non-zero bits.

It is noteworthy that the proposed approximation strategy
tends to create groups with 3L input signals (if L levels are
approximated) but the size N = n × n × m may not be
a multiple of 3L. In such a case the remaining signals can
be grouped into smaller groups of size 3P , with P < L.
Eventually, the output of a group with 3P inputs should be
inputted to the final accurate adder, after being left-shifted by
P bit positions.

Table I summarizes the results obtained for a convolutional
layer of a BNN for n = 3 along with different values of
m and L, synthesized with Cadence tool flows and mapped
to a commercial 28nm FDSOI 1V process technology. The
energy consumption has been analysed making use of the
Value Change Dump (VCD) file extracted for 1000 sets of
N = n×n×m binary input activations and weights, at an op-
erating frequency dictated by the corresponding accurate coun-
terparts (case L=0). The Perror evaluation has been obtained

considering a uniform distribution for the activations/weights
in {−1,+1}, and for the thresholds in [−N,+N ]. We have
chosen n = 3 since this is the typical kernel size in BNNs [14].
Probabilities have been computed using gate-level simulations
for 1M random inputs. Note that the proposed approach based
on Eq. (8) always shows a considerably lower Perror in
comparison with the usual activation function Eq. (2). From
Table I it is worth notable that the proposed simple error
mitigation technique can reduce Perror by up to 91% for the
same energy consumption, allowing the possibility to exploit a
very aggressive approximation configuration. As an example,
for the case n = 3, m = 64, the proposed error mitigation
methodology allows to approximate the popcount adder tree
up to L = 4, causing an error probability of just 2.4%. On
the contrary, for the same approximation configuration without
any error-aware countermeasure (i.e., without error-mitigation
scheme), the Perror is unacceptable high (about 41%). As a
consequence, the Popcount circuit can be more aggressively
approximated, leading to an energy saving of up to 40% and,
at the same time, a Perror that is up to 85% lower (comparing
the cases L = 1 and L = 4, with n = 3 and m = 64). It is
worth noting that the proposed error mitigation scheme can
be simply implemented by reducing the threshold value T by
the value of M , so that it does not introduce any delay, area
and energy penalty with respect to approximate design without
error correction

In order to provide a thorough analysis of the proposed
approximation strategy, Table II reports dynamic and static
power consumptions for the accurate and proposed circuits
at different approximation levels and running frequencies. At
a glance, it can be noted that static power impacts for a
small percentage of the total. More interesting, both the static
and dynamic contributions benefit from the proposed strategy,
being reduced by up to 62% and 81.7%, respectively, over the
accurate design configured for m = 9 at 1.5GHz. Table II also
gives an information on how the power consumption scales
when the proposed circuits are used within BNN implementa-
tions for IoT applications. Indeed, in such a case, the working
frequency required by the hardware is very low (i.e. in the
order of a few MHz [15]), which allows drastically reducing
the overall power cost. Results obtained from synthesis and
VCD files generated at the 1MHz frequency demonstrate an
appreciable reduction of the power consumption through the
proposed strategy also at these operating conditions.

Fig. 6 shows the energy breakdown of the convolutional
layer for the case n = 3, m = 3 and L = 1, 2, 3 (as
from Table I, the circuits have been synthesized for a clock
frequency of 2GHz). As expected, the Popcount operation
accounts for most of the total energy (66% for the accurate
implementation). The approximate versions with L = 1 and
L = 2 reduce the Popcount energy by 66% and 87%,
respectively, whereas, for L = 3, the energy saving does
not change significantly because there is only one more FA
replaced with a MAJ. The energy consumption of the XOR
layer is the same regardless of the approximation level because
the number of XORs does not change. Nevertheless, this energy
is 32% lower compared with the accurate implementation. This
is mainly due to the fact that, in the accurate implementation,



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 7

the output of each XOR is inputted to a FA, whose input
capacitance is higher in comparison with a MAJ. Finally, it
is worth noting that L does not significantly affect the energy
consumption of the comparator. Indeed, such a component is
(blog2Nc+1)-bit sized, regardless of the approximation level.
On the contrary, since the proposed approximation introduces
a determistic number of zero bits on the Popcount result, an
energy reduction of 71% is appreciated with respect to the
comparator used within the accurate design. In conclusion,
the energy analysis reported in Fig. 6 and Table I reveals
the following interesting property: as the number of the
approximate levels L within the Popcount circuit increases, the
total energy consumption decreases. Anyway, the rate at which
energy decreases is not constant but it is inversely proportional
with L and, eventually, it becomes roughly zero for a certain
value of L. As an example, this can be appreciated in Table I,
for the case m=3 and L increasing from 2 to 3, or for the case
m=9 and L increasing from 3 to 4. As a result, depending
on the number m of the input channels, there is a particular
value of approximate levels L beyond which there is no energy
advantages, but only an increase of the error probability. It is
also worth noting that the energy/error analysis of Table I has
a general validity regardless the particular stride value adopted
in the BNN. Indeed, the energy of the convolutional engine
depends only on n, m and L, whereas the error probability
depends on L.

The presented analysis also demonstrates that including a
simple correction factor M on top of the existing activa-
tion function (i.e., modifying the threshold value) leads to a
substantial reduction of the number of errors caused by the
adopted majority-based approximation strategy. Consequently,
based on its size and desired approximation level, a binary
convolutional layer can be designed connecting the appropriate
approximate XOR-MAJ blocks.

The challenge in obtaining the correction factors: De-
spite the application easiness of the proposed strategy, the
optimal choice of the correction factor M might not be
straightforward because it depends on the activations and
weights distributions. Indeed, for the sake of the proof-of-
concept study, the previously-described analysis has been
based on the assumption that both the activations and weights
are uniformly distributed. In actual/realistic BNNs, such a
hypothesis is generally not true. One may still try to model the
actual weights distribution (obtained after the BNN training)
to be used for the convolutional engine offline simulation and
for the estimation of M . However, such an approach may
be unfeasible and/or timing consuming. Moreover, modeling
the activations distribution may be even more difficult since,
differently from the weights, activations are often unknown in
prior. Hence, distribution of activations are hard to be assumed.

Our FPGA-based solution to search and obtain the
optimal correction factors: For all these above-mentioned
reasons, we propose to find the optimal correction factor for
each layer of the BNN through design-space exploration. It
consists to make use of the inference BNN model whose
layers can be easily modified including the intended approxi-
mation level and a parameter M in the activation function. The
inference BNN model is then run on a subset of the training

TABLE I
HARDWARE/ACCURACY ANALYSIS OF OUR APPROXIMATION. DELAY,
ENERGY AND AREA RESULTS ARE OBTAINED USING CADENCE TOOL

FLOWS FOR A COMMERCIAL 28NM FDSOI TECHNOLOGY.

n m L Delay Energy Norm. Area+ Err. Prob. Err. Prob.
(ps) per op.+(fJ) EDP (µm2) Eq.(8)(%) Eq.(2)(%)

3 1 0 350 51 1 99.8 0% 0%
3 1 1 260 21.1 0.41 83 8% 15.4%
3 1 2 240 15.2 0.3 80.7 12.3% 25.7%
3 3 0 500 157 1 109 0% 0%
3 3 1 400 63 0.4 65.8 5.1% 18.7%
3 3 2 350 43 0.27 51.9 6.2% 26%
3 3 3 300 41 0.26 49.6 9.1% 34%
3 9 0 650 533 1 342 0% 0%
3 9 1 555 228 0.42 200 2.3% 15.4%
3 9 2 460 158 0.29 168 3.6% 28.7%
3 9 3 330 99 0.18 135 5.1% 33.9%
3 9 4 260 97 0.18 132 7.2% 40.6%
3 64 0 950 5396 1 3230 0% 0%
3 64 1 920 1900 0.35 1492 1.1% 15.8%
3 64 2 830 1273 0.23 1159 1.2% 26%
3 64 3 724 1045 0.19 1027 2.2% 36%
3 64 4 500 921 0.17 957 2.4% 41.8%

+ Obtained when synthesized for the minimum delay of the accurate
implementation.

TABLE II
POWER ANALYSIS @1V SUPPLY VOLTAGE

n m L Static+(µW ) Dynamic+(µW ) Static (µW ) Dynamic (µW )
@1MHz @1MHz

3 1 0 0.0405 145 0.035 1.37
3 1 1 0.021 60.3 0.019 0.62
3 1 2 0.018 45.3 0.012 0.42
3 3 0 0.12 315 0.073 5.15
3 3 1 0.07 126 0.044 2.2
3 3 2 0.053 86 0.034 1.32
3 3 3 0.05 83 0.032 1.14
3 9 0 0.37 820 0.225 19.11
3 9 1 0.2 352 0.134 8.3
3 9 2 0.17 244 0.108 4.9
3 9 3 0.14 152 0.104 3.6
3 9 4 0.14 149.6 0.103 3.4

+ Obtained when synthesized for the maximum running frequency of the
accurate implementation (2.85GHz for m=1, 2GHz for m=3, 1.5GHz for
m=9).

data set varying M within a reasonable range: the optimum
value of M is then selected as the one assuring the maximum
BNN accuracy. Such a procedure is performed by applying the
approximation to one layer at a time. In this way, it can be
possible to perform a layer-wise analysis of the impact of the
approximation on the net accuracy. It will be demonstrated
that the optimal correction factor found for each layer is
substantially the same as the one obtained by performing the
proposed search simultaneously considering the approximation
on all the layer of the BNN. In order to speed-up the described
searching procedure, the inference model of the BNN has
been deployed onto an heterogeneous System on Chip (SoC),
where the most timing consuming tasks, i.e. convolutions, have
been mapped in hardware on the FPGA section of the SoC.
After finding the optimal M values, it can also be possible
to extract a Perror model for each layer and for the adopted
approximation, which will be later employed in our HW/SW
codesign approach (details in Section VI) towards constructing
efficient, yet robust approximation-aware BNN.

V. FPGA ARCHITECTURE AND DESIGN FLOW

A. FPGA-based SW/HW Codesign System Architecture

In order to analyze the proposed correction strategy, applied
to the described approximation, we designed a complete
embedded system that is able to run BNN models. For our
experiments, we use a VGG-based BNN along with the



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 8

TABLE III
BNN ARCHITECTURE. “IN”, “C”, AND “FC” REFER TO INPUT LAYER,

CONVOLUTION LAYER, AND FULLY-CONNECTED LAYER, RESPECTIVELY.

BNN Model BNN Architecture

FashionMNIST BNN In → C64 → MP2 → C64 → MP2
→ FC2048 → FC10

TABLE IV
DATASET USED FOR EXPERIMENTS.

Dataset # Train # Test # Dim # Classes

FashionMNIST 60000 10000 (1,28,28) 10

Fig. 7. The FPGA board “Zynq UltraScale+ RFSoC ZCU111” Evaluation
KitsBoard, which we have employed in our implementation. Details on the
implemented HW/SW codesign is presented in Figs. (7 and 8).

FashionMNIST dataset. In practice, the constructed BNN is
a modified version of the VGG [16], adapted for the image
sizes in FashionMNIST.

The details of the dataset and BNN architecture are pre-
sented in Table III and Table IV, respectively. The BNN uses
convolutional (C) layers with size 3× 3, fully connected (FC)
layers, maxpool (MP) with size 2×2, and batch normalization
(BN) layers followed by binary activation functions. We use
a batch size of 256 and an initial learning rate of 10−3 for all
cases. We halve the learning rate every 25th epoch. For the
optimizer, we run Adam, similar to [4]. We train the BNNs
for 200 epochs in each case.

After training using our PyTroch (modified to support BNN
training), the obtained BNN model is then executed on an
SoC implemented on the Xilinx Zynq UltraScale+ RFSoC
ZCU111 board depicted in Fig. 7. It is furnished with an
ARM Cortex A53 Processing System(PS) and UltraScale+

Programmable Logic (PL). Fig. 8 describes the HW/SW
architecture. The SoC is augmented with our customized
HW that realizes the BNN convolution layer and BNN fully-
connected layer for both accurate and approximate (at different
levels of L) scenarios. The PyTorch framework is executed
on the PS (i.e. the ARM core), which runs a Linux OS
kernel. Correspondingly, we have developed the custom HW
IPs for Convolutional and Fully-Connected layers on PL. The
communications between the ARM CPU and the custom HW
IPs are performed through an Advanced eXtensible Interface
(AXI). Our FPGA setup allows us to seamlessly execute any
trained BNN and evaluate the impact of HW approximation
on inference accuracy.

B. Validating our FPGA-based BNN implementation

First, we validate the functionality of our system by imple-
menting exact hardware accelerators on the PL and by running
the inference phase on the trained model. Further, we compare
the inference accuracy and all tensor outputs obtained from our
setup against the corresponding accuracy and tensor outputs
obtained from the golden PyTorch (i.e., a pure SW-based BNN
execution). This analysis showed an identical matching, which
proves the correct functinality of our implemented FPGA
system. Then, we modify the hardware accelerator on the PL
to implement our approximation and to analyze its impact on
the accuracy. Finally, by comparing the tensor outputs of the
approximate BNN with the exact ones, we derived the Perror
model for each layer and for the adopted approximation: it will
be exploited later to further increase the BNN accuracy. Fig. 9
depicts the FPGA-based HW/SW co-design system flow. The
input and output layers are purely executed on the FPGA’s
ARM CPU, and all the intermediate layers are performed
between the ARM CPU and FPGA fabric. Based on our design
flow in Fig. 9, batch normalization and quantized activation
happen on the FPGA’s ARM CPU, and the convolutional and
Fully Connected logic of the proposed approximated circuit is
laid out on the FPGA fabric.

C. Searching and finding the optimal correction factors using
our FPGA-based implementation

As described earlier, the proposed error-mitigation scheme
is based on adding a correction factor M to the left-side
of Eq. (2), whose value is dependent on the weights and
activations distributions. Hence, we need a value of M for
each convolutional and fully-connected layers of the BNN.
In this work, we propose to perform a layer-wise research
by running the inference of the BNN model on a subset

Processing Sub System
ARM Cortex-A9

Programmable Logic
FPGA Fabric

Linux OS
(Python/PyTorch)

PyTorch Model

Approximated  
Convolutional IP

Approximated  
Fully Connected IP

Actual/Base  
Fully Connected IP

Actual/Base  
Convolutional IP

A
X

I-Lite In
terco

n
n

e
ct

Hardware Bit 
Stream

Overlay

Fig. 8. Overview block diagram demonstrating our FPGA-based architecture.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 9

Input Feature 
Map

Software Layer
Convolution

Batch Normalization
Quantized Activation

Hardware Layer 
Convolutional IP

Software Layer
Batch Normalization
Quantized Activation

Hardware Layer 
Linear/Fully Connected IP

Software Layer
Batch Normalization
Quantized Activation

Software Layer
Linear/Fully Connected

Output 
Detection

Input Layer

1st Convolutional 
Layer

2nd Linear/Fully 
Connected Layer

Output Layer

Fig. 9. Our implemented FPGA-based system to realized the proposed
HW/WS codesign for BNN. The FPGA platform is employed to evaluate
the BNN accuracy drop under different approximation levels, with/without
correction factor and with/without error-aware training. The FPGA board used
in this implementation is shown in Fig. 7.

of the training set inputs and to then analyze the obtained
accuracy drop induced by the approximation just applied
to one layer at the time. Such a procedure is repeated by
varying the value of M related to each convolutional and fully-
connected layers within a reasonable range. Eventually, the
optimum values of the correction factors are those assuring
the maximum accuracy result. Towards this aim, we made use
of the designed embedded system to speed-up the intended
procedure. Each BNN layer has been described in VHDL
for different approximation levels, so that an hardware IP
has been generated for each value of L. After that, the IPs
related to the approximation to be investigated have been
deployed onto the FPGA-based PL. Since the thresholding
operation runs on the PS, the operation of varying the value
of M has been straightforwardly performed by subtracting
in software the value of M from the threshold, as it can
be easily inferred from Eq. (8). Fig. 10 depicts the obtained
results. The x-axis of each subplot represents the values of
M used in the searching process, with a layer-wise adoption
of the proposed approximation strategy, whereas the y-axes
indicates the obtained inference accuracy. The value of M has
been increased with a variable step in order to speed-up the
searching procedure: we used a coarse step (20 units) when
the accuracy was below 70%, a finer one (2 units) otherwise.
The accuracy has been evaluated over one hundred inputs,
randomly picked from the training set. It is worth noting that
the accuracy always shows a maximum value for a particular
value of M , that is selected as the optimum correction factor
to be used in the proposed error mitigation scheme. It is
noteworthy that when approximating a layer without error
correction (i.e. M=0), the BNN accuracy is essentially null.
This is in accordance with the results of Table I, where it has
been shown that (2) has a much higher error probability than

(8). As a final remark, the described procedure enables us also
find the Perror model for each BNN layer by comparing the
layer outputs of the approximate BBN with those related to the
BNN without any approximation obtained from the “golden”
run. Such obtained Perror model can be then employed in the
proposed HW/SW codesign to further optimize the BNN, as
will be described in the next Section.

VI. HW/SW CODESIGN FOR BNN OPTIMIZATION

The optimum correction factors M have been integrated in the
embedded system which has been used to run the inference
phase with the 10,000 input images of the FashionMNIST
dataset. In conjunction with the error mitigation scheme,
we also investigated the possibility to increase the inference
accuracy by means of a simple retraining strategy. To that end,
we employed a framework based on PyTorch [6]. To model the
applied HW approximation, we modify PyTorch to allow error
injection into the activation values of each layer, according to
the Perror model found as previously described. In such a
way, there is no need to implement the actual approximation
function within PyTorch, thus maintaining the excellent opti-
mizations that PyTorch offers. In addition, this also allows to
train the BNNs in the presence of the errors expected from
the underlying HW when it is being approximated, without
modifying the PyTorch code of the backward propagation.
Using our built setup, we investigate the following scenarios.
(i) The SW is unaware of HW approximation: Here, the
BNN is trained in the absence of any error and hence the SW
level is unaware of the existing approximation in the HW level.
After training, the trained parameters are fed to the embedded
system to run the inference phase and eveluate the impact of
the HW approximation on the accuracy.
(ii) The SW is aware of HW approximation: Here, the
BNN is trained in the presence of induced errors. Hence,
the SW level is now aware of the existing approximation in
the HW level. During the BNN training, the corresponding
Perror capturing the applied HW approximation is employed.
For error-aware training, we use the modified hinge loss to
train the BNNs, with the hyperparameter b = 128 [17]. After
the error-aware retraining, the BNN is expected to be more
robust against the errors stemming from the approximate HW.
(iii) The HW is aware of SW Sensitivity: Here, the ap-
proximation in the underlying HW is selectively applied for
every BNN layer towards maximizing the energy saving for a
certain accuracy drop budget. To achieve this goal, we perform
a layer-wise analysis to determine the sensitivity of every BNN
layer against errors. This, in turn, enables us to determine
the appropriate level of approximation that can be tolerated
for each particular layer. If a layer shows high resilience to
errors, then a more aggressive approximation can be applied.
Otherwise, a light approximation can be applied.

VII. EVALUATIONS AND COMPARISONS

A. Impact of Approximation on BNN Accuracy

Towards comprehensively investigating the impact of our
proposed approximation-aware technique, we first analyzed
the inference accuracy obtained when the approximation is



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 10

400 600 800 1,000
0
10
20
30
40
50
60
70
80
90

100

Correction

A
cc

ur
ac

y
(%

)
FASHION

FC LVL1

500 700 900 1,100 1,300 1,500
0
10
20
30
40
50
60
70
80
90
100

Correction

A
cc

ur
ac

y
(%

)

FASHION

FC LVL2

800 1,000 1,200 1,400 1,600
0
10
20
30
40
50
60
70
80
90
100

Correction

A
cc

ur
ac

y
(%

)

FASHION

FC LVL3

100 200 300 400
0

10
20
30
40
50
60
70
80
90
100

Correction

A
cc

ur
ac

y
(%

)

FASHION

Convo LVL1

200 300 400 500
0
10
20
30
40
50
60
70
80
90
100

Correction

A
cc

ur
ac

y
(%

)

FASHION

Convo LVL2

300 350 400 450 500
0
10
20
30
40
50
60
70
80
90
100

Correction

A
cc

ur
ac

y
(%

)

FASHION

Convo LVL3

Fig. 10. The optimum correction factors searching procedure on a subset of input images within the training data set, for different approximation levels in
the CV and FC layers. The optimum values of M are those leading to the maximum BNN accuracy.

TABLE V
HW/SW CO-DESIGN ACCURACY FOR 10000 TEST IMAGES.

Cases HW Convolutions IP HW Fully Connected IP Convolution CF Fully Connected CF Test Accuracy Test Model

1 Base Line Hardware Base Line Hardware NA NA 89.49% Without Error Train
2 Approx Level1 Hardware Base Line Hardware 195 NA 86.40% Without Error Train
3 Approx Level2 Hardware Base Line Hardware 315 NA 85.27% Without Error Train
4 Approx Level3 Hardware Base Line Hardware 395 NA 82.88% Without Error Train
5 Base Line Hardware Approx Level1 Hardware NA 495 87.00% Without Error Train
6 Base Line Hardware Approx Level2 Hardware NA 920 87.31% Without Error Train
7 Base Line Hardware Approx Level3 Hardware NA 1130 87.12% Without Error Train
8 Approx Level2 Hardware Approx Level2 Hardware 315 930 80.00% Without Error Train
9 Approx Level2 Hardware Approx Level2 Hardware 315 930 85.18% With Error Train
10 Approx Level2 Hardware Approx Level2 Hardware 318 930 84.90% With Error Train
11 Approx Level2 Hardware Approx Level3 Hardware 315 1140 81.41% Without Error Train
12 Approx Level2 Hardware Approx Level3 Hardware 315 1140 84.71% With Error Train

 

 

 

 

 

80

81

82

83

84

85

86

87

88

89

90

1 2 3

A
cc

u
ra

cy
 (

%
)

Approximation Level (L)

Conv. layer

FC layer

Accuracy of the accurate BNN (89.49%)

Fig. 11. BNN accuracy sensitivity vs. the approximation level applied to the
convolutional and fully-connected layers for our proposed error-mitigation
scheme.

layer-wise applied in conjunction with the optimum correction
factors M , using the 10,000 images of the test dataset. The
obtained results are collected in Table V, from row 2 to row

7. An approximation spanning from the 1st to the 3rd level of
the popcount tree has been analyzed for each layer. For each
approximation configuration, the relative correction factor M
has been integrated in the correspondent layer. It is evident
that the simple adoption of M allows a drastic reduction of the
inference accuracy drop. This is more underlined in Fig. 11,
where the accuracy sensitivity vs. the adopted approximation
is plotted for each layer. It is worth noting that the maximum
accuracy drop is of about 6.5%. Moreover, the inference
accuracy sensitivity to the approximation level is higher in the
convolutional layer than in the fully-connected layer. Indeed,
in the latter layer, the accuracy is almost constant regardless
the approximation level of the popcount tree. This result is
in accordance with the preliminary analysis summarized in
Table I, where it is evident that, for the proposed technique,
the accuracy drop is inversely proportional to the layer size
at the parity of the adopted approximation level. Finally, the
analysis of Fig. 11 suggests that it is preferable to adopt a
more aggressive approximation to the deepest layers of the



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 11

BBN, whereas a moderate approximation can be applied to
the first layers. In order to verify that the searching procedure
actually produces the optimum values of M for each layer, the
same procedure has been carried out on the images belonging
to the test dataset. Hence, we replicated the analysis shown
in Fig 10 for a subset of the inputs within the training
set, and the obtained results are plotted in Fig. 12. It is
interesting to note that the actual optimum values of M found
using the test images are identical to those obtained using a
subset of the training images. This proves that the proposed
searching procedure is effective in obtaining the optimum
values of the correction factors. As a further evidence of
the effectiveness of the proposed error mitigation scheme,
the inference accuracy drops to only 10% when M is set
to 0 (i.e. when the approximation is applied without any
countermeasure as for (2)). Table V also collects the inference
accuracy when the approximation is applied to more than one
layer simultaneously. We applied approximation until levels
1-2 and levels 1-3 to the convolutional and fully-connected
layer, respectively. Interestingly, the optimum values of M are
practically identical to those obtained when the approximation
is applied to one layer at the time. As an example, the obtained
values of M for the convolutional (fully-connected) layer is
315 (930) when an approximation until the level 2 is applied
and the searching procedure is performed by approximating
just one layer at the time. Such a scenario is reported in
Table V as case 9. A two-dimensional searching procedure
has also been carried out by applying the approximation
simultaneously to both the layers and let the two correction
factors (one for each layer) to vary at the same time. Results
are collected in Table V as case 10. It is worth noting that
the obtained values of M are practically the same than those
related to case 9, same thing for the inference accuracy.
Moreover, results in Table V clearly shows that the accuracy
improves when the error mitigation technique is applied in
conjunction with the proposed retraining methodology, thus
confirming the effectiveness of the proposed HW/SW co-
design optimization.

For the sake of comparison, we investigate different scenar-
ios and compare them to the state-of-the-art technique in BNN
approximation and to the golden reference:
Reference: The golden baseline accuracy to compare against.
Both BNN training and inference are performed without any
errors (i.e., no approximation is applied).
No error corr.: An HW approximation is applied only to the
first level (i.e., L = 1) in the adder tree of the Popcount circuit
as proposed in [7] to the convolutional and fully-connected
BNN. The BNN is trained without errors injection.
Case1 [our]: An HW approximation is applied until level 2
(level 3) in the adder tree of the Popcount for the convolu-
tional (fully-connected) layer, along with our error-mitigation
scheme as illustrated in Eq. (8).
Case2 [our]: This is the same as in Case1 scenario, but the
BNN is retrained in the presence of errors using the corre-
sponding Perror calculated from the induced approximation.

Fig. 13 demonstrates the inference accuracy for the two
cases above, the case with no error correction and just one
level of approximation in the popcount ( [7]), and the refer-

TABLE VI
ENERGY CONSUMPTION (NJ) FOR THE LAYERS OF THE ANALYZED BNN

AT DIFFERENT APPROXIMATION LEVELS (L1-L3).

VGG-based BNN
Approx. Level: Accurate L=1 L=2 L=3
Layer 2 (C64) 58.3 20.5 13.7 -
Layer 3 (FC2048) 31 9.4 6.51 4.06

TABLE VII
VGG3-BASED BNN ENERGY CONSUMPTION FOR THE SIX ANALYZED

SCENARIOS DESCRIBED IN FIG. 13.

Scenario Energy(nJ) Accuracy
Reference 89.3 89.49%

State of the art [7] 29.9 10%
Case 1 [our] 17.7 81.41%
Case 2 [our] 17.7 84.71%

ence. As shown, without any error mitigation technique, the
BNN accuracy largely (over 70%) drops. When our approxi-
mations in case1 is applied (i.e., no error-aware training is yet
used), a much higher BNN accuracy is achieved (81.41%). Fi-
nally, after employing error-aware training, our approximation-
aware BNN provides, in case2, an inference accuracy of
84.71%. In short, unlike the technique described in [7], that
compulsorily requires a complex retraining procedure based
on the PyTorch framework modification, the accuracy drop in
our approximation-aware BNN is merely 4.8%, for a more
aggressive approximation (L=2 and L=3 for the convolutional
and fully-connected layers, respectively).

B. Impact of Approximation on BNN Energy

To evaluate energy, the layers of the VGG-based analyzed
BNN have been synthesized with Cadence Genus and mapped
to a commercial 28nm FDSOI technology. For the synthesis
of the approximate designs, the timing constraint has been set
to the minimum delay achievable by the accurate design.

Tab. VI provides examples for the obtained mean energy
values for different layers and different approximation levels.
As stated in Fig. 11, the convolutional layer is more sensitive
to the approximation, so we set its maximum approximation
L=2. Conversely, the fully-connected layer is more robust
to the errors induced by the proposed approximation and,
hence, we analyzed the impact on the energy for a deeper
approximation level (i.e. L=3). It can be noted from Table VI
that the energy consumption per layer decreases as the approx-
imation level increases. For instance, the energy saving for the
convolutional layers can be up to 77%, and even higher energy
reduction is observed in the fully-connected layers.

Tab. VII summarizes the energy consumption of the VGG-
based BNN for the four different scenarios described in Fig. 13
(see Sec. VII-A). Our approximations (Case 1-2) reduce the
energy by 80% compared to the reference (i.e., accurate BNN)
and outperform the state of the art [7]. For instance, Case
1 achieves a considerably higher accuracy (81.41% versus a
10%) along with a 41% lower energy. When error-aware BNN
training is applied (i.e., case 2), the accuracy largely increases
to 84.71%. In short, our approximation-aware BNN provides
80% less energy with a marginal drop (4.7%) in accuracy.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 12

400 600 800 1,000
0

10
20
30
40
50
60
70
80
90

Correction

A
cc

ur
ac

y
(%

)
FASHION

FC LVL1

500 700 900 1,100 1,300 1,500
0
10
20
30
40
50
60
70
80
90

Correction

A
cc

ur
ac

y
(%

)

FASHION

FC LVL2

800 1,000 1,200 1,400 1,600
0
10
20
30
40
50
60
70
80
90

Correction

A
cc

ur
ac

y
(%

)

FASHION

FC LVL3

100 200 300 400
0

10
20
30
40
50
60
70
80
90

Correction

A
cc

ur
ac

y
(%

)

FASHION

Convo LVL1

200 300 400 500
0
10
20
30
40
50
60
70
80
90

Correction

A
cc

ur
ac

y
(%

)

FASHION

Convo LVL2

300 350 400 450 500
0
10
20
30
40
50
60
70
80
90

Correction

A
cc

ur
ac

y
(%

)

FASHION

Convo LVL3

Fig. 12. BNN inference accuracy over the 10,000 input images of the testing data set for different values of the correction factors M and approximation
levels in the CV and FC layers.

No err
or

co
rr.

Case
1 [ou

r]

Case
2 [ou

r]

Refe
ren

ce
0
10
20
30
40
50
60
70
80
90
100

10%

81.41% 84.71% 89.49%

In
fe

re
nc

e
A

cc
ur

ac
y

[%
]

Fig. 13. BNN Inference accuracy of the FashionMNIST for our four different
approximation cases (see Sec. VII-A), compared to the case where no error
correction scheme is employed (e.g., [7]) and the reference accuracy.

C. Analysis of the proposed methodology on a larger BNN

The applicability of the proposed methodology has been tested
also on a larger BNN. In particular, we used a VGG7-based
BNN with the CIFAR10 dataset [16]. It is a modified versions
of the VGG-architectures, adapted for the image sizes in
the above dataset, which is a suitably sized example for
resource and power constrained inference [16]. Table VIII
summarizes the BNN topology. Fig. 14 depicts the application
of the above described optimum correction factor searching
procedure on the VGG7-based BNN, with L=1 for each layer,
and the optimum values of M are tabled in Table IX. When
the approximation is applied to all the layers (each with its
own correction factor), the BNN reaches an accuracy of 71%
(without retraining), that is just 4% lower than the accuracy the
original net (75%). As a remarkable advantage, the proposed

approximation can reduce the energy dissipation of about
64.8% when running the VGG7-based BNN with with L=1.

As a final remark, from Fig. 14 it can be noted that the
deeper is the layer of the BNN, the lower is the accuracy
sensitivity w.r.t. the value of M . This is inline with the
results obtained in Section VIII.a for the smaller BNN, and
also with recent works where it has been shown that, in
conventional CNN, the deeper is the accumulation tree of
the MAC operation, the higher is the possibility to apply
more aggressive approximation schemes while maintaining an
acceptable accuracy [18].

TABLE VIII
VGG7-BASED BNN ARCHITECTURE.

BNN Model BNN Architecture

VGG7-based BNN In → C128 → MP2 → C256 → C256
→ MP2 → C512 → C512 → MP2
→ FC1024 → FC10

TABLE IX
OPTIMUM VALUES OF M FOR THE VGG7-BASED BNN

VGG-based BNN
BNN layer: M
Layer 1 (C128) 390
Layer 2 (C256) 365
Layer 3 (C256) 785
Layer 4 (C512) 760
Layer 5 (C512) 1530
Layer 6 (FC1024) 2790



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 13

300 350 400 450
30

40

50

60

70

Correction

A
cc

ur
ac

y
(%

)

Conv. Layer1 LVL1

300 350 400 450
30

40

50

60

70

Correction

A
cc

ur
ac

y
(%

)

Conv. Layer2 LVL1

700 800 900
60

65

70

75

Correction

A
cc

ur
ac

y
(%

)

Conv. Layer3 LVL1

700 800 900
60

65

70

75

Correction

A
cc

ur
ac

y
(%

)

Conv. Layer4 LVL1

1,400 1,450 1,500 1,550 1,600 1,650
50

55

60

65

70

75

Correction

A
cc

ur
ac

y
(%

)

Conv. Layer5 LVL1

2,400 2,600 2,800 3,000 3,200
50

60

70

80

Correction

A
cc

ur
ac

y
(%

)

FC Layer LVL1

Fig. 14. The optimum correction factor tuning and obtaining procedure for the VGG7-based BNN.

VIII. SUMMARY AND CONCLUSION

BNNs are rapidly emerging as an attractive methodology for
ultra-lightweight neural networks. In this work, we demon-
strated that the Popcount circuit forms a bottleneck that
seriously hampers the efficiency gains promised by BNNs.
State of the art merely approximates the first layer in the adder
tree that constructs the Popcount, yet results in a severe drop in
the inference accuracy unless model retraining is performed.
On the contrary, we apply more aggressive approximations
covering more layers in the adder tree, leading to a higher
energy saving (80.2%), while still achieving significantly
larger accuracy (84.71%) akin to our carefully-designed error-
mitigation scheme.

Our methodology was evaluated using a commercial 28nm
technology and validated using an FPGA-based SoC. We
have shown how our FPGA-based system enables designers
to search the space towards obtaining the optimal correc-
tion factors required for error-mitigation scheme. Further, the
FPGA-based system also enables use to compute abstracted
probability model for the errors induced by approximation.
Such error probabilities are later employed to perform an
error-aware BNN training that further optimize the BNN and
further minimize the accuracy loss. Most notably, the proposed
HW/SW codesign approach allows for a easy retraining of the
BNN that does not require any modification of the existing
software design tools.

All in all, HW/SW codesign is a key to construct
approximation-aware BNNs that are considerable more effi-
cient, yet robust against errors. In future work, we plan to
extend our analyses for other, larger BNN models that feature
different layer types (such as depthwise separable convolution)
and hyperparameters (such as stride and convolution window
size). Such additional experiments require to evaluate anew
the trade-offs regarding level of approximation and accuracy.

ACKNOWLEDGMENT

This work was supported by Deutsche Forschungsgemeinschaft
(DFG) project OneMemory (405422836), by the DFG project
ACCROSS (428566201), by the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained Analy-
sis” (project number 124020371), subproject A1 (http://sfb876.tu-
dortmund.de) and in part by PON Ricerca Innovazione - MUR (grant
062 R24 INNOVAZIONE), Ministero dellUniversit e della Ricerca,
Italian Government.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter per-
formance analysis of a tensor processing unit,” in Int. Symp. Computer
Architecture, pp. 1–12, 2017.

[2] H. Amrouch, G. Zervakis, S. Salamin, H. Kattan, I. Anagnostopoulos,
and J. Henkel, “Npu thermal management,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 11, pp. 3842–3855, 2020.

[3] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “How to evaluate deep
neural network processors: Tops/w (alone) considered harmful,” IEEE
Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28–41, 2020.

[4] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in Neural Information Processing
Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
eds.), vol. 29, Curran Associates, Inc., 2016.

[5] F. Conti, P. D. Schiavone, and L. Benini, “Xnor neural engine: A
hardware accelerator ip for 21.6-fj/op binary neural network inference,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2940–2951, 2018.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8026–8037, 2019.

[7] S. Rasoulinezhad, S. Fox, H. Zhou, L. Wang, D. Boland, and
P. H. Leong, “Majoritynets: Bnns utilising approximate popcount
for improved efficiency,” in 2019 International Conference on Field-
Programmable Technology (ICFPT), pp. 339–342, 2019.

[8] L. Yang, D. Bankman, B. Moons, M. Verhelst, and B. Murmann, “Bit
error tolerance of a cifar-10 binarized convolutional neural network
processor,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–5, 2018.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 14

[9] M. Yayla, S. Buschjager, A. Gupta, J.-J. Chen, J. Henkel, K. Morik, K.-
H. Chen, and H. Amrouch, “Fefet-based binarized neural networks under
temperature-dependent bit errors,” IEEE Transactions on Computers,
pp. 1–14, 2021.

[10] V. Mrazek, Z. Vası́cek, L. Sekanina, M. A. Hanif, and M. Shafique,
“ALWANN: automatic layer-wise approximation of deep neural network
accelerators without retraining,” in Proceedings of the International
Conference on Computer-Aided Design, ICCAD 2019, Westminster, CO,
USA, November 4-7, 2019 (D. Z. Pan, ed.), pp. 1–8, ACM, 2019.

[11] M. Alioto, V. De, and A. Marongiu, “Energy-quality scalable integrated
circuits and systems: Continuing energy scaling in the twilight of moores
law,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 8, no. 4, pp. 653–678, 2018.

[12] M. Pashaeifar, M. Kamal, A. Afzali-Kusha, and M. Pedram, “A the-
oretical framework for quality estimation and optimization of dsp
applications using low-power approximate adders,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 327–340,
2019.

[13] G. E. Andrews, “The theory of partitions,” in Encyclopedia of Math-
ematics and its Applications, Vol. 2, Addison-Wesley Publishing Co.,
Reading, MA-London-Amsterdam, 1976.

[14] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural
network on fpga,” Neurocomputing, vol. 275, pp. 1072–1086, 2018.

[15] B. Liu, H. Cai, Z. Wang, Y. Sun, Z. Shen, W. Zhu, Y. Li, Y. Gong, W. Ge,
J. Yang, and L. Shi, “A 22nm, 10.8 µw/15.1 µw dual computing modes
high power-performance-area efficiency domained background noise
aware keyword- spotting processor,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 67, no. 12, pp. 4733–4746, 2020.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, ICLR, 2015.

[17] S. Buschjäger, J.-J. Chen, K.-H. Chen, M. Günzel, C. Hakert, K. Morik,
R. Novkin, L. Pfahler, and M. Yayla, “Margin-maximization in binarized
neural networks for optimizing bit error tolerance,” DATE ’21.

[18] B. Liu, Z. Wang, X. Wang, R. Zhang, A. Xue, Q. Shen, N. Xie, Y. Gong,
Z. Wang, J. Yang, and H. Cai, “An efficient bcnn deployment method
using quality-aware approximate computing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 11, pp. 4217–4228, 2022.

Abhilasha Dave is currently pursuing a Ph.D. de-
gree at the chair ”Semiconductor Test and Reliability
(STAR)” in the University of Stuttgart, Germany un-
der the supervision of Prof. Hussam Amrouch. Her
Ph.D. research focuses on Approximate Computing
for Deep Neural Network Acceleration. She received
her Master’s degree in Computer Engineering at
California State University, Fresno, USA, with a
thesis focused on the application of machine learning
in digital circuit verification and testing. During her
Masters’s degree, she was nominated for the Dean’s

medalist award at the Electrical and Computer Engineering Department. After
her Master’s degree, for almost 2 years, she worked as a R&D FPGA Engineer
in Silicon Valley.

Fabio Frustaci (M’14-SM’22) is an Associate Pro-
fessor with the Computer Science, Electronics, Mod-
eling and Systems Department at the University of
Calabria, Rende, Italy. He received the M.S. and
the Ph.D. degree in electronic engineering from the
University Mediterranea of Reggio Calabria, Italy,
in 2003 and 2007, respectively. In 2006, he was
a Visiting Scholar at the ECE Department of the
University of Rochester, Rochester, NY. In 2011-
2013 he was a Visiting Researcher at the EECS
Department of the University of Michigan, Ann

Arbor, MI. He has authored more than 70 papers in the field of VLSI design.
Currently, he is a member of the editorial board of Microelectronics Journal.
His research interests include low power and high performance VLSI circuits,
design techniques for emerging technologies, reconfigurable architectures,
embedded systems.

Fanny Spagnolo (M’20) is an Assistant Professor
with the Computer Science, Electronics, Modeling
and Systems Department at the University of Cal-
abria. She received the masters degree in Electronics
Engineering and the Ph.D. degree in Information and
Communication Technologies from the University of
Calabria, Italy, in 2016 and 2019, respectively. In
June 2016, she won a Research Grant funded by the
Department of Informatics, Modeling, Electronics
and System Engineering, University of Calabria. She
has co-authored of more than 30 papers in the field

of VLSI design. Her research interests include embedded systems design,
VLSI architectures for image processing, high-performance reconfigurable
circuits and approximate computing techniques for low-power Deep Neural
Networks accelerators.

Mikail Yayla is currently pursuing the Ph.D. degree
at the informatics chair ”Design Automation for
Embedded Systems” in the Technical University of
Dortmund, under the supervision of Prof. Jian-Jia
Chen. His research focuses on robust and efficient
machine learning for emerging resource-constrained
systems. He has published in major EDA confer-
ences and journals, including DAC, ICCAD, DATE,
TCAS-I, and TC. He has one best paper nomination
at DATE’21.

Jian-Jia Chen is Professor at Department of Infor-
matics in TU Dortmund University in Germany. He
was Juniorprofessor at Department of Informatics in
Karlsruhe Institute of Technology (KIT) in Germany
from May 2010 to March 2014. He received his
Ph.D. degree from Department of Computer Science
and Information Engineering, National Taiwan Uni-
versity, Taiwan in 2006. He received his B.S. degree
from the Department of Chemistry at National Tai-
wan University 2001. Between Jan. 2008 and April
2010, he was a postdoc researcher at ETH Zurich,

Switzerland. His research interests include real-time systems, embedded
systems, energy-efficient scheduling, power-aware designs, temperature-aware
scheduling, and distributed computing. He received the European Research
Council (ERC) Consolidator Award in 2019. He has received more than
10 Best Paper Awards and Outstanding Paper Awards and has involved in
Technical Committees in many international conferences.

Hussam Amrouch (S’11-M’15) is a Jun.-Professor
heading the Chair of Semiconductor Test and Relia-
bility (STAR) within the Computer Science, Electri-
cal Engineering Faculty at the University of Stuttgart
as well as a Research Group Leader at the Karl-
sruhe Institute of Technology (KIT), Germany. He
currently serves as Editor at the Nature Scientific
Reports Journal. He received his Ph.D. degree with
the highest distinction (Summa cum laude) from
KIT in 2015. His main research interests are design
for reliability and testing from device physics to

systems, machine learning for CAD, HW security, approximate computing,
and emerging technologies with a special focus on ferroelectric devices. He
holds eight HiPEAC Paper Awards and three best paper nominations at top
EDA conferences: DAC’16, DAC’17 and DATE’17 for his work on reliability.
He has served in the technical program committees of many major EDA
conferences such as DAC, ASP-DAC, ICCAD, etc. and as a reviewer in many
top journals like Nature Electronics, T-ED, TCAS-I, TVLSI, TCAD, TC, etc.
He has around 200 publications in multidisciplinary research areas across
the entire computing stack, starting from semiconductor physics to circuit
design all the way up to computer-aided design and computer architecture.
His research in HW security and reliability have been funded by the German
Research Foundation (DFG), Advantest Corporation, and the U.S. Office of
Naval Research (ONR). ORCID 0000-0002-5649-3102.


