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Abstract
Real-time systems require a formal guarantee of timing-constraints, not only for individual tasks
but also for data-propagation. The timing behavior of data-propagation paths in a given system is
typically described by its maximum reaction time and its maximum data age. This paper shows
that they are equivalent.

To reach this conclusion, partitioned job chains are introduced, which consist of one immediate
forward and one immediate backward job chain. Such partitioned job chains are proven to describe
maximum reaction time and maximum data age in a universal manner. This universal description
does not only show the equivalence of maximum reaction time and maximum data age, but can
also be exploited to speed up the computation of such significantly. In particular, the speed-up for
synthesized task sets based on automotive benchmarks can be up to 1600.

Since only very few non-restrictive assumptions are made, the equivalence of maximum data age
and maximum reaction time holds for almost any scheduling mechanism and even for tasks which
do not adhere to the typical periodic or sporadic task model. This observation is supported by a
simulation of a ROS2 navigation system.
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1 Introduction

In various embedded system applications, e.g., in automotive or avionics systems, a sequence
of tasks is necessary to perform a certain functionality. The data dependency between these
tasks is described by a cause-effect chain. A typical example is a cause-effect chain from a
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sensor to an actuator, where the first task reads the sensor value (cause), the second task
processes the data, and the third task produces an output for the actuator (an effect is
triggered). Timing properties of such cause-effect chains must be validated to ensure system
safety.

Typical metrics to describe end-to-end timing properties are maximum reaction time
(MRT) and maximum data age (MDA). The MRT is the longest time interval from an
external cause until the earliest time where this external cause is fully processed (also called
the maximum button to action delay). The MDA is the longest time interval starting from
sampling a value and ending at an actuation that takes place based on that sampled data
(also called the data freshness). Due to their importance, multiple approaches to calculate or
bound MRT or MDA have been provided [2, 3, 6, 8–11,13,17,24,26].

However, the relation between the MRT and MDA values is less analyzed. This is kind of
surprising, since answering the questions if, how, and in which scenarios the MRT and MDA
values are related is interesting – both from a practical perspective (since it may be sufficient
to analyze one metric instead of two) and from a research perspective (since analysis methods
for one metric may also be applied when analyzing the other). Hence, in this work, we focus
on such relations between MRT and MDA. The strongest analytical result known has been
provided by Günzel et al. [13], showing that the MRT is an upper bound for the MDA.

Nonetheless, empirical observations suggest a stronger relation. More specifically, the
AUTOSAR Timing Extensions [1] provide an important observation about the relation
between MRT and MDA, namely, that “without over- and undersampling, age and reaction
are the same” [1, Section 7.2, p. 149]. However, while this observation seems to imply that
MRT and MDA can differ for systems with over- or undersampling, recent measurements
in Robot Operating System 2 (ROS2) show that the observed MRT and MDA always
coincide [27]. Hence, it is unclear in which scenarios MRT and MDA coincide. Even more,
while both observations suggest a strong relation between MRT and MDA, no proof for such
a relation is provided.

Hence, in this paper, we further investigate MRT and MDA through analytical discussion
to determine if, how, and in which scenarios the MRT and MDA values are related. Specific-
ally, we formally prove that they are equivalent after a warm-up period, i.e., after the data
passes the complete cause-effect chain once. This insight allows the verification of timing
constraints for both metrics at the same time. Moreover, analytical results in the literature
for one metric can be utilized for the other one.

We build on the established result [9, 13] that for each cause-effect chain MRT and MDA
can be calculated based on the length of the related job chains; that is, the time interval
between the moment the first job in the chain reads data and the moment the last job in
the chain writes data. On a high level, our idea is to first examine the job chains that must
be considered for the MRT; that is, the job chains from the first task in the chain (i.e., the
sensor) to the last (i.e., the actuator). In the next step, we consider a chain comprised of two
sub-chains, both starting from the second task in the chain – one going back to the sensor
and one going forward to the actuator. We call such a chain a p-partitioned job chain, where
p denotes the position of the task in the chain (in this case, p = 2). We show that one of
these 2-partitioned job chains has at least the same length as the job chain that determines
the MRT. We continue by induction over the tasks in the chain, showing that the MRT is
upper-bounded by the MDA. Afterwards, we similarly show that the MDA is upper-bounded
by the MRT by starting from the last task in the chain.
Contributions: We show the equivalence of MRT and MDA while making only very few non-
restrictive assumptions regarding tasks, communication, and scheduling model. Therefore,
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Variable Definition
T task set under analysis
τ ∈ T a task
τ(m), m ∈ N+ m-th job of task τ

≼ job ordering for jobs of one task
τ = (Cτ , Tτ , ϕτ ) periodic task
τ = (Cτ , Tτ ) sporadic task
re(J) time of read-event of a job J

we(J) time of write-event of a job J

E cause-effect chain under analysis
E any cause-effect chain (can be E or a sub-chain of E)
|E| number of tasks in E

E(i), i ∈ {1, . . . , |E|} i-th task of E

Table 1 Notation in this work.

our results apply for a large variety of systems. Specifically, our results can be applied
for but are not limited to periodic or sporadic tasks and implicit communication or logical
execution time (LET) [15]. The underlying scheduler may be (i) a job-level or task-level
static priority scheduler (e.g., EDF and rate-monotic, respectively), (ii) work-conserving or
non-work-conserving, and (iii) preemptive or non-preemptive. Furthermore, jobs may be
executed on different processing units (e.g., on different electronic control units (ECUs)). In
detail, we make the following technical contributions:

In Section 4, we define p-partitioned job chains, where p is an integer value not larger
than the number of jobs |E| in the evaluated job chain. We show that MRT and MDA
can be expressed as 1-partitioned job chains and E-partitioned job chains, respectively.
In Section 5, we discuss the equivalence between MRT and MDA using partitioned job
chains and show that the timing behavior is independent of p, i.e., any arbitrary p can be
chosen to compute MDA and MRT.
The implication of our results in practice is discussed in Section 6.
We discuss how to apply our results to a reduced version of MRT and MDA in Section 7.1
and how this equivalence can be transferred to a definition of MRT and MDA based on
valid job chains Section 7.2.
We evaluate our results considering randomly generated periodic tasks, communicating
via Logical Execution Time (LET) [15] in Section 8. In particular, we show that by the
right choice of p the required time for computation is reduced significantly.
To validate our theoretical results, we examine MRT, MDA on a ROS2 system with
non-periodic tasks under implicit communication in Section 9.

2 System Model and Problem Definition

This section introduces the definitions and notations for task model, communication model,
and cause-effect chains, as well as our problem definition. For our analysis, a very general
task and communication model with very few assumptions is sufficient. Yet, we introduce
the notion of periodic and sporadic tasks as well as the communication policies implicit
communication and logical execution time (LET), as they are utilized to provide intuitive
examples, in the empirical evaluation with synthesized tasks sets in Section 8, and for the
case study in Section 9. Our notation is summarized in Table 1.

ECRTS 2023
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Jobs and Tasks. A job is a program instance that produces output based on its input.
The aggregation of all jobs of the same program is called a task, denoted by τ . We denote
the (countably many) jobs of task τ by (τ(m))m∈N+ , and denote the induced ordering by
τ(i) ≼ τ(j) if and only if i ≤ j. The set of all tasks in the system is denoted by T.

For our analysis, we need no further assumption on the job releases. Specifically, we make
no assumptions regarding the first time a job of a task arrives or on the inter-arrival pattern
of jobs. However, the most common task models, namely the periodic and the sporadic
model, both fulfill our assumptions.

A periodic task τ is described as τ = (Cτ , Tτ , ϕτ ) ∈ R3, where Cτ ≥ 0 is the worst-case
execution time (WCET), Tτ > 0 is the period, and ϕτ is the phase of the task. The first job
τ(1) of τ is released at time ϕτ and subsequent jobs are released every Tτ time units, i.e.,
τ(m) is released at time ϕτ + (m − 1)Tτ . Every job of τ executes for at most Cτ time units.

A sporadic tasks τ is described by the tuple τ = (Cτ , Tτ ) ∈ R2, where Cτ ≥ 0 is the
worst-case execution time (WCET), and Tτ > 0 is the minimum inter-arrival time between
two jobs. The release of two subsequent jobs of τ are separated by at least Tτ time units
and each job executes for at most Cτ time units.
Communication. Jobs communicate by receiving (reading) their input from a shared
resource and handing over (writing) their output to a shared resource. We denote the time
that the read-event of a job J takes place by re(J) ∈ R and the time that the write-event
of J takes place by we(J) ∈ R. We assume the following two requirements are met:

(R1) For each task τ ∈ T, the read- and write-events of its jobs are ordered in the sense
that re(τ(m)) < re(τ(m + 1)), we(τ(m)) < we(τ(m + 1)), and re(τ(m)) ≤ we(τ(m)) for
all m ∈ N.
(R2) The sets {re(τ(m)) | m ∈ N} and {we(τ(m)) | m ∈ N} have no accumulation point,
i.e., the number of read- and write-events in each bounded time interval is finite.

These not very restrictive requirements are fulfilled by commonly considered communica-
tion semantics, e.g., for logical execution time and implicit communication.

Logical Execution Time (LET): Under logical execution time [15], each task τ is
assigned an arbitrary deadline Dτ , and the read-event and write-event of each job J of τ is
set to its release time rJ and its absolute deadline rJ + Dτ , respectively.

Implicit Communication: Under implicit communication, each job has its read-event
at the first time that it is executed, i.e., when the job starts, and the job has its write-event
at the last time it is executed, i.e., when the job finishes.
Cause-effect chains. A cause-effect chain E = (τ1 → τ2 → · · · → τk), with k ∈ N,
describes the path of data through different programs by a finite sequence of tasks τi ∈ T.
The number of entries in the sequence E is denoted as |E| and E(i) is the task at the
i-th entry of E for i ∈ {1, . . . , |E|}. This definition of cause-effect chains is inspired by
event-chains of the AUTOSAR Timing Extensions [1], which represent chains of more general
functional dependency. We assume implicit sampling, where the sampling for a cause-effect
chain E happens at the read-event of each job of E(1). However, we can easily model
any kind of sampling by adding a sampling task τsample to the system, where each job
τsample(1), τsample(2), . . . reads and writes data at a time when the sampling happens.

If the data dependency is described by a directed acyclic graph (DAG) with several sources
and sinks, we follow the typical approach from the literature and analyze each cause-effect
chain (i.e., path through the DAG from a source to a sink) individually.
Problem definition. For a given cause-effect chain E, we discuss the equivalence of its
maximum reaction time and maximum data age. Specifically, we answer the question: To
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which extent can the maximum reaction time and maximum data age (and their variations)
be derived from each other? We answer this question for large variety of systems, including
periodic or sporadic task systems with LET or implicit job communication.

3 Maximum Reaction Time & Maximum Data Age

This section specifies the analyzed End-to-End latencies, namely, the maximum reaction
time (MRT), which is the length of the longest time interval from an external cause until the
earliest time where this external cause is fully processed (i.e., the maximum button to action
delay), and the maximum data age (MDA), which is the length of the longest time interval
starting from sampling a value until an actuation based on that sampled value takes place
(i.e., the data freshness). The definitions are based on job chains which represent the path
of data through the schedule. We recap the job chain definitions for arbitrary cause-effect
chains E of the task set T as stated by Günzel et al. [13].

▶ Definition 1 (Job chain [13]). Let E be a cause effect chain of the task set T. A job chain
c = (J1, . . . , J|E|) for E is a sequence of jobs where the following two conditions are fulfilled:

Ji is a job of task E(i) for all i ∈ {1, 2, . . . , |E|}.
Each job in the chain reads the data not before it was written by the previous job in the
chain. That is, we(Ji−1) ≤ re(Ji) for all i ∈ {2, 3, . . . , |E|}.

The length of a job chain c is the length of the time interval between the read-event of
the first job J1 in the chain and the write-event of the last job J|E| in the chain, i.e.,

ℓ(J1, J2, . . . , J|E|) = we(J|E|) − re(J1). (1)

We denote the i-th job in c as c(i) for i ∈ {1, 2, . . . , |E|}, hence, ℓ(c) = we(c(|E|)) − re(c(1)).
Like in previous work [9,13], our analysis for MRT and MDA is built on two related types

of jobs chains: Immediate forward job chains and immediate backward job chains.

▶ Definition 2 (Immediate forward job chain [13]). Let E be a cause-effect chain for task set
T. A job chain c = (J1, J2, . . . , J|E|) for E is immediate forward if for all i ∈ {2, . . . , |E|} the
job Ji is the earliest job of task E(i) with read-event no earlier than the write-event of Ji−1.
That is, Ji is the earliest job that fulfills the properties from Definition 1.
We denote the m-th immediate forward job chain for E (i.e., J1 = E(1)(m)) by c⃗E

m, m ∈ N+.

▶ Definition 3 (Immediate backward job chain [13]). Let E be a cause-effect chain for task set
T. A job chain c = (J1, J2, . . . , J|E|) for E is immediate backward if for all i ∈ {|E| − 1, . . . , 1}
the job Ji is the latest job of task E(i) with write-event no later than the read-event of Ji+1.
That is, Ji is the latest job that fulfills the properties from Definition 1.
For m ∈ N+, if there is an immediate backward job chain with J|E| = E(|E|)(m), then we
call it the m-th immediate backward job chain ⃗cE

m.

For an example system with three tasks and implicit communication, the forward arrows
in Figure 1 mark all job chains starting at the job τ1(1). The immediate forward job chain
starting at τ1(1) is marked red. The immediate backward job chain starting at τ3(6) is
marked with a dotted blue arrow.

To account for the time of the external activity (z) and the actuation (z′), we consider
augmented job chains.

▶ Definition 4 (Immediate forward augmented job chain [13]). Let m ∈ N+. We define the
m-th immediate forward augmented job chain for E by a⃗cm = (z, J1, . . . , J|E|, z′), where

ECRTS 2023
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τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22

Figure 1 Cause-effect chain E = (τ1 → τ2 → τ3) for three tasks with implicit communication.
Forward arrows mark the job chains with first job τ1(1), the immediate forward job chain c⃗E

1 is
marked red. The dashed blue arrow marks the immediate backward job chain ⃗cE

6 starting at τ3(6).

τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

a⃗c1

⃗ac6

Figure 2 Cause-effect chain E = (τ1 → τ2 → τ3) with implicit communication. The immediate
forward augmented job chain a⃗c1 = (3, τ1(2), τ2(4), τ3(8), 29) is marked red, and the immediate
backward augmented job chain ⃗ac6 = (3, τ1(1), τ2(2), τ3(5), 21) is marked by a dashed blue arrow.

z ∈ R is just after the read-event of the m-th job of task E(1), (J1, . . . , J|E|) is the (m + 1)-th
immediate forward job chain for E, and z′ is at the write-event of J|E|.

▶ Definition 5 (Immediate backward augmented job chain [13]). Let m ∈ N+. If ⃗cE
m−1

exists, then we define the m-th immediate backward augmented job chain for E by ⃗acm =
(z, J1, . . . , J|E|, z′), where z′ is just before the write-event of the m-th job of task E(|E|),
(J1, . . . , J|E|) is the (m−1)-th immediate backward job chain for E, and z is at the read-event
of job J1.

Examples of an immediate forward augmented job chain and an immediate backward
augmented job chain are illustrated in Figure 2. Note that ⃗acm can only be constructed if

⃗cE
m−1 exists. Moreover, if ⃗acm exists, then for all m̃ ≥ m, ⃗acm̃ exists as well. Our notation

related to job chains is summarized in Table 2.

Symbol Name Defined in
c Job chain Sec. 3, Def. 1
c⃗ Immediate forward job chain Sec. 3, Def. 2

⃗c Immediate backward job chain Sec. 3, Def. 3
a⃗c Immediate forward augmented job chain Sec. 3, Def. 4

⃗ac Immediate backward augmented job chain Sec. 3, Def. 5
pc Partitioned job chain Sec. 4, Def. 9

Table 2 Job chains and extensions defined in this paper.
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τ1

τ2

τ3

c⃗1
⃗c2

τ3(F3): First job of τ3
that processes data

τ1(F1): First job of τ1
that produces relevant data

Figure 3 Schedule for the cause-effect chain E = (τ1 → τ2 → τ3). Data arrives at job τ3(2). The
warm-up covers the white jobs. MRT and MDA of the gray jobs coincides.

MRT and MDA can be defined based on Definition 4 and Definition 5 directly. However,
if not all tasks in the chain are released at system start, data may be processed by some tasks
in the chain but not by all and no actuation based on this data can happen. For example, in
Figure 3 data written by τ1(1) is overwritten by τ1(2). Similarly, data written by τ1(2) is
used only by τ2(1) but never reaches the last task because τ2(2) overwrites the data written
by τ2(1). Hence, intuitively, only the gray jobs that process data that might be used in an
actuation should be considered when determining MRT and MDA. We say that the system
has warmed up when the complete chain processes data for the first time.

The first job of task E(|E|) that reads data processed by all jobs in E can be determined
by one immediate forward job chain, i.e., it is the last entry of c⃗1. The immediate backward
job chain based on that job exists and determines the first job of E(1) which processes data
that reaches task E(|E|). The procedure is summarized in Figure 3. We formalize this by
specifying the warm-up period of the system.

▶ Definition 6 (Warm-up). Let F ∈ N+ such that c⃗E
1 (|E|) is the F -th job of E(|E|). Then

we construct the immediate backward job chain ⃗cE
F and denote by F1, . . . , F|E| ∈ N+ the job

number of each job in ⃗cE
F , i.e., ⃗cE

F = (E(1)(F1), . . . , E(|E|)(F|E|)).
1

The warm-up covers all jobs of E(i) before E(i)(Fi), i = 1, . . . , |E|. In particular, those
jobs are not considered for the maximum reaction time or maximum data age.

Only augmented job chains with z no earlier than the read-event of E(1)(F1) should
be considered for the end-to-end latency. These are all a⃗cm with m ≥ F1 and all ⃗acm with
m ≥ F|E| + 1. For the following definitions, the length of an immediate forward or an
immediate backward augmented job chain is the length of the time interval from z to z′, i.e.,
ℓ(z, J1, . . . , J|E|, z′) = z′ − z.

▶ Definition 7 (Maximum reaction time). The maximum reaction time for E is defined as

MRT = sup
m≥F1

ℓ(a⃗cm) (2)

1 The existence of the immediate forward job chain c⃗E
1 ensures that ⃗cE

F can be fully constructed, i.e.,
during the backwards construction a job that writes data early enough can always be found. This is
captured by Lemma 13 and not further discussed here to improve the reading flow.

ECRTS 2023
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▶ Definition 8 (Maximum data age). The maximum data age for E is defined as

MDA = sup
m≥F|E|+1

ℓ( ⃗acm) (3)

In this work, for MRT the time from the external event z is included in the definition, as
it is also done by Feiertag et al. [10], Dürr et al. [9], and Günzel et al. [13]. For the MDA,
however, z′ is included by Günzel et al. [13] but not by Feiertag et al. [10] and Dürr et al. [9].
We refer to this definition as maximum reduced data age (MRDA). These definitions cover
slightly different scenarios: (i) The MRDA assumes that the actuation is directly triggered
by the write event of the last task in the chain, while (ii) the MDA assumes the actuation is
not directly triggered; thus, additional time for the actuation has to be included, which, in
the worst case, may happen directly before the next write event of the last task in the chain.
How MDA relates to MRDA is discussed in Section 7.1. Note, while not specifically stating
this, AUTOSAR [1] considers MDA, as explained at the end of Section 7.1.

The definitions of MRT and MDA are similar in the work by Günzel et al. [13]. However,
their calculation of MRT and MDA starts as soon as the augmented job chains become valid,
which potentially includes part of the warm-up period. We discuss in Section 7.2 how our
results can be extended to the definition of [13].

4 Partitioned Job chains

In this section, for a given task chain E, we define p-partitioned job chains (p ∈
{

1, 2, . . . , |E|
}

).
We show that these p-partitioned job chains allow maximum reaction time (MRT) and
maximum data age (MDA) definitions that are equivalent to the ones based on augmented
job chains stated in Section 3. In particular, a 1-partitioned job chain is equivalent to an
immediate forward augmented job chain and an |E|-partitioned job chain is equivalent to
an immediate backward augmented job chain. In Section 5, we utilize these p-partitioned
job chains to show the equivalence between MRT and MDA by discussing the difference of
p-partitioned and (p + 1)-partitioned job chains for p = 1, . . . , |E| − 1.

A p-partitioned job chain is a combination of (i) two subsequent jobs Jp and J̃p of task
E(p), (ii) an immediate backward job chain that starts at Jp, and (iii) an immediate forward
job chain that starts at J̃p. In Figure 4, the dashed chain pc2

1 is a 2-partitioned job chain
consisting of an immediate backward job chain with last entry τ2(1), an immediate forward
job chain with first entry τ2(2), and the connection between τ2(1) and τ2(2).

We start by formally defining partitioned job chains.

▶ Definition 9 (Partitioned job chain). Let p ∈
{

1, . . . , |E|
}

and m ∈ N+. Moreover, let

E
first

p = (E(1) → · · · → E(p)), and let E
last

p = (E(p) → · · · → E(|E|)). If ⃗c
E

first

p
m exists,

then we define the m-th p-partitioned job chain pcp
m by

pcp
m = (J1, . . . , Jp, J̃p, . . . , J̃|E|) (4)

where (J1, . . . , Jp) = ⃗c
E

first

p
m is the m-th immediate backward job chain for the cause-effect

chain E
first

p and (J̃p, . . . , J̃|E|) = c⃗
E

last

p

m+1 is the (m + 1)-th immediate forward job chain for
E

last

p . In particular, Jp = E(p)(m) and J̃p = E(p)(m + 1).

The length of a partitioned job chain is ℓ(J1, . . . , Jp, J̃p, . . . , J̃|E|) = we(J̃|E|) − re(J1).
Since pc1

m is composed of c⃗E
m+1 and one additional job at the beginning (for the external

activity), it is equivalent to a⃗cm. Since pc
|E|
m is composed of ⃗cE

m and one additional job at
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τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24

pc3
1

pc2
1

Jp = J′
p

Jp+1 J̃p+1

J̃′
p

J̃′
p+1

Figure 4 Four tasks with cause-effect chain (τ1 → τ2 → τ3 → τ4) communicating via implicit
communication. The red line depicts the chain pc3

1 whereas the dashed red line depicts pc2
1. The

length of pc3
1 is upper bounded by the length of pc2

1. The blue job annotations illustrate the proof of
Lemma 12 (≥-relation).

the end (for the actuation), it is equivalent to ⃗acm+1. For instance, in Figure 2 the chain
a⃗c1 is equivalent to the 1-partitioned job chain pc1

1 = (τ1(1), τ1(2), τ2(4), τ3(8)), and ⃗ac6 is
equivalent to the |E|-partitioned job chain pc

|E|
5 = (τ1(1), τ2(2), τ3(5), τ3(6)). Note that the

m-th |E|-partitioned job chain pc
|E|
m is equivalent to the (m + 1)-th augmented backward job

chain ⃗acm+1, i.e., the index is shifted by 1. Thus, their length is also the same:

▶ Corollary 10. For all m ∈ N+ the following two properties hold.
1. ℓ(pc1

m) = ℓ(a⃗cm).
2. pc

|E|
m exists if and only if ⃗acm+1 exists. If they exist, then ℓ(pc

|E|
m ) = ℓ( ⃗acm+1).

We restate the definitions of MRT and MDA using p-partitioned job chains.

▶ Definition 11 (MRT and MDA by partitioned job chains). The maximum reaction time
(MRT) and the maximum data age (MDA) of the cause-effect chain E can be expressed by
partitioned job chains as follows:

MRT = sup
m≥F1

ℓ(pc1
m) (5)

MDA = sup
m≥F|E|

ℓ(pc|E|
m ) (6)

5 Equivalence of MRT and MDA

In this section, we show the equivalence of maximum reaction time (MRT) and maximum data
age (MDA). More precisely, we prove that, for a given cause-effect chain E, the maximum
length of a p-partitioned job chain is the same for all p ∈

{
1, . . . , |E|

}
. Since MRT and

MDA can be expressed by 1-partitioned and by |E|-partitioned job chains, respectively, this
directly shows the equivalence of MRT and MDA.

We prove that the maximum length of a p-partitioned job chain is the same for all
p ∈

{
1, . . . , |E|

}
in two steps: (i) We show that for all p ∈

{
|E|, . . . , 2

}
the length of every

p-partitioned job chain is upper bounded by the length of a (p − 1) partitioned job chain.
This scenario is depicted in Figure 4, where the length of pc3

1 is upper bounded by the
length of pc2

1. (ii) Conversely, we show that for all p ∈
{

1, . . . , |E| − 1
}

the length of every
p-partitioned job chain is upper bounded by the length of a (p + 1)-partitioned job chain.
This is depicted in Figure 5, where the length of pc2

2 is upper bounded by the length of pc3
1.
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τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24

pc2
2

pc3
1

J̃p+1 = J̃′
p+1

J̃pJp

J′
p+1

J′
p

Figure 5 Four tasks with cause-effect chain (τ1 → τ2 → τ3 → τ4) communicating via implicit
communication. The red line depicts the chain pc2

2 whereas the dashed red line depicts pc3
1. The

length of pc2
2 is upper bounded by the length of pc3

1. The blue job annotations illustrate the proof of
Lemma 12 (≥-relation).

One problem we have to consider during step (ii) is that some (p + 1)-partitioned job
chains may not be fully constructed. For example, if the first job of τ1 in Figure 5 would
be missing, then pc3

1 could not be fully constructed and there would be no 3-partitioned job
chain which provides an upper bound on the length of pc2

2. This, however, does not impact
our result, since we show that this scenario never occurs for p-partitioned job chains pcp

m

after the warm-up, i.e., if m ≥ Fp with Fp from Definition 6.
The following lemma indicates that p-partitioned job chains for different p can be used

equivalently for the computation of MDA and MRT according to their description by
partitioned job chains from Definition 11.

▶ Lemma 12. For all p ∈
{

1, . . . , |E| − 1
}

, we have

sup {ℓ(pcp
m) | m ≥ Fp} = sup

{
ℓ(pcp+1

m )
∣∣ m ≥ Fp+1

}
. (7)

To prove this lemma, we apply fundamental properties of immediate forward and imme-
diate backward job chains (which are part of the partitioned job chains). In particular:

If an immediate forward job chain c⃗ starts at or before another job chain c, then no job
of c can be before the job of c⃗ because in the forward chain always the earliest possible
job is chosen during construction.
If an immediate backward job chain ⃗c ends at or after another job chain c, then no job of
c can be after the job of ⃗c because in the backward chain always the latest possible job is
chosen during construction.

We formalize those two properties in the following lemma that we utilize to prove Lemma 12.
It is formulated for an arbitrary cause-effect chain E which can be E or a sub-chain of E.

▶ Lemma 13. Let E be a cause-effect chain in T, let c be a job chain for E, let c⃗ be an
immediate forward job chain for E, and let ⃗c be an immediate backward job chain for E.
1. If i ∈ {1, . . . , |E|} exists such that c⃗(i) ≼ c(i), then c⃗(j) ≼ c(j) for all j ∈ {i, . . . , |E|}.
2. If i ∈ {1, . . . , |E|} exists such that c(i) ≼ ⃗c(i), then c(j) ≼ ⃗c(j) for all j ∈ {1, . . . , i}.

The proof for Lemma 13 is provided in the appendix. We now provide the proof of
Lemma 12. We split the proof into two steps, showing the ≥-relation and the ≤-relation,
from which the equality directly follows.

To proof idea for the ≥-relation is as follows. First, we pick any p-partitioned and the
related (p + 1)-partitioned job chain that have the job of E(p) in common. Second, we show
(i) that their immediate backward job chains both end at the same job of E(1), and (ii) that
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the immediate forward job chain related to the p + 1-partitioned job chain ends not later
than the one related to the p-partitioned job chain. For instance, in Figure 4, pc3

1 and pc2
1

have job τ2(1) in common, both immediate backwards job chains end at τ1(1), and pc3
1 ends

at τ4(2) which is not later than the end of pc2
1 at τ4(3). Hence, ℓ(pc2

1) ≥ ℓ(pc3
1).

Proof of Lemma 12, ≥-relation. Let m ≥ Fp+1. We denote the jobs of the partitioned job
chain pcp+1

m by pcp+1
m = (J1, . . . , Jp, Jp+1, J̃p+1, . . . , J̃|E|). Let ξ ∈ N such that Jp is the ξ-th

job of E(p), i.e., E(p)(ξ) = Jp. We prove that the length of pcp+1
m is upper bounded by the

length of pcp
ξ = (J ′

1, . . . , J ′
p, J̃ ′

p, . . . , J̃ ′
|E|) by showing we(J̃ ′

|E|) − re(J ′
1) ≥ we(J̃|E|) − re(J1)

in two substeps: First, we show that J1 and J ′
1 are the same (i.e., J1 = J ′

1), and second,
that pcp+1

m finishes not later than pcp
ξ (i.e., J̃|E| ≼ J̃ ′

|E|). Important jobs of this proof are
illustrated in Figure 4.

Step 1 (J1 = J ′
1): By definition, Jp = J ′

p. Since (J1, . . . , Jp) and (J ′
1, . . . , J ′

p) are
immediate backward job chains with the same last entry, they coincide. Hence, J1 = J ′

1.
Step 2 (J̃|E| ≼ J̃ ′

|E|): Since (J1, . . . , Jp+1) is an immediate backward job chain, this
means that Jp = E(p)(ξ) is the latest job with write-event no later than the read-event of Jp+1.
Therefore, the write-event of the subsequent job of the same task, which is E(p)(ξ + 1) = J̃ ′

p,
must be after the read-event of Jp+1, i.e., re(Jp+1) < we(J̃ ′

p).
The job J̃p+1 of E(p + 1) subsequent to Jp+1 either has its read-event before we(J̃ ′

p) as
well (i.e., re(J̃p+1) < we(J̃ ′

p)) or is the earliest job of E(p + 1) with re(J̃p+1) ≥ we(J̃ ′
p). In

both cases J̃p+1 ≼ J̃ ′
p+1 as re(J̃ ′

p+1) ≥ we(J̃ ′
p). Since (J̃p+1, . . . , J̃|E|) and (J̃ ′

p+1, . . . , J̃ ′
|E|)

are both immediate forward job chains and J̃p+1 ≼ J̃ ′
p+1, we know J̃|E| ≼ J̃ ′

|E| by Lemma 13.
Combining Step 1 and 2, we get ℓ(pcp+1

m ) = we(J̃|E|)−re(J1) ≤ we(J̃ ′
|E|)−re(J ′

1) = ℓ(pcp
ξ).

Since (J1, . . . , Jp+1) is an immediate backward job chain and E(p + 1)(Fp+1) ≼ Jp+1, by
Lemma 13, E(p)(Fp) ≼ Jp holds as well. As Step 1 shows Jp = J ′

p = E(p)(ξ), we conclude
that ξ ≥ Fp. Hence, ℓ(pcp+1

m ) ≤ ℓ(pcp
ξ) ≤ sup

{
ℓ(pcp

η)
∣∣ η ≥ Fp

}
.

Since m ≥ Fp+1 is arbitrarily chosen, we obtain sup
{

ℓ(pcp+1
m )

∣∣ m ≥ Fp+1
}

≤
sup

{
ℓ(pcp

η)
∣∣ η ≥ Fp

}
, i.e., the relation ≥ holds for Equation (7) ◀

Similarly, we show the ≤-relation by picking any p-partitioned and the related (p + 1)-
partitioned job chain that have the job of E(p + 1) in common. Second, we show (i) that
their immediate forward job chains both end at the same job of E(|E|), and (ii) that the
immediate backward job chain related to the p + 1-partitioned job chain ends not later than
the one related to the p-partitioned job chain. For instance, in Figure 5, pc3

1 and pc2
1 have

job τ3(2) in common, both immediate forward job chains ends τ4(2), and pc3
1 ends at τ1(1)

which is not later then the end of pc2
2 at τ1(2). Hence, ℓ(pc2

2) ≤ ℓ(pc3
1).

Proof of Lemma 12, ≤-relation. Let m ≥ Fp. We denote the jobs of the partitioned job
chain pcp

m by pcp
m = (J1, . . . , Jp, J̃p, J̃p+1, . . . , J̃|E|). Let ξ ∈ N such that J̃p+1 is the ξ-th job

of E(p + 1), i.e., E(p + 1)(ξ) = J̃p+1.
As an additional step, we must show that ξ − 1 ≥ Fp+1 holds for the previous job of

E(p + 1)(ξ − 1). Assume for contradiction that ξ − 1 < Fp+1. Then ξ ≤ Fp+1. Therefore,
J̃p+1 ≼ E(p + 1)(Fp+1) holds. Since (E(1)(F1), . . . , E(|E|)(F|E|)) is an immediate backward
job chain, by Lemma 13 we obtain that J̃p ≼ E(p)(Fp). Furthermore, since J̃p = E(p)(m + 1)
by definition of pcp

m, we obtain m + 1 ≤ Fp, i.e., m < Fp which contradicts that m ≥ Fp.
Since ξ − 1 ≥ Fp+1 and for Fp+1 an immediate backward job chain exists, the immediate

backward job chain ⃗c
E

first

p+1
ξ−1 can be fully constructed and pcp+1

ξ−1 exists. We now prove that the

ECRTS 2023
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length of pcp
m is upper bounded by the length of pcp+1

ξ−1 = (J ′
1, . . . , J ′

p+1, J̃ ′
p+1, . . . , J̃ ′

|E|), i.e.,
we show that we(J̃ ′

|E|) − re(J ′
1) ≥ we(J̃|E|) − re(J1). Specifically, we show J̃|E| = J̃ ′

|E| and
J ′

1 ≼ J1 in two individual steps. Important jobs of this proof are illustrated in Figure 5.
Step 1 (J̃ ′

|E| = J̃|E|): By definition, we have J̃ ′
p+1 = E(p + 1)(ξ) = J̃p+1. Since the

immediate forward job chains (J̃ ′
p+1, . . . , J̃ ′

|E|) and (J̃p+1, . . . , J̃|E|) both have the same job
as the first entry, these job chains coincide. In particular, J̃ ′

|E| = J̃|E|.
Step 2 (J ′

1 ≼ J1): Since (J̃p, . . . , J̃|E|) is an immediate forward job chain, the job
J̃p+1 = E(p + 1)(ξ) is the earliest job with read-event no earlier than we(J̃p). Thus, the read-
event of E(p + 1)(ξ − 1) = J ′

p+1 must be before the write-event of J̃p, i.e., we(J̃p) > re(J ′
p+1).

For the job of E(p) previous to J̃p, which is Jp, we either have we(Jp) > re(J ′
p+1) as well,

or Jp is the latest job of E(p) with we(Jp) ≤ re(J ′
p+1). In both cases J ′

p ≼ Jp because
we(J ′

p) ≤ re(J ′
p+1). Since (J ′

1, . . . , J ′
p) and (J1, . . . , Jp) are both immediate backward job

chains and J ′
p ≼ Jp, we have J ′

1 ≼ J1 as well by Lemma 13.
Therefore, we obtain ℓ(pcp

m) = we(J̃|E|) − re(J1) ≤ we(J̃ ′
|E|) − re(J ′

1) = ℓ(pcp+1
ξ−1). We

already showed that ξ − 1 ≥ Fp+1, hence ℓ(pcp
m) ≤ ℓ(pcp+1

ξ−1) ≤ sup
{

ℓ(pcp+1
η )

∣∣ η ≥ Fp+1
}

.

Since m ≥ Fp is arbitrarily chosen, the relation ≤ holds for Equation (7) as
sup {ℓ(pcp

m) | m ≥ Fp} ≤ sup
{

ℓ(pcp+1
η )

∣∣ η ≥ Fp+1
}

. ◀

We have shown that p-partitioned job chains for different p can be utilized equivalently.
The equivalence of MRT and MDA follows directly by applying Lemma 12 multiple times.

▶ Theorem 14 (Equivalence). The maximum reaction time and maximum data age are
equivalent, i.e.,

MRT = sup {ℓ(pcp
m) | m ≥ Fp} = MDA (8)

for all p ∈
{

1, . . . , |E|
}

.

6 Implication in Practice

The provided result is much stronger than the observation made in the AUTOSAR timing
specification, namely, that “without over- and undersampling, age and reaction are the
same” [1, Section 7.2, p. 149]. Specifically, in Section 5 we show that MRT and MDA are
always the same. Since we only assume that each task releases a countably infinite number
of jobs, this equivalence holds for a variety of scenarios. This covers, for example:

Systems with over- and undersampling
Implicit communication or communication by logical execution time (LET)
Fixed-priority or Dynamic-priority schedulers
Tasks scheduled by the Robot Operating System 2 (ROS2), as demonstrated in Section 9
Synchronized or asynchronized distributed systems
Periodic or sporadic task systems

This implies that for many industrial applications MRT and MDA can be used and
analyzed equivalently. In particular, any guarantee for one metric holds for the other one as
well. Furthermore, end-to-end timing specification in industrial systems only needs to consider
one instead of two different latencies. This eases the verification of timing constraints.

The model of p-partitioned job chains, introduced in Section 4, and the description of
MRT and MDA independent of p can be used to improve end-to-end latency analysis. For
instance, a significant speedup of the latency calculation of periodic tasks communicating
via LET can be obtained by choosing the right p, as demonstrated in Section 8.
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7 Extension to Alternative Definitions

In this section we discuss how the results from Section 5 can be used for alternative definitions
of MRT and MDA. In particular, we discuss reduced end-to-end latencies used by Dürr et
al. [9] and Feiertag et al. [10] in Section 7.1, and we discuss a definition based on valid job
chains used Günzel et al. [13] in Section 7.2.

7.1 Maximum Reduced Data Age and Reaction Time
The reaction time definition by, e.g., Dürr et al. [9] and Feiertag et al. [10] coincides with the
maximum reaction time specified in Section 3. However, their definition of maximum data
age does not include the additional time between the last job in the chain and the actuation
(at time z′); they use MRDA instead. In this section, we discuss how our results can be
transferred to this alternative definition of the end-to-end latencies.

We start by defining the reduced length of a job chain providing a maximum reduced
reaction time (MRRT), analogously to the MRDA definition by Günzel et al. [13]. The MRT
assumes a similar scenario.

▶ Definition 15 (Reduced length). For an immediate forward or immediate backward
augmented job chain (z, J1, . . . , J|E|, z′), we define the reduced length ℓ∗ as the length of the
intermediate job sequence, i.e., ℓ∗(z, J1, . . . , J|E|, z′) = ℓ(J1, . . . , J|E|).

This MRDA definition assumes that the actuation is directly triggered by the write event
of the last task in the chain, while the MDA definition assumes that the actuation is based
on the calculated value but not triggered directly.

▶ Definition 16 (Maximum reduced data age). The maximum reduced data age (MRDA) is:
MRDA = supm≥F|E|+1 ℓ∗( ⃗acm).

Similarly, one can distinguish between the MRT, assuming a scenario where an external
cause happens at any time and is registered at the read-event of the first task in the chain,
and the MRRT, where read-event and cause happen at the same time.

▶ Definition 17 (Maximum reduced reaction time (MRRT)). We define the maximum reduced
reaction time (MRRT) as: MRRT = supm≥F1 ℓ∗(a⃗cm).

Since the reduced length can be computed from the length of a cause-effect chain by
removing the additional time at the beginning or at the end, there is the following relation
between MRT (MDA, respectively) and MRRT (MRDA, respectively).

▶ Theorem 18. Let ρ+(τ) be the maximal time between two subsequent read-events of a
task τ , and let ρ−(τ) be the minimal time between two subsequent read-events of a task τ .
Then the following two bounds hold:

MRT − MRRT ∈ [ρ−(E(1)), ρ+(E(1))] (9)
MDA − MRDA ∈ [ρ−(E(|E|)), ρ+(E(|E|))] (10)

We omit the proof, as the relation directly follows from the definition. The above relations
can be utilized to transfer the statements from Theorem 14 to MRDA and MRRT. We note
that for periodic or sporadic systems MRT = MDA > MRDA holds, i.e., MRT ̸= MRDA
in all scenarios. In particular, AUTOSAR considers MDA since they observe that “without
over- and undersampling, age and reaction are the same” [1, Section 7.2, p. 149].
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7.2 MRT and MDA Based On Valid Chains
In this section, we extend the equivalence results from the Section 5 to MRT and MDA as
defined by Günzel et al. [13] based on valid immediate forward and valid immediate backward
augmented job chains. In particular, valid job chains are defined in [13] as follows.

▶ Definition 19 (Valid [13]). Let (z, J1, . . . , J|E|, z′) be an immediate forward or immediate
backward augmented job chain. Moreover, let j ∈ N+ such that z = re(E(1)(j)), i.e., z is at
the read-event of the j-th job of E(1). Then (z, J1, . . . , J|E|, z′) is called valid, if and only if j ≥
vE , where vE be the smallest integer such that re(E(1)(vE +1)) > maxi∈{1,...,|E|} re(E(i)(1)).

We denote the MRT and MDA based on valid chains by MRTV and MDAV, respectively.
For the MRT based on valid chains, instead of m ≥ F1 all m ∈ N+ such that a⃗cm is valid
are considered. Similarly, for the MDA based on valid chains, instead of m + 1 ≥ F|E| all
m ∈ N+ such that ⃗acm exists and is valid are considered.

MRTV = sup
{

ℓ(a⃗cm)
∣∣ m ∈ N+, a⃗cm valid

}
(11)

MDAV = sup
{

ℓ( ⃗acm)
∣∣ m ∈ N+, ⃗acm exists and valid

}
(12)

In the following we discuss the equivalence of MRTV and MDAV. To that end, we first
define V1, . . . , VE through an immediate backward job chain as follows.

▶ Definition 20. Let V ∈ N+ such that ⃗cE
V is the first immediate backward job chain with

E(1)(vE) ≼ ⃗cE
V (1), with vE defined as in Definition 19. We denote by V1, . . . , V|E| ∈ N+ the

job number of each job in ⃗cE
V , i.e., ⃗cE

V = (E(1)(V1), . . . , E(|E|)(V|E|)).

With an analogous proof as in Lemma 12 we obtain that for all p ∈
{

1, . . . , |E| − 1
}

, we
have sup {ℓ(pcp

m) | m ≥ Vp} = sup
{

ℓ(pcp+1
m )

∣∣ m ≥ Vp+1
}

. As a result,

sup
m≥V1

ℓ(a⃗cm) = sup
m≥V1

ℓ(pc1
m) = sup

m≥Vp

ℓ(pcp
m) = sup

m≥V|E|

ℓ(pc|E|
m ) = sup

m≥V|E|+1
ℓ( ⃗acm). (13)

By the definition of V|E| it can be shown that MDAV = supm≥V|E|+1 ℓ( ⃗acm). For MRTV

one additional immediate augmented forward job chain has to be included to account for
the m in

{
vE , . . . , V1

}
. In particular, MRTV = max(ℓ(a⃗c

vE ), supm≥V1 ℓ(a⃗cm)). We conclude
that for the alternative definition of MRT and MDA based on valid chains, an equivalence
can be obtained up to the first immediate forward augmented job chain, i.e.,

MRTV = sup(ℓ(a⃗c
vE ), MDAV), (14)

where a⃗c
vE is the first valid immediate forward augmented job chain. The proof of this

equivalence is provided in the appendix.

8 Application: Analysis of Chains with Periodic LET Tasks

In this section, we experimentally evaluated the correctness of the relations from Theorem 14
and Theorem 18 by comparing the results to the state of the art by Günzel et al. [13].
In particular, we applied them to periodic tasks scheduled on one electronic control unit
(ECU) and communicating under Logical Execution Time (LET) to see if the correct latency
values were calculated. Furthermore, we examined whether our approach resulted in faster
computation time than the state of the art.



M. Günzel, H. Teper, K.-H. Chen, G. von der Brüggen, and J.-J. Chen 9:15

Considered approaches. We compared our approach to Günzel et al. [13].
Approach by Günzel et al. [13] (G21): Let Φ(E) := max

{
ϕE(i)

∣∣∣ i = 1, . . . , |E|
}

be

the maximal phase of the tasks in E and let H(E) := lcm(
{

TE(i)

∣∣∣ i = 1, . . . , |E|
}

) be the hy-
perperiod of all tasks in E. Then under LET the immediate forward and immediate backward
augmented job chains with external activity during the interval [Φ(E)+H(E), Φ(E)+2H(E))
repeat each hyperperiod. In particular only those immediate forward and immediate back-
ward augmented job chains with external activity no later than Φ(E) + 2H(E) have to be
constructed and compared to obtain the MDA, MRDA, MRT and MRRT.

Our approach (Our): According to Theorem 14 it is sufficient to examine the p-
partitioned job chains for one p ∈

{
1, . . . , |E|

}
to compute the maximum data age. To

minimize the calculation time, we considered the task E(p) with the highest period. By this
choice of p, the number of constructed job chains can be reduced significantly. MRT and
MDA are computed by Theorem 14. By applying Theorem 18, the MRDA and the MRRT
can be computed from the MDA and MRT, respectively, since ρ−(τ) = Tτ = ρ+(τ) for all
LET tasks τ .
Task set generation. We randomly generated 10000 task sets T, each with a random cardin-
ality of nT ∈ [50, 100]∩N. To evaluate the approaches with tasks similar to a real-world applic-
ation, we generated tasks according to the Automotive Benchmark by Kramer et al. [19]. In
particular, for each task τ we drew a period Tτ from the set {1, 2, 5, 10, 20, 50, 100, 200, 1000}
according to the related share2 of these periods in [19, Table III, IV and V]. We assumed
implicit deadlines, i.e., the relative deadline Dτ was set to the period Tτ , and the phase ϕτ

was set to 0 for all tasks. Since the read- and write-events under logical execution time are
independent from the execution behavior, no execution time of the task was synthesized.
Cause-effect chain generation. For each task set T, we generated a cause-effect chain E

according to Kramer et al. [19, Section IV-E]. In particular, we applied the following steps:
1. The number of involved activation patterns PE ∈ {1, 2, 3}, i.e., the number of unique

periods of the tasks in the cause-effect chain E, was drawn according to the distribution
in [19, Table VI].

2. A set SE of PE unique periods was uniformly drawn from the periods in T.
3. For each period in SE , we drew 2 to 5 tasks at random (without replacement) according

to the distribution in [19, Table VII] from the tasks in T with the respective period. The
cause-effect chain E consists of these tasks in random order.

If there were not sufficient tasks with required period in Step 3, we discarded the set and
randomly drew another task set until a cause-effect chain was successfully created.
Evaluation results. For each cause-effect chain, we applied (G21) to compute MDA,
MRT, MRDA, and MRRT. Additionally, we applied (Our) to calculate the same values using
Theorem 14 and Theorem 18. For the runtime measurements, we use a machine equipped
with 2x AMD EPYC 7742 running Linux, i.e., in total 256 threads with 2.25GHz and 256GB
RAM. Each measurement runs on one independent thread.

Observation 1: For all 10000 cause-effect chains all latency values obtained by (Our)
coincide with the corresponding values obtained by (G21). In particular, the equivalence of
MRT and MDA holds for all scenarios, even with over- and undersampling.

Observation 2: Our results can reduce the required time for computing the end-to-end
latencies significantly. Specifically, Figure 6 depicts the time ratio, defined by time_our

time_g21 , where

2 The sum of probabilities in [19] is only 85%. The remaining 15% are reserved for angle-synchronous
tasks that we do not consider here. Therefore, all share values were divided by 0.85.
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Figure 6 The time_ratio for different number
of involved activation patterns. Red line depicts
median, blue box 50% of the data, and the whiskers
all data except the highest and the lowest 1%.

involved patterns 1 2 3

number values 8109 1436 455

min speed-up 1.08 1.44 1.35

median speed-up 2.83 8.70 20.71

mean speed-up 3.03 48.13 96.27

max speed-up 5.76 1476.02 1623.50

Table 3 Speed-up for different number of
activation patterns.

Sensor1

Sensor2

Sensor3

Fusion Perception Planning Control Actuator

Figure 7 ROS2 basic navigation system.

time_our and time_g21 is the time needed by (Our) and (G21), respectively, to derive all
four latency values (considering the minimal runtime over 1000 runs for each of the 10000
cause effect chains). On the x-axis the number of different activation patterns, i.e., the
number of different periods in the cause-effect chain, is shown. Additionally, Table 3 shows
the speed-up, defined as time_g21

time_our .

We observe that (Our) reduces the required time significantly compared to (G21). In
particular, when all tasks in the cause-effect chain have the same period, then the number of
computed chains, and hence the runtime, is halved on average. When there is more than one
activation pattern, then (Our) reduces the number of constructed chains by choosing p such
that E(p) is the largest period, and a much larger speed-up is observed such cases.

9 Case Study: ROS2

In this section, we validate Theorem 18 and Theorem 14 considering a basic navigation
system, as shown in Figure 7, and apply the scheduling mechanism of the Robot Operating
System 2 [23] (ROS2) on a single ECU. The navigation system includes three sensors, whose
data is combined and processed for the perception of the environment, planning the route,
controlling the vehicle, and sending the output to the vehicle interfaces via an actuator.

A system in ROS2 consists of nodes and topics. Each node represents one component of
the system, which can communicate with other nodes via topics, that implement a publish-
subscribe architecture. Nodes are represented by tasks and each execution of a node can be
considered as the execution of a job. The nodes follow an implicit communication policy, i.e.,
the read-event of a node is at its start and the write-event of a node is at its finish. Nodes are
either time-triggered and event-triggered, i.e., some tasks have an aperiodic behavior. ROS2
has a non-standard custom scheduler that executes tasks instances under a round-robin
scheduling approach. Specifically, the scheduler repeatedly collects at most one job of each
task for the round, after which it executes them according to their priority. However, the
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Component Type Period WCET
Sensor time-trig. 100ms 10ms

Fusion time-trig. 100ms 100ms

Fusion event-trig. - 5ms

Perception event-trig. - 200ms

Planning event-trig. - 100ms

Control event-trig. - 50ms

Actuator event-trig. - 5ms

Table 4 Periods and WCET of the nodes.

MRT 4.0

MDA 4.0

MRRT 3.5

MRDA 3.5

ℓ(a⃗cm′ ) 3.5

ρ+(E(1)) 0.5

ρ−(E(1)) 0.5

ρ+(E(|E|)) 0.5

ρ−(E(|E|)) 0.5

Table 5 Measurements of the ROS2 system.

results from this work can still be applied as the basic assumptions (R1) and (R2) for the
read- and write-events in Section 2 are met. We do not provide details of the ROS2 scheduling
approach here, as we only focus on the timing behavior of the resulting system.

The system depicted in Figure 7 has three sensors whose data is combined in the fusion
node. The perception, planning, and control node process the data and supply the actuator
node with instructions. For the simulation of the ROS2 scheduling behavior we assume
that all jobs have a fixed execution time. Table 4 gives an overview of the WCET of each
component and of the period of the time-triggered components.

For the first chain E = (Sensor1, . . . , Actuator) marked in orange in Figure 7, we measured
the MRT, MDA, MRRT, and MRDA by determining the longest immediate forward and
immediate backward augmented job chains. The measured values are summarized in Table 5,
showing that Theorem 14 and Theorem 18 hold.

10 Related Work

The first end-to-end latency analysis for maximum reaction time of a cause-effect chain was
developed by Davare et al. [8] in 2007. Later, in 2009, the end-to-end semantics were further
extended by Feiertag et al. [10]. Specifically, a formal definition of maximum data age and
maximum reaction time is proposed by timed paths to distinguish the semantics for the
data propagation delay. Based on forward reachability and overwriting of data, first-to-first
and last-to-last data propagation semantics are proposed, coinciding with the maximum
reaction time and the maximum data age, respectively. In addition, they are also known as
First-in-First-out (FIFO) and Last-in-Last-out (LILO), respectively [21,22].

The semantics of maximum reaction time and maximum data age have been widely
studied in the literature. Several techniques have been derived through formal verification
and compiler to verify the data propagation delay for periodic task systems. Rajeev et
al. [24] develop a model-checking based technique to compute the end-to-end delay under
both semantics for periodic tasks. Forget et al. [28] propose a language-based approach to
verify end-to-end delay at the model level. Klaus et al. [16] extend the design flow of the
Real-Time Systems Compiler (RTSC) to take data propagation delay into account but only
focus on the maximum data age.

The analysis approaches for end-to-end delays can be classified into two paradigm: active
approaches [5,7,12,25], where the release of jobs in the chain is actively controlled depending
on the production of data to ensure the data coherence for read and write, and passive
approaches [2, 3, 6, 8–11, 13, 17, 24, 26], that focus on how the data is produced and consumed
among the jobs of the recurrent tasks in the cause-effect chain provided that the release
of jobs of subsequent tasks is independent from the production of data. The approaches
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proposed in this work are passive ones, but the equivalence of both end-to-end semantics
holds in general; that is, the equivalence is not limited to the passive paradigm.

Some recent results focus on end-to-end analysis under the Logical Execution Time
(LET) communication model, proposed by Kirsch and Sokolova [15]. Martinez et al. [20]
analyzed its effect on the end-to-end delay. Becker et al. [4] further extend their previous
analysis from implicit communication to LET. Kordon and Tang [18] develop a framework to
calculate the maximum data age under the LET communication based on a given general task
dependency graph. Hamann et al. [14] propose a model transformation method to increase
the expressiveness of current timing analysis. They address heterogeneous communication
semantics including LET. Our analysis is also applicable for LET communication.

11 Conclusion

Over the last years different timing metrics for the end-to-end latency of cause-effect chains
were considered. Of particular interest are the maximum reaction time and the maximum
data age. AUTOSAR observed that both metrics coincide if no over- and undersampling
occurs. However, it was assumed that both metrics differ for the general case.

In this paper, we show the equivalence of maximum reaction time and maximum data
age. To this end, we introduce p-partitioned job chains and show that both timing metrics
can be determined by constructing p-partitioned job chains for the same p.

The impact of the equivalence is twofold:
1. Analytical literature results for one metric can immediately be used for the other.
2. The choice of p ∈

{
2, . . . , |E| − 1

}
allows novel analysis approaches and a reduced runtime

of current approaches by reducing the number of necessary job chains under consideration.
We demonstrate the impact of this work by considering the case of periodic tasks communic-
ating under LET. In particular, we show that the end-to-end analysis can be performed up
to 1600 times faster in this scenario.

The equivalence holds for almost any scheduling mechanism and even for task systems
which do not adhere to the typical periodic or sporadic task model. We support this statement
with a case study based on ROS2.

Appendix: Proof of Lemma 13

We first restate Lemma 13.

▶ Lemma 13. Let E be a cause-effect chain for the task set T. Moreover, let c be a job chain
for E, let c⃗ be an immediate forward job chain for E, and let ⃗c be an immediate backward
job chain for E.
1. If there exists i ∈ {1, . . . , |E|} such that c⃗(i) ≼ c(i), then c⃗(j) ≼ c(j) for all j ∈

{i, . . . , |E|}.
2. If there exists i ∈ {1, . . . , |E|} such that c(i) ≼ ⃗c(i), then c(j) ≼ ⃗c(j) for all j ∈ {1, . . . , i}.

Proof. We prove 1) by induction over j = i, . . . , |E|.
Initial case: For j = i, c⃗(j) ≼ c(j) by assumption.
Induction step: If c⃗(j) ≼ c(j) for j ∈ {i, . . . , |E| − 1}, then this means that the write-event
of the job c⃗(j) is no later than the write-event of the job c(j). Since the read-event of the job
c(j + 1) is no earlier than the write-event of c(j) by definition of a job chain, the read-event
of c(j + 1) is also no earlier than the write-event of c⃗(j). Since c⃗(j + 1) is the earliest job
with read-event no earlier than the write-event of c⃗(j), we conclude that c⃗(j + 1) ≼ c(j + 1).
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We prove 2) by induction over j = i, . . . , 1.
Initial case: For j = i, c(j) ≼ ⃗c(j) by assumption.
Induction step: If c(j) ≼ ⃗c(j) for j ∈ {i, . . . , 2}, then this means that the read-event of
the job c(j) is no later than the read-event of the job c(j). Since the write-event of the job
c(j − 1) is no later than the read-event of c(j) by definition of a job chain, the write-event
of c(j − 1) is also no later than the read-event of ⃗c(j). Since ⃗c(j − 1) is the latest job with
write-event no later than the read-event of ⃗c(j), we conclude that c(j − 1) ≼ ⃗c(j − 1). ◀

Appendix: Proof of Extension to Valid Chains

In Section 7.2 it is shown that supm≥V1 ℓ(a⃗cm) = supm≥V|E|+1 ℓ( ⃗acm). It is left to show how
this relates to MDAV and MRTV. We start with MDAV.

▶ Lemma 14. We have MDAV = supm≥V|E|+1 ℓ( ⃗acm).

Proof. By definition in Equation (12), MDAV = sup {ℓ( ⃗acm) | m ∈ N+, ⃗acm exists and valid}.
We divide the proof in two steps: MDAV ≥ supm≥V|E|+1 ℓ( ⃗acm) and MDAV ≤ supm≥V|E|+1 ℓ( ⃗acm).

Step 1 (MDAV ≥ supm≥V|E|+1 ℓ( ⃗acm)): We know that ⃗acV|E|+1 is composed of z′ =

we(E(|E|)(V|E| + 1)), the immediate backward job chain ⃗cE
V|E|

, and z ≥ re(E(1)(vE)).

Therefore, ⃗acV|E|+1 is valid. Consequently, all ⃗acm with m ≥ V|E| + 1 are valid and MDAV ≥
supm≥V|E|+1 ℓ( ⃗acm) holds.

Step 2 (MDAV ≤ supm≥V|E|+1 ℓ( ⃗acm)): We prove this step by contradiction and assume
that there exists a valid ⃗acm = (z, J1, . . . , J|E|, z′) with m < V|E| + 1. In that case J|E| must
be a job before E(V|E|). Since by Definition 20, ⃗cE

V|E|
is the first chain with E(1)(vE) ≼ ⃗cE

V (1),

the job J1 must be earlier than E(1)(vE). Hence, ⃗acm = (z, J1, . . . , J|E|, z′) is not valid,
which is a contradiction. ◀

For the MRT, we may need to account for additional immediate forward augmented job
chains before V1. By definition, valid immediate forward augmented job chains a⃗cm with
vE ≤ m < V1 include the immediate forward job chain c⃗E

m+1 with v|E| < m + 1 ≤ V1. The
following lemma examines those immediate forward job chains further, showing that all of
them end at the same job, which means that the longest a⃗c1

m with m < F1 is the first one.

▶ Lemma 15. Let m ∈ N+ with vE ≤ m ≤ V1. The last entry of the m-th immediate forward
job chain c⃗E

m is the job where ⃗cE
V ends, i.e., c⃗E

m(|E|) = E(|E|)(V|E|).

Proof. Let ξ ∈ N+ such that c⃗E
m(|E|) = E(|E|)(ξ). In the following, we show that ξ = V .

Since there exist job chains with last job E(|E|)(ξ), this means that ⃗cE
ξ exists as well

because for the backward construction of that chain in each step a job can be chosen.
Moreover, since ⃗cE

ξ is immediate backward and c⃗E
m is a job chain with the same job as last

entry, by Lemma 13 c⃗E
m(1) ≼ ⃗cE

ξ (1). Hence, E(1)(v|E|) ≼ ⃗cE
ξ (1). Since ⃗cE

V is the earliest
immediate backward job chain with this property, we obtain ξ ≥ V .

Since c⃗E
m(1) ≼ E(|E|)(V1) = ⃗cE

V (1) and c⃗E
m is immediate forward, we can apply Lemma 13

and obtain c⃗E
m(|E|) ≼ ⃗cE

V (|E|) = E(|E|)(V|E|), i.e., ξ ≤ V . ◀

Since the last job of every c⃗E
m with v|E| ≤ m ≤ V1 is E(|E|)(V|E|), the last job of every

a⃗cm with v|E| ≤ m < V1 is E(|E|)(V|E|) as well. Furthermore, since the a⃗c1
m with the lowest
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m has the earliest first job, it is the longest one, i.e., to obtain MRTV only the first valid
immediate forward augmented job chain is considered in addition to supm≥V1 ℓ(a⃗cm).

▶ Lemma 16. We have MRTV = max(ℓ(a⃗c
vE ), supm≥V1 ℓ(a⃗cm)), where a⃗c

vE is the first
valid immediate forward augmented job chain.

Proof. By definition, V1 ≥ vE . Moreover, 1-partitioned job chains a⃗cm are valid if
and only if m ≥ vE . Therefore, MRTV is the maximum of sup {ℓ(a⃗cm) | m ≥ V1} and
max

{
ℓ(a⃗cm)

∣∣∣ V1 > m ≥ vE
}

. Moreover, by Lemma 15 max
{

ℓ(a⃗cm)
∣∣∣ V1 > m ≥ vE

}
is

either 0 if V1 = vE , or it is the length of a⃗c
vE . ◀

We summarize the relation between MDAV and MRTV.

▶ Proposition 17. The maximum reaction time MRTV = sup(ℓ(a⃗c
vE ), MDAV), where a⃗c

vE

is the first valid immediate forward augmented job chain.

The MRTV can also be formulated as MRTV = max(ℓ(pc1
vE

), MDAV), where pc1
vE

is
the first valid immediate forward augmented job chain, since by Lemma 10 ℓ(pc1

vE
) =

ℓ(a⃗c
vE ). Moreover, MDAV can be computed through p-partitioned job chains as MDAV =

supm≥Vp
ℓ(pcp

m) for any p ∈
{

1, . . . , |E|
}

.
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