
Pr
ep

ri
nt

V
er

si
on

.

Priority Point Exploration in EDF-Like Scheduling for
Self-Suspending Tasks

Mario Günzel, Kuan-Hsun Chen, Jian-Jia Chen, and Ching-Chi Lin
TU Dortmund University, Germany

University of Twente, The Netherlands

in: Workshop on OPtimization for Embedded and ReAl-time systems (OPERA) co-located with
the 44th IEEE Real-Time Systems Symposium (RTSS). See also BIBTEX entry below.

BIBTEX:
@inproceedings{9188172,

author={Mario Günzel and Kuan-Hsun Chen and Jian-Jia Chen and Ching-Chi Lin},
booktitle={Workshop on OPtimization for Embedded and ReAl-time systems (OPERA)
co-located with the 44th IEEE Real-Time Systems Symposium (RTSS)},

title={Priority Point Exploration in EDF-Like Scheduling for Self-Suspending Tasks},
year={2023},

}

© copyright by the author(s)

computer
science 12



Pr
ep

ri
nt

V
er

si
on

.
1



Priority Point Exploration in EDF-Like Scheduling
for Self-Suspending Tasks

Mario Günzel∗, Kuan-Hsun Chen†, Jian-Jia Chen∗ and Ching-Chi Lin∗
∗TU Dortmund University, Germany

Email: {mario.guenzel, jian-jia.chen, chingchi.lin}@tu-dortmund.de
†University of Twente, The Netherlands

Email: k.h.chen@utwente.nl

Abstract—The choice of a scheduler has major impact on the
schedulability of a task set. While Earliest-Deadline-First (EDF)
provides the best schedulability guarantee for tasks without
self-suspension, the existing proof of optimality does not hold
anymore when scheduling self-suspending tasks. In such a case,
empirical searches can be conducted to identify a scheduler that
makes a task set schedulable. However, due to the extensive
amount of priority-based schedulers, finding a proper scheduler
can be challenging.

In this work, we employ EDF-Like (EL) scheduling, which
allows us to describe a large amount of priority-based schedulers
by setting a relative priority point for each task. We propose two
approaches for finding relative priority points that describe a
scheduler that ensures the schedulability of the task set.

I. INTRODUCTION

Schedulability is a fundamental property of real-time sys-
tems. Given a task set, we can apply schedulability tests
corresponding to a scheduling algorithm to verify whether
every task meets its deadline. One typical approach is to ensure
that the worst-case response time (WRCT) Ri of each task τi
does not exceed its relative deadline Di.

The schedulability of a task set can be affected by the
choice of the underlying scheduling algorithm. In this work,
we consider job-level fixed-priority preemptive scheduling
algorithms, in which each job is assigned a priority and at
each point in time the pending job with the highest priority
is executed. One prime example for job-level fixed-priority
scheduling algorithms is the Earliest-Deadline-First (EDF)
scheduling algorithm, where jobs are prioritized in order of
ascending absolute deadlines.

It is shown that EDF scheduling provides the best schedu-
lability guarantees for scheduling ordinary tasks [4]. However,
in the case of self-suspending tasks, i.e., tasks that voluntarily
yield the processor before completing their executions, the
existing proofs of optimality may no longer hold [1]. For
instance, elevating the priority of the first job of τ2 over
the first job of τ1 in Figure 1 transforms the previously
unschedulable task set under EDF into a schedulable one.

When scheduling a task set containing self-suspending
tasks, empirically finding the job priorities that lead to schedu-
lability can be challenging due to the extensive search space.
To address this issue, we adopt EDF-Like (EL) scheduling [3],
which enables the assignment of a task-specific priority point
(PP) Πi for each task τi. By configuring the PPs accordingly,

τ1

τ2

0 1 2 3 4 5 6

(a) Not schedulable using EDF

τ1

τ2

0 1 2 3 4 5 6

(b) Give τ2 a higher priority

Figure 1: Task priority affects schedulability. Task τ2 is a self-
suspending task. Scheduling the task set using EDF leads to a
deadline violation of τ2 at time 6 since τ1 has a higher priority.

EL scheduling can cover a variety of different scheduling
algorithms, including deadline-monotonic (DM) and EDF. In
this work, we propose possible approaches and ideas on how
to generate appropriate PPs to make a self-suspending task set
schedulable, based on the schedulability test from our previous
work [2]. Specifically, our contributions are as follows.

Contribution: We present two approaches in finding the
PPs in EL scheduling that makes a given task set schedulable
in Section III. The first approach tunes the PPs by iteratively
increasing the PPs of tasks with WCRT less than their dead-
line. In the second approach, we design a genetic algorithm
in finding a general rule for generating PPs based on the task
parameters. We discuss further optimization ideas and open
research questions in Section V.

II. SYSTEM MODEL

Let T = {τ1, . . . , τn} be a set of dynamic self-suspending
sporadic real-time tasks in a uniprocessor system. Each task
τi is described by a 4-tuple τi = (Ci, Si, Di, Ti), composed of
the worst-case execution time (WCET) Ci > 0, the maximum
suspension time Si ≥ 0, a relative deadline Di > 0, and
the minimum inter-arrival time Ti > 0. Each task τi releases
an infinite number of jobs (τi,j)j∈N, where ri,j and di,j =
ri,j +Di denote the release time and the absolute deadline of
the j-th job of τi, respectively. We denote by Ui := Ci

Ti
the

utilization of task τi and by U :=
∑n

i=1 Ui the total utilization
of the whole task set T.

In EDF-Like (EL) scheduling, jobs are scheduled according
to their absolute priority points πi,j ∈ R. A job τi,j has
higher priority than τi′,j′ if πi,j < πi′,j′ . The absolute PP
is computed by summing the release of the job and a task
specific parameter Πi denoted as relative priority point, i.e.,
πi,j = ri,j +Πi. Figure 2a depicts the notation, and Figure 2b

Pr
ep

ri
nt

V
er

si
on

.



τi,j

ri,j πi,j di,j

Πi

Di

(a) notations

τ1

τ2

0 2 4 6 8 10 12 14 16

(b) Example of EL Scheduling

Figure 2: (a) Notations used in this work. (b) Two tasks
scheduled under EL scheduling. All jobs finish until their
deadline (i.e., the schedule is feasible) and job priority is given
by the absolute PPs π1,1 < π1,2 < π2,1 < π1,3.

shows an example of EL scheduling for two simple tasks,
namely

• τ1 = (C1 = 2, S1 = 0, D1 = 5, T1 = 5) and
• τ2 = (C2 = 8, S2 = 2, D2 = 16, T2 = 16),

with relative PPs Π1 = 3 and Π2 = 10.

III. APPROACHES FOR FINDING THE PRIORITY POINTS

We present two approaches for finding relative PPs that
describe a scheduling algorithm that ensures the schedulability
of the task set.

A. Iterative Tuning

Given a task set T, we initialize the relative PP to Πi = Di

as a configuration for typical EDF behavior. We then compute
the WCRT Ri of each task τi using the analysis from our
previous work [2]. If there exists a task τi such that Ri > Di,
then the task set is not guaranteed to be schedulable. In that
case we want to tune the Ri by modifying the relative priority
points Πi. More specifically, we aim to reduce the Ri which
are > Di. The following observation describes a connection
between modifications of Πi and the reduction of some Ri.
This observation is the backbone of our tuning process.

Observation 1. Increasing the relative PP of τi by X > 0
does not increase its WCRT by more than X and does not
increase the WCRT of any other task. Instead, it favors
the execution of other jobs with higher relative PPs, which
potentially reduces their WCRTs.

For task sets that are not schedulable, we tune the relative
PPs to improve the schedulability with the following steps:

1) Compute the set I of all tasks τi with Ri < Di.
2) Increase the relative PP for tasks τi in the set I by setting

Πi := Πi +Di −Ri.
The process is repeated until a) the task set becomes schedu-
lable, b) a predefined iteration limit is reached, or c) I = ∅.

B. Genetic Algorithm

Aside from iteratively tuning the relative PPs for each
individual task set, we also aim to find a general expression
for generating relative PPs using a genetic algorithm. Given
a data set consists of m task sets T1, . . . ,Tm, our objective
is to construct a function f(C, S,D, T ) which maps the task
parameters to a relative PP such that the number of schedulable
task sets is maximized. In our preliminary attempt, we assume

f = Cg1 · Sg2 · T g3 + g4 · C + g5 · S + g6 · T, (1)

where g1, . . . , g6 ∈ R are the coefficients to be determined.
We use these coefficients as the genes in a chromosome, i.e.,
χ = [g1, . . . , g6], and the number of schedulable task sets
as the fitness function in our genetic algorithm. The function
f is chosen because it allows multiplication of C, S and T
(e.g., f = CST with ξ = [1, 1, 1, 0, 0, 0] or f = CS with
ξ = [1, 1, 0, 0, 0, 0]) and also approximates linear combinations
of C, S and T (if g1 = g2 = g3 approaches −∞).

Our genetic algorithm works as follows:
1) The initialization operation randomly generates µ chro-

mosomes, where µ is the size of the population in
one generation. To randomly generate a chromosome,
[g1, . . . , g6] is drawn uniformly at random from [−1, 1]6.

2) For each iteration, the crossover operation keeps select-
ing two chromosomes χ1 and χ2 randomly from the
previous generation, and perform uniform crossover to
produce a new chromosome χ′ until there are 10µ new
chromosomes.

3) For each gene χ′ achieved by crossover, the mutation
operation adds a value drawn uniformly from the interval
[−0.2, 0.2] to each gene.

4) To introduce variety, we also randomly generate 5µ
new chromosomes (drawn uniformly at random from
[−1, 1]6) and add them to the chromosome pool after
the crossover operation.

5) Finally, the selection operation selects µ chromosomes
with the highest fitness value, i.e., the number of schedu-
lable task sets, among the previous generation and the
newly generated chromosomes as a new generation. To
avoid overfitting, we generate 300 new tasksets for each
selection operation using the UUnifast algorithm. To
achieve this, the UUnifast algorithm is used to generate
50 tasksets with 10 tasks each for each utilization in
[0.4, 0.5, . . . , 0.9].

IV. PRELIMINARY EVALUATION

We generated a data set containing 500 task sets for each
utilization U = 0.1, 0.2, . . . , 1.0. The WCETs of tasks were
generated using the UUnifast algorithm and the suspension
was randomly drawn from the interval [0, 0.5] · (Ti − Ci)
for each task τi. For Iterative Tuning, we set the maximal
number of iterations to 200. For Genetic Algorithm, we used
a population size of µ = 10. After 100 generations, the highest
performing chromosome is

χ = [0.42,−0.10, 0.76,−0.52,−3.79, 2.47], (2)

which translates to

f = C0.42 ·S−0.10 ·T 0.76−0.52 ·C−3.79 ·S+2.47 ·T. (3)

We evaluated the acceptance ratio of the task sets using the
relative PPs generated by the two approaches, and compared
them with EDF and Deadline Monotonic (DM) scheduling.
Note that for EDF and DM scheduling, the state-of-the-art
schedulability analysis is utilized. Figure 3 demonstrates the
results. In that figure, EL IT illustrates the acceptance ratio
of the iterative tuning approach, and EL GA illustrates the

Pr
ep

ri
nt

V
er

si
on

.



0.2 0.4 0.6 0.8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0
Ac

ce
pt

an
ce

 R
at

io
EDF
DM
EL IT
EL GA

Figure 3: Acceptance ratio of different PP configurations.

acceptance ratio obtained by the genetic algorithm. We observe
that the acceptance ratio of the task sets is significantly
improved by applying the relative PPs generated by the two
approaches.

V. DISCUSSION AND OPEN QUESTIONS

In our preliminary evaluation, we have shown that the
acceptance ratio of task sets can be significantly improved by
tuning the relative PPs. Still, there are several open questions
that need to be addressed.

First, the analytical reasoning behind Iterative Tuning is
not fully developed yet. Major questions are whether Obser-
vation 1 holds and whether the tuning process always improves
the schedulability of the task set. Moreover, it is unclear how
the choice of the initial relative PPs affects the result.

Furthermore, instead of reducing the priority of all tasks τi
with Ri < Di by increasing their relative PP by Di −Ri, we
could instead increase the priority of all tasks with Ri > Di by
reducing their relative PP by Ri−Di. Which approach is better
and how much should the relative PP be increased or decreased
remains to be investigated. However, first evaluations indicate
that this approach is less effective than our showcased iterative
tuning.

Regarding the Genetic Algorithm approach, the selection
of a suitable structure for the function f remains an open
question. As a proof of concept we showed that even a rather
simple choice of f (c.f., Equation (1)) leads already to a
significant improvement of the acceptance ratio. Furthermore,
fine-tuning parameters like the number of generations and pop-
ulation size is essential for enhancing the overall performance
has not been investigated yet. Additionally, exploration of
diverse mutation and crossover operations could be valuable.
We hope to receive some feedback or guidance from the
community to improve these aspects even further.

Furthermore, we are unsure if using a genetic algorithm is
a good choice among the machine learning methods. It would
be valuable to explore further machine learning approaches for
finding the relative PPs.

VI. CONCLUSION AND FUTURE WORK

The choice of a scheduler majorly affects the schedulability
of a task set. Although EDF is the optimal choice for ordi-
nary tasks, different algorithms may perform better for self-
suspending tasks. In this work, we employ EDF-Like (EL)
scheduling and provide two approaches, Iterative Tuning and
Genetic Algorithm, to generate relative priority points for each
task. The preliminary evaluation shows that the acceptance
ratio of task sets can be significantly improved by tuning the
relative PPs, which motivates further research on this topic.
Guidance on configuration and choice of machine learning
models, as well as new ideas and discussion of our proposed
methods is pursued during the workshop.

We note that this paper focuses on job-level fixed priority
scheduling due to the lack of a more general analysis. To apply
our optimization approach, scheduling algorithms must be
modeled using task parameters and a sufficient schedulability
test must ensure schedulability under given task parameters.
As an example, extensions of EL scheduling with multiple
relative priority points for different task segments may be
analyzed and optimized in future work.

Currently, the paper assumes that relative priority points Πi

are real numbers. Limiting Π to rationals or only a discrete
set may speed up or simplify the optimization. However, this
is not discussed or even worked out yet.

ACKNOWLEDGMENT

This result is part of a project (PropRT) that has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 865170). This work has
been supported by Deutsche Forschungsgemeinschaft (DFG),
as part of Sus-Aware (Project No. 398602212).

REFERENCES

[1] J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen.
Scheduling self-suspending tasks: New and old results. In S. Quinton,
editor, 31st Euromicro Conference on Real-Time Systems, ECRTS 2019,
July 9-12, 2019, Stuttgart, Germany, volume 133 of LIPIcs, pages 16:1–
16:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[2] M. Günzel, G. von der Brüggen, K. Chen, and J. Chen. EDF-like
scheduling for self-suspending real-time tasks. In RTSS, 2022.

[3] H. Leontyev and J. H. Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. In RTSS, 2007.

[4] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 1973.

Pr
ep

ri
nt

V
er

si
on

.


