
Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
A

cc
ep

te
d

in
T

E
C

S

Software-Managed Read and Write Wear-Leveling for
Non-Volatile Main Memory

Christian Hakert, Kuan-Hsun Chen, Horst Schirmeier, Lars Bauer, Paul R.
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In-memory wear-leveling has become an important research field for emerging non-volatile main memories over the last years. Many
approaches in the literature perform wear-leveling by making use of special hardware. Since most non-volatile memories (NVMs)
only wear out from write accesses, the proposed approaches in the literature also usually try to spread write accesses widely over the
entire memory space. Some NVMs, however, also wear out from read accesses, because every read causes a consecutive write access.
Software-based solutions only operate from the application or kernel level, where read and write accesses are realized with different
instructions and semantics. Therefore different mechanisms are required to handle reads and writes on the software level. At first we
design a method to approximate read and write accesses to the memory to allow aging aware coarse-grained wear-leveling in the
absence of special hardware, providing the age information. Second, we provide specific solutions to resolve access hot-spots within the
compiled program code (text segment) and on the application stack. In our evaluation, we estimate the cell age by counting the total
amount of accesses per cell. The results show that employing all our methods improves the memory lifetime by up to a factor of 955×.
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1 INTRODUCTION

In recent years, non-volatile memory (NVM) has been considered as an alternative to DRAM or SRAM in the use as
memory. Due to several drawbacks (e.g. a lower cell endurance), maintenance strategies have been proposed in the
literature to overcome the impacts. Memory lifetime is a crucial issue when NVMs are considered, because it can shrink
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2 Hakert et al.

to hours or even minutes when no maintenance is applied [5, 9]. Therefore, wear-leveling strategies try to extend the
memory lifetime to the maximum by stressing all memory cells equally over time. Wear-leveling strategies can be
categorized as aging-aware and non aging-aware strategies, where aging-aware strategies investigate the current cell
ages to make adequate wear-leveling decisions. This requires precise knowledge about the cell ages, which can be either
gathered from special hardware or can be approximated by software. Non aging-aware strategies, in contrast, base
their wear-leveling decisions on other mechanisms, e.g. on random. Most aging-aware and non aging-aware strategies
usually only target write accesses, because only write accesses wear out the memory cells for most NVM types.

Some NVMs, as for instance Ferroelectric RAM (FeRAM), are also read-destructive [18]. This means that every read
access also wears out the memory cell. For (FeRAM), the reason is that read accesses overwrite the current cell value
and thus it has to be recharged subsequently [18]. Therefore every read access results in an automatic subsequent write
access to the cell. This process is triggered by the memory controller during every read access. Consequently, read
accesses have to be considered with the same impact as write accesses during wear-leveling if such read-destructive
memories are used. While this does not imply a significant difference on the hardware level (especially hardware-based
wear-leveling), because hardware can simply be extended to track read accesses as part of the wear-leveling, it does on
the software level. If wear-leveling is realized in software, tracking and counting read accesses differs fromwrite accesses.
Read and write accesses happen with different semantics on the software level, indeed there is various “read-only” data
in most programs. Thus, the different semantics have to be considered during the design of software-based solutions.

In this paper, we study the design of software-managed wear-leveling, where we investigate the design and usage
of age approximations for aging-aware wear-leveling in the absence of special hardware. By our software-managed
mechanism we denote hereby a solution, which is not fully independent of the underlying hardware and still requires a
certain set of system features. We rather consider solutions, which configure commonly available hardware components
from the software level and therefore can be implemented purely on the software level of state of the art systems.
More specifically, out solution requires an MMU and performance counters, which can be found in many recent
application processors. The solution, however, does not propose a modification of the aforementioned hardware but
only manages and configures it from the software level to achieve the wear-leveling goals. A software-based solution in
general must not be favorable over a hardware based solution, but rather offers a wear leveling solution for systems
where the required hardware support is not implemented, either on purpose to save chip space or because the system
hardware is already configured. We further cover the destructive influence of read and write accesses within our method,
such that read-destructive NVMs can be targeted as well. First, we design coarse-grained aging-aware wear-leveling,
where we sample read and write accesses to the main memory with the help of performance counters and memory
access permissions. This provides us a statistical approximation of the read and write access distribution. We feed this
approximation into a virtual memory page based wear-leveling algorithm, which remaps the physical memory pages
behind the virtual memory pages in an aging-aware manner.

As an orthogonal, we further design non-aging aware fine-grained wear-leveling, which resolve dense access hot-
spots within memory pages. The application stack segment faces intensive hot-spots of dense read and write accesses,
while compiled program code, i.e. in the text segment, only faces read hot-spots. Targeting this, we propose a mechanism,
which moves the stack and the text segment in a circular manner with small offsets through the physical memory,
while the correct execution of the program is ensured. In combination with the above coarse-grained aging-aware
wear-leveling, we achieve allover wear-leveled memory, even in the presence of a read-destructive main memory.
Our novel contributions:
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Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 3

• An online read and write approximation to allow coarse-grained page swapping with respect to read and write
accesses.

• A fine-grained wear-leveling for the stack segment to avoid write and read hot-spots. The stack is moved in a
rotational manner while correctness of pointers is maintained.

• A fine-grained wear-leveling for the text segment to avoid read hot-spots. This approach moves the text segment in a
rotational manner to spread read hot-spots through a larger memory area.

2 RELATEDWORK

Over the last decades, several approaches for in-memory wear-leveling for NVM have been proposed. These approaches
can be categorized along different criteria. First, there are aging-aware approaches [1, 2, 4–6, 11, 15, 17, 20, 24], which
take the current cell age into account to apply wear-leveling. In contrast, randomized approaches [5, 19, 24] apply wear-
leveling in a circular or randomized manner. Both approaches are often combined to achieve a randomized wear-leveling
on fine granularities inside of memory blocks, while an aging-aware approach is used to target these coarse-grained
memory blocks. The granularity also varies from single bits [3, 23] over cache-lines [19, 24] for fine-grained approaches
to memory pages [1, 2, 5, 6, 20] or even bigger memory segments [22, 24] for coarse-grained approaches.

Some approaches are not based on remapping the physical memory content through an abstraction layer, but hook
into the memory allocation process of the operating system to apply wear-leveling to the memory allocator [1, 15, 20].
Li et al. [15] also propose to use an allocated memory portion, whenever a function is called, for the function’s stack
memory to wear-level the stack region.

2.1 Aging-Aware Wear-Leveling

Gogte et al. propose a software-only coarse-grained wear-leveling approach by using a sampled approximation of the
write distribution [6]. They make use of advanced debugging capabilities, i.e. Intel Processor Event Based Sampling
(PEBS), which allows them to sample the write requests from the CPU. These debugging capabilities, however, can
rarely be found in embedded systems and resource constrained hardware.

All other mentioned aging-aware approaches rely on the current write-count information of the memory. Most
approaches introduce specialized hardware into the memory controller to collect the write-count information, which
is not available in commonly available systems and might be hard to realize. Dong et al. [4] use an offline recorded
memory trace to estimate the write distribution, which limits the approach to a subset of well-known applications only.

2.2 Read Wear-Leveling

To the best of our knowledge, there are no dedicated algorithms for read wear-leveling in read-destructive NVMs.
However, hardware-based approaches that are not aging-aware or that directly decide based on the wear of each cell
are compatible with read-destructive memories by default. If the wear is estimated from the write count, it could be also
estimated from the read and write count together. This implies that hardware-software interplay algorithms can obtain
the accurate wear estimation by extending the hardware to count read accesses as well. As long as generic mechanisms
(e.g. virtual-memory page remapping) are used [1, 2], the modifications to the algorithms are minimal. When in
contrast specific mechanisms (e.g. heap allocation or stack allocation) are used for wear-leveling [14, 15, 20], then read
wear-leveling cannot be integrated easily. Thus, another special mechanism for read wear-leveling is required in those
cases. Also for algorithms that ship with their own write approximation [6, 9, 12], a specialized read approximation has
to be added.
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4 Hakert et al.

This paper is the first work to propose a software-managed memory read and write access approximation, which
does not rely on special debug capabilities. Furthermore, specific algorithms are provided, which operate on application
specific data (stack and text), where the algorithm for text is dedicated to read accesses only.

3 TARGET SYSTEM

In this section, we first scope the typical target setup of our proposed methods. Although we do not limit our methods
to specific NVM types, we consider certain properties regarding the wear-out. We assume any cell modification wears
out a cell equally. We further do not assume iterative writing and thus the number of memory accesses corresponds to
the memory lifetime linearly. In our proposed method, we target write destructive, as well as read-destructive, NVMs
by implementing an add-on for read-destructive NVMs. Although the read-destructive property may not only be found
in one NVM type, FeRAM is the prominent example for such a NVM. This, however, does not imply that our method is
limited to FeRAM and it could be also applied on a non-read-destructive NVM for instance by not enabling the read
wear-leveling.

The read-destructive property of FeRAM stems from the fact, that the reading procedure, i.e. the sensing of a cell
value overwrites the cell [13, 18]. During the read operation, an electric field is applied to the FeRAM cell and the
transferred charges are measured, which polarizes the cell. In order to maintain the original cell state after reading, the
old value has to be written to the cell again. This necessary subsequent write access makes FeRAM read-destructive. As
the target system, we consider embedded systems in resource constrained environments, which have to fulfill complex
tasks and therefore also run complex software. These kind of systems can be found in automotive controllers or in
aerospace applications. Equipping them with NVM is desirable to increase the memory capacity on low costs while
maintaining a low energy consumption. In the following we scope our target system with respect to 1) the cache
hierarchy and 2) the general memory architecture.

The class of considered systems usually provides many features that are also available in normal desktop computers.
For instance, a complete MMU and virtual memory is often used to isolate the address space of several tasks from each
other or to restrict hardware access. However, this does not imply that a full cache hierarchy is possible and useful. The
clock frequency of these systems is usually set to some hundreds of MHz to reduce the power consumption. Memory
access latencies become less critical under this condition anyway and a cache would not improve the situation much,
but would consume further chip-area. Additionally, to guarantee worst case execution times, scratchpad memory (SPM)
may be preferred over caches. Therefore, the memory wear-out is reduced for the memory regions that are covered by
the SPM, but not for the other regions. These remaining regions still need a wear-leveling mechanism. In this paper, we
focus on the worst case that all memory regions need wear-leveling. Because of the previously mentioned reasons, our
target system consists of an embedded processor with full MMU, virtual memory and no caches.

To overcome disadvantages of single types of memories (e.g. the lifetime of NVMs or the volatility of SRAMs),
several systems implement a hybrid memory architecture [7]. For these systems, more than one memory type is
connected to the CPU (e.g. a FeRAM and an SRAM) and mapped to the CPU address space. The operating system and
the application then can actively decide which memory content should be placed in which memory, by storing it in
the corresponding address region. However, in this paper, we only assume one NVM as main memory in the system
and develop our solution for all memory segments allocated to this main memory for two reasons: First, if there is a
hybrid memory hierarchy with various memories, appropriate maintenance mechanisms for the other memories can
be applied separately. We then still provide a wear-leveling mechanism for the NVM part. Second, even if a hybrid
memory hierarchy is available, the allocation of memory segments may have to obey several constraints, which makes
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Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5

an arbitrary mapping impossible. Hence, memory contents may still have to be allocated to the NVM, which wears it
out rapidly. Our solution still provides a mechanism to improve the lifetime of a given mapping of memory segments.

As our proposed methods are software-based, they need to run in an operating-system like layer to have privileged
control over the running application. Even if a full operating system may not be present for small embedded systems,
a thin software layer is required to manage the hardware, control startup procedures and manage the control flow.
Our methods can be implemented in such a basic operating system as well. Although we focus on the described target
system class throughout this paper, our methods are still applicable on other systems with appropriate modifications.
For larger systems with caches for instance, hits and misses would have to be properly distinguished since the first do
not wear out the memory but the latter do.
3.1 Implementation Platform

Since we assess our implemented methods regarding their wear-leveling quality in the evaluation, we use a platform
for our implementation where we can precisely extract the age (i.e. the total number of accesses per memory cell). We
use the full-system-simulation based framework from our previous work [10]. This framework runs the gem5 simulator
in combination with the NVMain plugin for NVM simulations and a special operating system, which allows a sharp
separation of application and operating-system memory. NVMain outputs a trace file for each simulation that contains
precise information about every memory access, i.e. read and write accesses.

Later in this work, we describe our implementation of wear-leveling strategies. We implemented these strategies for
the bare-metal operating system, running in the simulation framework as well. Therefore, we can directly evaluate our
algorithms in a realistic full-system simulation and do not rely on any high-level estimate by analyzing the resulting
memory-access trace from a simulation with enabled wear leveling. We further reuse the benchmark applications [10],
since the code is directly available with the simulation framework. Nevertheless our wear-leveling techniques are
independent of the CPU architecture, the concrete implementation and evaluation is done for an ARM based 64 bit
application processor (ARMv8) due to the memory simulator [10]. Note that a concrete implementation on a specific
CPU architecture requires several specific implementation details, which are also stated in this paper. These details,
however, can be re-implemented on other CPU architectures.

4 PROBLEM ANALYSIS

To illustrate the need for wear-leveling and to justify wear-leveling for specific regions, we analyze the memory access
behavior of a set of benchmark applications in this section and discuss the influence on the memory lifetime. The
benchmark applications are presented in detail in the following:

• dijkstra is part of the MiBench suite [8] and computes the shortest paths in a graph according to the Dijkstra
algorithm. The speciality of this benchmark is that the steps of the algorithm are managed in a queue, which is stored
in the data segment.

• lesolve is part of the NVM simulation setup [10] and solves a system of linear equation according to the Gaussian
elimination algorithm. This benchmark directly modifies its input data.

• sha is also part of the MiBench suite [8] and computes the SHA-1 hash of given input data
• qsort is part of the NVM simulation setup [10] and is a recursive implementation of the quicksort algorithm. Therefore,
not only the input data is modified, but the stack segment is also used intensively.

• rijndael is part of the MiBench security suite [8] and encrypts given input data with the rijndael algorithm. For this
benchmark, the input is not read from a file, it is read from a region in the data segment itself.
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6 Hakert et al.

• crc32 is also part of the MiBench security suite [8] and computes crc checksums on given input data.

Since we target two different scenarios, i.e. read-destructive and non-read-destructive NVM systems, we analyze
both situations. For non-read-destructive NVM systems, we investigate the total number of write accesses per memory
cell, for read-destructive NVM systems we investigate the accumulated number of read and write accesses per memory
cell. We execute the benchmark applications as described above and illustrate the resulting memory access patterns in
Figure 1 and Figure 2.
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Fig. 1. Benchmark baseline memory traces (write only)

We observe that memory accesses happen at different rates on memory cells of the different memory regions.
Generally, despite large regions with uniform access patterns, dense access hot-spots can be found. These hot-spots have
a drastic influence on the memory lifetime, because only a few cells wear out intensively, while other cells are not used
at all. If these accesses would be better distributed, the lifetime would be increased drastically. For non-read-destructive
NVMs (Figure 1), dense write hot-spots are mainly found in the stack, which stems from the way stack memory is used.
All other regions face less write hot-spots. For read-destructive NVMs, read hot-spots can be also found in the text
regions, because the compiled program code resides in this region and is read during execution.

Overall, we deduce two objectives for our wear-leveling algorithms: 1) The regions with different access frequencies
have to be detected properly during runtime and have to be relocated to other memory regions, according to the
frequency of accesses. We propose a coarse-grained aging-aware wear-leveling algorithm to fulfill this objective. 2) The
dense access hot-spots need to be resolved in such a way, that the accesses are spread over a larger region of memory
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Fig. 2. Benchmark baseline memory traces (write and read)

cells. This reduces the stress of single cells and averages the wear-out to a larger region. We propose two fine-grained
solutions to achieve this, one for the stack segment and another one for the text segment.

5 COARSE-GRAINEDWEAR-LEVELING

In this section, we detail the proposed aging-aware coarse-grained wear-leveling. To assess the age of a memory cell,
the memory access behavior has to be tracked. If the current access behavior cannot be tracked by the hardware and no
memory trace is known for the running application, aging-aware techniques cannot be applied by default. To overcome
this issue, we first propose a software-managed access-distribution approximation technique, which estimates the
memory access distribution (i.e., the write and read count to fixed-size memory regions) using only commonly available
hardware support (i.e., MMU, performance counters, and interrupts). This access approximation is implemented as a
system service in the runtime environment (e.g. the operating system). The access-distribution approximation can be
subsequently provided as an input to an aging-aware wear-leveling algorithm.

5.1 Write Access Sampling

As already introduced, the first step towards software-managed coarse-grained wear-leveling is a proper approximation
of the memory-access distribution. Although capturing this approximation for write and read accesses is mostly similar,
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8 Hakert et al.

we present the capturing of the write approximation in detail first. Subsequently, we describe the additional steps
required to also capture the read approximation.

Several steps are required to record an approximation of the write distribution of an application at runtime. First,
we equally spaced sample every 𝐶𝑤𝑟𝑖𝑡𝑒

𝑠𝑎𝑚𝑝𝑙𝑒
𝑡ℎ write access of the application, capture its target address and store it in an

appropriate data structure. The number 𝐶𝑤𝑟𝑖𝑡𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

determines the temporal granularity of the approximation technique,
allowing a trade-off between accuracy and introduced overhead. After capturing the write, the spatial granularity of the
data structure has to be considered as well. Storing the estimated write count for every byte introduces a big storage
overhead and leads to imprecise results, when the temporal granularity is coarse. Instead, bytes can be related to larger
memory blocks and the write counts are aggregated for every write access into these blocks. For our implementation, we
aggregate the write counts for 4 kB memory blocks, because the wear-leveling algorithm considers this granularity, i.e.,
the decision is based on memory pages. Using an 8-byte counter for every block, 1

512 ·memory-size bytes are required
to store the approximated write distribution (e.g., 2 MB when 1GB of main memory is tracked).

The detailed flow of capturing the target of every 𝐶𝑤𝑟𝑖𝑡𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

𝑡ℎ memory write access requires two techniques to be
implemented. First, a trap has to be generated after every𝐶𝑤𝑟𝑖𝑡𝑒

𝑠𝑎𝑚𝑝𝑙𝑒
𝑡ℎwrite access, thus the approximation implementation

can take action. Subsequently, the target of a memory write access has to be determined and stored in the data structure.
Both implementations are stated in detail subsequently. Although the approach by Gogte et al. allows to directly
capture CPU write requests at sampled intervals [6], their approach relies on a specialized debugging capability. Our
method provides an alternative, which makes use of more widely available hardware features. Vogl et al. propose to use
performance counters to specifically analyze instruction execution of an application [21]. We similarly make use of
performance counters to analyze memory usage of an application, in contrast, as described in the following.

5.1.1 Temporal Write Distribution Sampling. To generate a trap after every 𝐶𝑤𝑟𝑖𝑡𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

𝑡ℎ write access of the application,
we use the CPU internal performance counting mechanism. The BUS_ACCESS_ST event in ARMv8 counts the total
number of store requests on the memory bus, thus the number of write accesses of the application are recorded. For Intel
CPUs, the same behavior could be achieved by using a performance counter for writebacks of the last-level-cache. If no
such performance counter is available in some system, any approximation (e.g. the cycle counter or a timer), still can be
considered. The performance counting mechanism allows to generate a trap when the performance counter𝐶 overflows
(i.e., exceeds the value of 𝐶𝑚𝑎𝑥 = 232 − 1). To establish traps on every 𝐶𝑤𝑟𝑖𝑡𝑒

𝑠𝑎𝑚𝑝𝑙𝑒
𝑡ℎ write access, the performance counter

is set to 𝐶𝑚𝑎𝑥 −𝐶𝑤𝑟𝑖𝑡𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

during the handling of the overflow trap. When choosing the rate 𝐶𝑤𝑟𝑖𝑡𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

, the introduced
overhead for trap handling should be considered.

5.1.2 Write Access Trapping. As the last written memory address cannot be determined during the trap handling of
the performance counter overflow, a second technique is implemented to track the target address of the next memory
write. During the handling of the overflow trap, the memory access permission for the tracked memory region is
set to READ_ONLY. Note that the ARMv8 architecture allows hierarchical memory access permissions, allowing to
configure memory regions of 1 GB size to READ_ONLY by only modifying one page-table entry. Due to the READ_ONLY
permission, the next write access causes a permission violation trap, which is handled as an synchronous interrupt. The
violation-causing address is available for the trap handler in a dedicated register, which then is used to increment the
corresponding counter in the write distribution approximation1. During the handling of the trap, the access permissions

1The semantics of the performance counter and of the write access trapping mechanism differ slightly. While the performance counter counts every write
to the memory, including cache writebacks and other indirect memory accesses, the write access trapping only applies to CPU write operations, that

Manuscript submitted to ACM

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
A

cc
ep

te
d

in
T

E
C

S



Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 9

are set back to READ_WRITE2. Note that this mechanism does not strictly require a MMU, it could also be implemented
with a very lightweight MPU on a microcontroller. However, if a MMU is present, the write access trapping could be
limited to a certain subset of memory pages. If, for instance, some timing critical application relies of fast memory
accesses, the write access trapping can be disabled for this application on the cost bad wear-leveling.

5.2 Read Access Sampling

To record a statistical approximation of read accesses, we follow the same two steps as described before. First, we setup
an architectural performance counter that counts read accesses on the memory bus. By setting the performance counter
value 𝐶 manually to its maximum value 𝐶max = 232 − 1 minus a configurable sampling rate 𝐶𝑟𝑒𝑎𝑑

𝑠𝑎𝑚𝑝𝑙𝑒
whenever the

counter overflows, an overflow trap is generated every 𝐶𝑟𝑒𝑎𝑑
𝑠𝑎𝑚𝑝𝑙𝑒

read accesses. During the handling of the overflow, we
set the memory permissions of all observed memory pages to NO_ACCESS, which leads to a permission violation trap
on read and write accesses. This violation trap is utilized to record the target of the next read access. During the trap
handling, the memory permissions are restored, such that the execution can continue. In consequence, this mechanism
leads to a sampling of the current read address every 𝐶𝑟𝑒𝑎𝑑

𝑠𝑎𝑚𝑝𝑙𝑒
read accesses.

In our test system, the read approximation is used alongside the write approximation. Consequently, both methods
interfere with each other, since they both use the memory permission system to trap a subsequent memory access.
The write approximation only uses the READ_ONLY permission, therefore read accesses still proceed and the read
approximation is not disturbed. The read approximation in contrast uses the NO_ACCESS permission, thus also a
subsequent write access causes a permission violation trap, even if currently no sample for the write approximation
should be recorded. This requires tight cooperation between both approximators to ignore these write traps. However,
if the read approximator aims to record a read sample, but the next memory access is a write access, the write access
has to be completed to continue the execution and reach the read request finally.

To complete the write access, the memory permissions have to be relaxed to allow write accesses again. To still trap
the next read access, we utilize a debugging mechanism that sets the memory permissions back to NO_ACCESS after the
write access completed. Therefore, we replace the instruction after the write instruction with a breakpoint instruction3.
As long as write instructions cannot manipulate the program counter4, the subsequent instruction is guaranteed to
be executed. The breakpoint handler then replaces the breakpoint with the original instruction, resets the memory
permission to NO_ACCESS and continues execution.

5.2.1 Instruction Execution Sampling. When read accesses to main memory are approximated, instruction fetches
to the compiled source code should be sampled as well, since they also are memory read accesses. However, using
the mechanism above would lead to only instruction fetches being captured, since the first thing the CPU does after
returning from the trap handler that modified the memory permissions, is to fetch the next instruction. Therefore, only
accesses to the text segment would be captured in the read approximation.

require a fetch of a TLB line from memory. However this only implies that not the target of every𝐶𝑤𝑟𝑖𝑡𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

𝑡ℎ write is recorded, but that sometimes the
distance between two recorded writes is𝐶𝑤𝑟𝑖𝑡𝑒

𝑠𝑎𝑚𝑝𝑙𝑒
+ 𝑥 , where 𝑥 is a small integer.

2For our runtime system implementation, memory permissions are not used for any protection purposes. If this is the case, the modified permissions
might have to be backed up and restored later on.
3If the CPU does not provide debug instructions, the same behavior can be achieved by provoking an instruction abort failure due to an invalid instruction.
4If the specific CPU allows this feature, this can be still detected by interpreting the current instruction.
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10 Hakert et al.

To overcome this, we do not observe text section pages for the read approximation and therefore do not modify
the permissions for these pages. Instead, we take a separate sample of the program counter on every overflow of the
performance counter (𝐶𝑟𝑒𝑎𝑑

𝑠𝑎𝑚𝑝𝑙𝑒
), which leads to a separate and independent approximation of the text segment.

5.2.2 Approximation Scaling. As previously pointed out, the read and write approximations are used to estimate the age
of memory regions and are fed forward to a coarse-grained wear-leveling algorithm. To maintain the quality of the aging-
aware wear-leveling algorithm, it is essential to scale the read approximation according to the write approximation.
The read approximation may run with a different sample rate 𝐶𝑟𝑒𝑎𝑑

𝑠𝑎𝑚𝑝𝑙𝑒
than the write approximation 𝐶𝑤𝑟𝑖𝑡𝑒

𝑠𝑎𝑚𝑝𝑙𝑒
for

performance reasons. The wear-leveling algorithm, however, only gets the estimated cell age as an input, which is the
write approximation for a non-read-destructive NVM and the read approximation plus the write approximation for a
read-destructive NVM. Thus, the read and write approximation must have the same weight.

The scaled read approximation 𝑐readscaled can be calculated in the following way: The required scaling factor 𝑥 , which
has to be multiplied with the read approximation before it is submitted to the wear-leveling algorithm, is calculated
according to Equation (1).

𝑥 =
𝐶read
sample

𝐶write
sample

(1)

5.3 Coarse-Grained Wear-Leveling Algorithm

The access-distribution approximation enables arbitrary aging-aware wear-leveling algorithms. The algorithm does not
need to be aware if it is running on a read-destructive NVM or not, because read accesses have the same destructive
influences as write accesses. Thus, the algorithm can take the age as an input, which is computed from the sum of read
and write accesses. We feed the algorithm with an indicator from the access approximation, which estimates the age of
each page. Note that the approximation system only operates on virtual memory and does not consider the mapping to
physical memory pages. This is maintained by the wear-leveling algorithm itself. The wear-leveling algorithm decides
which virtual memory pages are relocated to other physical memory pages and maintains therefore the allover age of
the physical memory.

However, the interface between the approximation system and the wear-leveling algorithm has to be well defined.
We interleave our wear-leveling algorithm further with the approximation implementation to reduce redundantly
stored data. Our wear-leveling algorithm uses a red-black tree to maintain all managed physical memory pages along
with their estimated age [10]. As the estimated age is already present inside of the tree nodes, there is no need to store
these values in the approximation implementation as well. The tree is illustrated in Section 5.3.1. Each page is stored
in the tree with regard to the estimated age (EA) and thus a lookup and extraction of the youngest page is efficiently
possible. The approximation system maintains a temporary read and write counter per virtual memory page and notifies
the wear-leveling algorithm with an age increment action if one of these counters exceeds a certain threshold. In
consequence, the wear-leveling algorithm increases the internal age value and relocates the physical memory content
to another page.

5.3.1 Management of Memory Pages. Whenever a virtual memory page should be relocated to another physical memory
page, the current minimum (i.e. the physical memory page with the lowest assumed age) is extracted from the tree as
the target physical page and the estimated ages are adjusted accordingly. The choice of the youngest page as a victim
for wear-leveling leads to an incremental wear-leveling, where every page becomes the youngest page after a certain
amount of time. Regarding the overhead, the wear-leveling algorithm is only called in this setup when a memory page
Manuscript submitted to ACM

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
A

cc
ep

te
d

in
T

E
C

S



Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 11

10

4 25

1 8 12 63

EA = 25

Physical address:
0xa2000

Logical address:
0xb8000

Fig. 3. Organization of the physical memory pages in a red-black tree with their estimated age (EA)

has to be relocated. Regarding the selection policy of the wear-leveling decisions, the estimated age of all physical
pages is balanced equally over time, because every page will be the current minimum page at a certain time. This
establishes a stateless incremental wear leveling, the memory is assumed to be wear-leveled at any time and is kept
wear-leveled. Therefore, the system does not need to store ages across power cycles. The data structures of the access
approximation and the wear-leveling algorithm themselves need to be targeted by wear-leveling itself, which requires a
special implementation. These technical details, however, are out of the scope of this paper.

Eventually, this integration of the wear-leveling algorithm and the approximation system leads to an additional
configuration parameter, besides the temporal and spatial granularity of the write-count approximation. The threshold
𝑛𝑟𝑒𝑙𝑜𝑐 , after which number of estimated writes or reads a relocation should be performed. This configuration parameter
provides a trade-off between the overhead of page relocation and the frequency, respectively the resulting quality, of
wear-leveling actions without influencing the quality of the access approximation.

5.3.2 Memory Page Relocation. Once the wear-leveling algorithm determines a pair of two virtual memory pages,
respectively their mapped physical memory pages, to swap, two steps are required to perform the relocation. First, the
virtual memory mapping in the page-table has to be adjusted accordingly, such that the physical pages of both virtual
memory pages are exchanged. A Translation Lookaside Buffer (TLB) maintenance operation is required afterwards to
ensure the exchanged mapping is applied. Note that the ARMv8 virtual memory system allows single entries to be
invalidated in the TLB, thus a total TLB flush is not necessary. After the new page mapping is established, the physical
content has to be exchanged to maintain the application’s view on the virtual memory. This is achieved by copying one
page to a spare buffer, copying the second page to the first page, and copying the buffer content to the second page.
The size of the buffer is chosen to 4 kB for two reasons: First, copying a sequential memory content can be done more
efficiently in most systems than copying single bytes or words from different regions. Second, the write access pattern
to the buffer memory page is completely uniform and thus has no negative influence on the memory lifetime if it is also
handled by the wear-leveling system.

6 FINE-GRAINEDWEAR-LEVELING

Since the aforementioned algorithm in Section 5 only operates on the granularity of memory pages (4 kB), only the
average age of these pages is wear-leveled. In reality, programs use the memory within each memory page very
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12 Hakert et al.

𝑡0 𝑡1 𝑡2 𝑡3

Fig. 4. The physical memory pages (each on the left) and the main and shadow virtual memory map (each on the right) during the
movement steps. The colored blocks contain the allocated and used memory; the red color indicates that this block already performed
the wraparound.

non-uniformly, thus only a small portion of the page is used intensively. In consequence, leveling the wear on finer
granularities has high optimization potential, if it manages to wear-level the intensive accesses to single bytes to all
the rest of the memory page. Maintaining an aging-aware algorithm as described in the previous section for such
fine granularities is not only hard to realize, but causes an immense overhead if estimated ages are stored for single
bytes. Therefore, we tackle this problem with non aging-aware algorithms. These algorithms operate on a small portion
of the memory (only a few pages) and wear-level the peak hot-spots within these regions to the entire region. The
coarse-grained aging-aware algorithm then still remaps the physical locations of the pages to wear-level them over the
entire main memory.

According to various benchmark runs, we identify the stack as the region with the most dense peak hot-spots
regarding read and write accesses and the text as the region with the most dense peak hot-spots regarding read accesses.
Consequently, we propose two algorithms to wear-level these specific regions internally. Although both algorithms
differ in the implementation, there is a common concept: We employ a virtual memory region, called shadow region,
which allows us to move memory content within a fixed amount of memory pages in a rotational manner, while
maintaining full access to all memory contents at all time. We employ this mechanism to move the entire stack and text
region within a bounded region of multiple memory pages in small steps (64 bytes in each step). This also moves the
dense peak hot-spots in the small steps through the memory and distributes the memory accesses equally. As for our
target system the usage of heap memory is not very common, we do not focus on the heap section in this work. If the
application uses the heap however, a similar mechanism as for the stack has to be employed. The rest of this section
details the specific implementation for the movement of the stack and text during runtime.

6.1 Shadow Region

An arbitrary piece of memory can be shifted within a larger memory region by copying it byte-wise to a new location.
This can be also used to move some piece of memory from the bottom to the top of some memory region, which may
be a good strategy to spread dense peak hotspots within the copied memory. However, as long as the memory is in use,
the movement is limited because the active memory segment has to be at a consecutive address space and cannot be
split. For instance, if 90 bytes are used out of a memory region of 100 bytes, the actively used memory can only be
moved by an offset of at most 10 bytes before it would have to be split. To allow a full movement of 100 bytes without
splitting the actively used memory, we employ a special virtual memory mapping, which we call shadow map. We map
the physical pages in the same sequence twice into the virtual memory space into subsequent virtual pages.
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Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 13

Figure 4 illustrates the principle of the shadow region. The physical-memory pages (each on the left) are mapped
twice to consecutive virtual-memory pages (each on the right). We call the second virtual memory area the shadow,
because the physical pages are shadowed there from the main virtual-memory map. When now the active memory
content is moved through the virtual memory, it may cross the boundary between the main and shadow (𝑡1 and 𝑡2).
Still, the entire active memory is fully addressable at consecutive virtual addresses, but the physical content performs a
wraparound within the bounded physical memory area. Once the active memory has crossed the boundary entirely
(𝑡4), the wraparound is complete and the physical representation is the same as in 𝑡0. Thus, the system starts to use
addresses from the main virtual memory region now instead of addresses from the shadow region. This process is
repeated, leading to a rotational movement. As the wraparound is managed in virtual memory, this method does not
introduce a large memory capacity overhead. The actual active memory has to be rounded up to multiple memory pages,
to ensure the shadow boundary resides exactly between two pages. This method is invasive in the virtual memory
system and the memory allocation service of the runtime environment, thus it has to be ensured that whenever the
mapping of either the main or shadow map is modified, the counterpart is modified as well.

6.2 Stack Movement

In combination with the shadow region map, we implement a mechanism to move the actively used stack memory
during runtime in arbitrary small steps. We achieve this by copying the stack content to new memory locations. We
implement several steps to keep the application’s perspective on the stack consistent in this scenario. The stack is
relocated from time to time by adding a small offset to the stack pointer (sp) and copying the old stack content to
the according new location. The logical view of the application always expects free memory bytes before (negative
offset) the sp and the already created stack content directly after (positive offset) of the sp. As long as the stack only
is relocated within a consecutive memory space, this view can be maintained easily. Due to the employment of the
shadow region, a wraparound is achieved while the stack is only moved into one direction. This leads to a rotational
relocation of the stack.

6.2.1 Address Consistency. The concept of moving the stack in a circular manner is based on the sp relative access of
the stack region by C / C++ compiled applications. However, the sp relative access is not the only way to access memory
contents within the stack memory. Sometimes, the application requires to create pointers to variables inside the stack
for subsequent function calls or to store the pointer in a global data structure. Furthermore, pointers to variables on the
stack may also be moved out of the stack to some global or heap data structures. During a relocation of the stack, the
memory address of the variables on the stack changes, while the content of the pointers stays unchanged. This leads to
invalid pointers so a wrong application behavior. To overcome this problem, we equip the stack relocation system with
two pointer adjustment mechanisms, which maintain the correctness of pointer contents over stack relocations.

To provide a mechanism to detect and adjust references to outdated locations within the stack segment, we implement
a page-based pointer consistency mechanism. Whenever the stack segment is moved by a small offset 𝑑 (e.g. 64 bytes),
the entire virtual-memory location is replaced. Given the stack segment allocates 𝑛 memory pages, the setup (including
shadow) consumes 2𝑛 virtual-memory pages. Instead of relocating from the former base address 𝑏 to 𝑏 + 𝑑 , we relocate
the stack to the virtual address 𝑏 + 𝑑 + (2𝑛 · 4096). Due to this, we can invalidate the virtual memory map to the old
location of the stack. Whenever the application now holds an outdated address and tries to access it, a trap is raised
and handled by the operating system. The trap-causing register is adjusted to the current valid position of the stack
segment and the execution can continue. Traps for branches to outdated locations are handled similarly (Section 6.3).
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14 Hakert et al.

The drawback of this mechanism is that the virtual-memory address space is slowly consumed and cannot be
reused. However, a simple calculation shows this to be still useful: With a virtual-address size of 48 bits (e.g. for many
ARMv8-based CPUs) and 512 MiB being allocated for the system (i.e. cannot be utilized by the consistency mechanism),
2.8 · 1011 pages are available. When a relocation happens every second and the size of the stack is 𝑛 = 8 memory pages,
relocations can continue for 136 years until the system runs out of virtual-memory pages. This may exceed the lifetime
of most embedded systems by far.

6.3 Text Movement

The second mechanism for fine grained wear-leveling in this paper is a mechanism to move the compiled binary code
(i.e. the text segment). This mechanism again employs the shadow region (Section 6.1) to allow a rotational movement
of the entire text segment. In contrast to moving the stack (Section 6.2), several different steps have to be performed to
maintain the correctness of the programm during execution. The basic concept is again to move the text segment in
small steps (e.g. 64 bytes) through a subset of memory pages, to distribute the non-uniform read accesses within these
pages. To achieve this, we modify the running application to allow to move the binary program code during execution.

6.3.1 Binary Preparation. As a first step towards movable binary program code during execution, we make the entire
program code-position independent, such that it becomes independent of the absolute address of the text segment. This
can be achieved by using the gcc option -fPIC, which generates Position Independent Code (PIC) [16]. The resulting
compiled binary code performs branches and function calls always relative to the program counter, i.e. to the position
of the currently executed instruction. Accesses to global data structures (data and BSS), as well as external function
calls, are handled by the Global Offset Table (GOT) and the Procedure Linkage Table (PLT). These tables can be accessed
with program-counter relative addressing. The tables are populated with corresponding absolute addresses from the
operating system (i.e. from the dynamic linker) at runtime. The PLT also contains entries for internal functions (not
external library functions), since absolute addresses are sometimes used for further address calculation. To avoid any
suppression of these entries by the compiler, we compile the application as a shared library and load it into the operating
system at runtime. This requires partial linking, where references to external functions and data structures are populated
in the GOT and PLT.

6.3.2 Relocation Routine. The actual movement of the text segment in small distances (e.g. 64 bytes) requires the
following steps:

(1) Word-wise copy of the binary text
(2) Adjustment of page-based addressing
(3) Address consistency maintenance
(4) GOT/PLT maintenance
(5) PC relocation

While step 1) is a straightforward copy of single words to new memory locations, the subsequent maintenance steps
require some special effort. As mentioned before, we use PIC to maintain the independence of the absolute address of
the text. For ARMv8, the compiler inserts adrp instructions for this purpose (i.e. to address the GOT and PLT), which
calculate an address relative to the 4KiB page of the current program counter. Thus, whenever such an instruction
migrates from one to another 4 KiB page, we rewrite the instruction in step 2) and reduce the immediate offset by one
to maintain the offset calculation to the target. Since the GOT and PLT addresses are always determined by these adrp
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instruction, we exclude the GOT and PLT from the movement of the text segment. Step 3) employs the same address
consistency mechanism as described above (Section 6.2.1). Step 4) adjusts self references to functions and data elements
of the application itself to allow the application to still generate correct pointers for these (e.g. function pointers). We
finally set the program counter to the according new position and continue execution.

Overall, we provide two specialized mechanisms to move the stack and text in small steps through the main memory.
In combination with our shadow region setup, this movement becomes a rotational movement, which spreads dense
access hot-spots over a bounded memory region. This the shadow setup operates entirely in the virtual memory space,
the mapped physical pages can be still exchanged by the coarse-grained aging-aware mechanism meanwhile. The
implementation only is modified to keep the double mapping of the shadow pages consistent. Thus, allover aging-aware
wear-leveling is achieved.

7 EVALUATION

In this section, we evaluate two main scenarios: 1) no- read-destructive NVMs and 2) read-destructive NVMs. For the
former, only a subset of the presented concepts is used, for the latter all of the presented concepts are employed. For
each scenario, we evaluate coarse-grained, aging-aware wear-leveling first. As we already explained, this method cannot
achieve optimal wear-leveling, thus we evaluate it in combination with the fine-grained approaches afterwards. At first,
we detail our evaluation setup and our analysis methodology, then we present the results for our two main scenarios.

7.1 Evaluation Setup

As the technical setup for the evaluation, we use the simulation environment [10], where we also implement our
wear-leveling algorithms from Sections 5 and 6. Although the simulation setup executes a full system simulation and
therefore our implementation would also run on a real system, using the simulation features the key advantage that we
can easily trace memory accesses and analyze them afterwards. In this work, we consider byte-addressable non-volatile
main memories only, i.e. no block based memories. Therefore we only analyze the number of memory accesses per cell
and not additional effects, as for instance block erase in flash based memories. We record memory access traces for
several benchmark applications for a baseline execution without any wear-leveling and for the various combination of
employed wear-leveling mechanisms. We always conduct a full-system simulation with a working implementation of
the wear-leveling algorithms in the runtime-system. We afterwards compare the total number of accesses for every
memory byte and compute memory lifetime indicators. For the scenario of non-read-destructive NVMs, we only take
write accesses into account, for read-destructive NVMs we consider write as well as read accesses. This also implies
that the baseline (no wear-leveling) for both of these scenarios is different and we therefore report improvements
in relation to the according baseline. Due to the fact that our implementation is a small bare metal kernel, porting
and running applications from known benchmark suites requires manual code integration and the implementation of
required system services. Thus, we limit the evaluation to a small set of benchmark applications.

7.2 Analysis Methodology

For each recorded access trace, we aggregate the total amount of filtered accesses to every memory byte. Besides
graphically illustrating the memory access counts over the memory space for our six benchmarks, we also consider the
analytical gain in memory lifetime. We compute several performance indicators:
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16 Hakert et al.

• Achieved Endurance: AE = mean_access_count
max_access_count

Assuming that the memory cannot be used any longer once the first memory cell is worn out5, the maximum access
count across all cells determines the maximum lifetime. Please note that this circumstance could be omitted by
employing additional bad block management. As long as bad blocks are only detected on a more coarse granularity
than virtual memory pages, the need for wear leveling on the granularity of virtual memory pages and smaller
granularities still is present. Under perfect conditions, memory accesses could be arbitrarily shuffled to other memory
locations to make all cells entirely wear-leveled, which would lead to the mean access count to be applied to every cell.
Therefore, the quotient of both indicates the percentage of the possible ideal memory lifetime. We do not consider
additional spare memory in this evaluation.

• Endurance Improvement: EI = AEanalyzed
AEbaseline

Given the achieved endurance from the according baseline and another configuration, the quotient of both indicates
the improvement in the achieved endurance, compared to the baseline.

• Lifetime Improvement: LI = EI
OV+1

Given the endurance improvement and the overhead OV (percentage of additional memory accesses) of some trace,
compared to its baseline, the gained memory lifetime can be calculated by relating both. For instance, if an algorithm
improves the endurance by a factor of EI = 4 but causes OV = 100% overhead, meaning that due to wear-leveling the
application requires the double amount of memory accesses to complete, the lifetime of the total system is increased
by a factor of LI = 2.

For all benchmark runs, we calculate the AE, EI and LI metrics.
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Fig. 5. Coarse-Grained Wear-Leveling (write only)

5We note that this assumption may be conservative. Single worn out cells could be detected and excluded, which would lead to further increased lifetime.
However, this requires additional mechanisms.
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Fig. 6. Coarse-Grained Wear-Leveling (write and read)

7.3 Coarse-Grained Wear-Leveling

Our proposed implementation includes aging-aware coarse-grained wear-leveling, where the age of memory pages is
estimated by sampling accesses during runtime. In this subsection, we only execute the age approximation and the
memory page remapping, according to the remapping algorithm (Section 5.3). We record the resulting memory trace
and illustrate the total number of accesses per byte graphically.

7.3.1 Non-Read-Destructive NVMs. In case of a non-read-destructive NVM, only write accesses are approximated
and the age is only estimated by the number of write accesses per memory page. In Figure 5, we depict the total
number of write accesses (y-axis) over the used memory space (x-axis) for our six benchmark applications, when
the age approximation and page remapping algorithm are activated. We set the sampling-rate of write accesses to
𝐶𝑤𝑟𝑖𝑡𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

= 2000 and the notify threshold for the wear-leveling algorithm to 𝑛𝑟𝑒𝑙𝑜𝑐 = 64. The results show that the
aging-aware algorithm works out, because the write accesses are distributed in such a way, that all regions of the
memory are written with a similar pattern. However, write accesses are still not entirely wear-leveled, which can be
deduced from the huge amount of peaks in the figure. It can be also seen that for the benchmarks with larger memory
footprints (sha and rijndael), the simulation time was not sufficient to target the entire memory space equally. If the
application cannot run for a longer time, the wear-leveling configuration would have to be changed to achieve more
frequent wear-leveling to overcome this shortcoming.

7.3.2 Read-Destructive NVMs. When the target system is equipped with a read-destructive NVM, we enable the write
and read approximation and estimate the memory page age based on their cumulative amount of read and write
accesses, because both are assumed to cause the same wear-out. The wear-leveling algorithm remains unchanged, just
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Fig. 7. Fine-Grained Wear-Leveling (write only)

the input (i.e. the estimated age) is different. We keep the configuration of the write approximation and the remapping
threshold as in Section 7.3.1. We further configure the sampling-rate of read accesses to 𝐶𝑟𝑒𝑎𝑑

𝑠𝑎𝑚𝑝𝑙𝑒
= 12000, because

read accesses happen at a much higher ratio than write accesses. Figure 6 illustrates the total amount of cumulative
read and write accesses (y-axis) over the memory space (x-axis). A similar observation as for Figure 5 can be made:
The aging-aware wear-leveling works out, even with respect to destructive read accesses. Still, it can be observed that
coarse-grained wear-leveling is not sufficient to achieve an allover wear-leveled memory. The applications with larger
memory footprints result in a better wear-leveling, compared to Section 7.3.1. This is because due to the fact that read
and write accesses are encountered, more wear-leveling actions are performed.

7.4 Fine-Grained Wear-Leveling

As the evaluation in Section 7.3 points out, coarse-grained wear-leveling cannot achieve allover wear-leveled memory,
since dense access hot-spots within memory pages are not resolved. Consequently, this paper proposes additional fine-
grained wear-leveling, which is evaluated in this subsection. We execute the fine-grained stack and text wear-leveling
in addition to the coarse-grained wear-leveling to achieve allover aging-aware wear-leveling.

7.4.1 Non-Read-Destructive NVMs. For non-read-destructive NVMs, the fine grained extension only targets the stack,
since the text region is only targeted by read accesses. We keep the same configuration as in Section 7.3.1 and perform a
stack movement on every remapping of virtual memory pages (i.e. with the same ratio as the page remapping algorithm).
We configure the relocation distance (i.e. the movement of the stack) to 64 bytes. Figure 7 presents the resulting amount
of write accesses (y-axis) over the memory space (x-axis). It can be observed that for some benchmarks, a nearly entirely
wear-leveled memory is achieved. The shortcoming in the dijkstra benchmark stems from the fact that dijkstra uses the
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Fig. 8. Fine-Grained Wear-Leveling (write and read)

data segment intensively to manage the algorithm steps. Therefore, dense write hot-spots appear in the data segment,
which cannot be resolved by our fine-grained stack mechanism.

7.4.2 Read-Destructive NVMs. To perform fine-grained wear-leveling on read-destructive NVMs, dense hot-spots
for reads as well as writes need to be tackled. Therefore, we employ in addition to the aging-aware coarse grained
setup from Section 7.3.2 our mechanism for stack and text wear-leveling. We keep the same configuration for the
coarse-grained algorithm an execute a stack and a text relocation on every coarse-grained page relocation. In general,
both ratios, however, can be separately configured to an arbitrary value. The relocation distance for both, stack and text
relocation is set to 64 bytes. The results in Figure 8 again allow similar observations as for the non-read-destructive
case in Section 7.4.1. In general, the memory is allover wear-leveled, considering the destructive influence of reads and
writes. For the crc32 and rijndael benchmarks, still larger non-uniformity can be observed. This stems from the fact
that the text wear-leveling only moves the relocatable code, but not the GOT and PLT. These two tables, however, are
read during the benchmark execution and therefore cause a destructive influence on the underlying memory.

7.5 Analytic Results

Since the previously presented figures only provide an intuition for the achieved quality of our proposed wear-leveling
algorithm, we calculate the analytic lifetime indicators (Section 7.2) for all our benchmarks and summarize them in
Table 1. Several observations can be made in this table: 1) By only considering the last column (Lifetime Improvement),
it can be seen that the total memory lifetime is increased by our algorithm by up to a factor of 955. In other words,
a memory lifetime of several days without any maintenance would be extended to many years by only employing
our software-based algorithms. 2) Read accesses can be slightly worse wear-leveled than write accesses im some
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Application / Config-
uration

AE EI LI

dijkstra
-baseline[w] 0.00048
-baseline[r+w] 0.00110
-coarse-grained [w] 0.01349 28.1042 27.8912
-coarse-grained [r+w] 0.03283 29.8455 29.5888
-fine-grained [w] 0.01385 28.8542 28.2420
-fine-grained [r+w] 0.04527 41.1545 35.6377

lesolve
-baseline[w] 0.00189
-baseline[r+w] 0.00183
-coarse-grained [w] 0.01712 9.0582 8.9899
-coarse-grained [r+w] 0.02132 11.6503 11.5302
-fine-grained [w] 0.82097 434.3757 189.2855
-fine-grained [r+w] 0.67184 367.1257 194.7539

sha
-baseline[w] 0.00028
-baseline[r+w] 0.00033
-coarse-grained [w] 0.01182 42.2143 41.8878
-coarse-grained [r+w] 0.01796 54.4242 53.8633
-fine-grained [w] 0.42223 1507.9643 955.6642
-fine-grained [r+w] 0.22706 688.0606 418.8788

Application / Config-
uration

AE EI LI

qsort
-baseline[w] 0.01609
-baseline[r+w] 0.00599
-coarse-grained [w] 0.12174 7.5662 7.5097
-coarse-grained [r+w] 0.02292 3.8264 3.7901
-fine-grained [w] 0.44067 27.3878 23.0112
-fine-grained [r+w] 0.19900 33.2220 27.9929

rijndael
-baseline[w] 0.00035
-baseline[r+w] 0.00082
-coarse-grained [w] 0.00123 3.5143 3.4978
-coarse-grained [r+w] 0.00610 7.4390 7.3514
-fine-grained [w] 0.00088 2.5025 2.3027
-fine-grained [r+w] 0.01431 17.4564 5.1970

crc32
-baseline[w] 0.00087
-baseline[r+w] 0.00200
-coarse-grained [w] 0.01117 12.8396 12.7390
-coarse-grained [r+w] 0.02316 11.5798 11.4619
-fine-grained [w] 0.70932 815.3117 798.0718
-fine-grained [r+w] 0.02764 13.8225 13.0103

Table 1. Memory lifetime indicators

benchmarks, which can be deduced from the lower lifetime improvement. As explained in Section 7.1, another baseline
has to be considered for read-destructive NVMs. Thus, the improvement can be siginficantly lower as for non-read-
destructive NVMs. 3) By investigating the first column (Achieved Endurance), it can be deduced how optimal the
employed algorithms are. If AE would be 1, no further improvement would be possible. It can be observed that with
coarse-grained wear-leveling only, in most cases only a few percent of the optimal endurance can be achieved. For
fine-grained wear-leveling, the algorithms perform significantly better but still allow potential for further improvement.
In addition, the achieved endurance differs for the different benchmark applications. The rijndael benchmark achieves
by far the worst results, since our algorithms do not handle it properly.

Although the overhead for the various wear-leveling configurations is implicitly included in the Lifetime Improvement
indicator, the overhead as the amount of additional memory accesses due to wear-leveling can be investigated itself.
When considering performance sensitive applications, the additional amount of memory accesses makes a major factor
for the performance degradation. We calculate the overhead by comparing the total amount of memory accesses from a
simulation with wear-leveling to the baseline simulation without wear-leveling. By considering only read accesses,
this results in the read overhead (RO), for write accesses in the write overhead (WO) and for both access types in
combination in the read write overhead (RWO).

Table 2 contains the resulting overheads for the various wear-leveling scenarios. It can be seen that for coarse-grained
wear-leveling only, all overhead types reside at a few percent. When fine grained wear-leveling is employed, it can be
seen that the result of the wear-leveling depends on the analyzed application. For rijndael, for instance, even allowing
huge overheads for the wear-leveling does not lead to significantly increased memory lifetimes. This can be explained
by the fact, that the wear-leveling does not target these types of memory accesses well. A few, intensively accessed,
memory areas remain not wear-leveled. However, investigating the benchmarks where the wear-leveling can achieve
good memory lifetime improvements, the overhead makes up to ≈ 300%, i.e. with wear-leveling 4 times as much memory
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Application / Config-
uration

WO RO RWO

dijkstra
-coarse-grained [w] 0.764% 0.156% 0.205%
-coarse-grained [r+w] 4.070% 0.591% 0.868%
-fine-grained [w] 2.168% 0.268% 0.419%
-fine-grained [r+w] 87.897% 9.231% 15.480%

lesolve
-coarse-grained [w] 0.760% 0.210% 0.281%
-coarse-grained [r+w] 3.286% 0.709% 1.041%
-fine-grained [w] 129.482% 19.274% 33.485%
-fine-grained [r+w] 339.729% 51.317% 88.507%

sha
-coarse-grained [w] 0.779% 0.339% 0.438%
-coarse-grained [r+w] 2.867% 1.155% 1.540%
-fine-grained [w] 57.792% 16.919% 26.111%
-fine-grained [r+w] 140.368% 42.183% 64.262%

Application / Config-
uration

WO RO RWO

qsort
-coarse-grained [w] 0.752% 0.174% 0.233%
-coarse-grained [r+w] 3.434% 0.677% 0.958%
-fine-grained [w] 19.020% 2.252% 3.958%
-fine-grained [r+w] 86.406% 11.009% 18.680%

rijndael
-coarse-grained [w] 0.472% 0.204% 0.253%
-coarse-grained [r+w] 2.836% 0.827% 1.192%
-fine-grained [w] 8.675% 2.023% 3.233%
-fine-grained [r+w] 645.184% 144.883% 235.894%

crc32
-coarse-grained [w] 0.790% 0.211% 0.287%
-coarse-grained [r+w] 3.302% 0.688% 1.029%
-fine-grained [w] 2.160% 0.417% 0.644%
-fine-grained [r+w] 22.761% 3.746% 6.225%

Table 2. Memory access overhead

Application / Configuration 𝑇𝑂
dijkstra
-coarse-grained [w] 6.92%
-coarse-grained [r+w] 20.33%
-fine-grained [w] 14.56%
-fine-grained [r+w] 84.30%

lesolve
-coarse-grained [w] 6.88%
-coarse-grained [r+w] 17.63%
-fine-grained [w] 67.99%
-fine-grained [r+w] 178.22%

sha
-coarse-grained [w] 53.95%
-coarse-grained [r+w] 97.08%
-fine-grained [w] 106.79%
-fine-grained [r+w] 245.11%

Application / Configuration 𝑇𝑂
qsort
-coarse-grained [w] 13.67%
-coarse-grained [r+w] 36.51%
-fine-grained [w] 22.93%
-fine-grained [r+w] 87.10%

rijndael
-coarse-grained [w] 50.33%
-coarse-grained [r+w] 91.09%
-fine-grained [w] 64.35%
-fine-grained [r+w] 588.10%

crc32
-coarse-grained [w] 6.40%
-coarse-grained [r+w] 15.23%
-fine-grained [w] 8.21%
-fine-grained [r+w] 31.73%

Table 3. Time Overhead

accesses are performed as without wear-leveling. For the interpretation of this result, it should be considered that the
overhead can be tuned by the configuration parameter on cost of the wear-leveling result. However, if the application is
not performance sensitive, such a big overhead may be still considerable, the memory lifetime is still increased by a
factor of ≈ 200.

The runtime overhead of our wear-leveling algorithms is an important indicator for practical usage. Not only the
additional memory accesses require more time for execution, but also the execution of the access approximation and of
the wear-leveling decisions requires additional computation time. In order to analyze this overhead, we compare the
total required system cycles for a baseline configuration and configurations with enabled wear-leveling. The relative
increase is reported in Table 3. It can be observed that the fine-grained wear-leveling methods in general cause a
higher runtime overhead than the coarse-grained methods; the read wear-leveling requires more additional execution
time than write wear-leveling. Furthermore, it can be seen that time overheads differ largely for different benchmark
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applications. For example, crc32 faces an overhead of at most 32% while rijndael faces an increase of the execution
time by almost 7𝑥 . It should be noted, that the time overhead also can be configured by tweaking the frequency of
wear-leveling actions. If, however, a performance degradation in terms of execution time of up to ≈ 2𝑥 is feasible, most
benchmark applications can be wear-leveled using software-managed solutions.

8 CONCLUSION

In this paper, we target computer systems that are equipped with non-volatile memory (NVM) as the main memory. We
distinguish the cases that this memory is either non-read-destructive or read-destructive. We propose software-managed
wear-leveling to improve the lifetime of such systems, since the low cell endurance can cause a severely reduced lifetime.
For the former type of systems, we take write accesses into account to determine the current age of the memory and to
perform according wear-leveling actions, for the latter case we take write and read accesses equally into account, since
both stress the memory equally.

To perform aging-aware wear-leveling (i.e. the current memory age is investigated for each wear-leveling decision)
during runtime, we propose a generic runtime approximation of write and read accesses that does not rely on special
hardware or debugging capabilities. This approximation is subsequently fed into a wear-leveling algorithm that swaps
memory pages according to their estimated age. Since many applications require additional wear-leveling on fine
granularities, we further propose two fine-grained wear-leveling mechanisms, where we specifically target the stack
and text region. These specific solutions also operate without any special hardware or any special system requirements,
thus they are software-managed. The specific solution for the text segment is only invoked for read-destructive NVMs,
since the text segment only is targeted by read accesses.

Our evaluation compares the final memory lifetime after applying our algorithms with the memory lifetime of the
baseline execution of certain benchmark applications. For non-read-destructive NVMs, we are able to extend the lifetime
by up to a factor of 955×, for read-destructive NVMs we achieve an improvement of up to a factor of 418×. Although
these numbers strongly depend on the memory behavior of the baseline execution of the specific application, we achieve
≈ 40% of ideal wear-leveling for non-read-destructive NVMs and ≈ 20% of ideal wear-leveling for read-destructive
NVMs. The major shortcomings causing this are memory-access patterns that are not explicitly tackled by our methods.

9 OUTLOOK

As our evaluation points out, we achieve a reasonable improvement of the memory lifetime by employing our algorithms
accordingly. Still, we cannot achieve the ideal wear-leveling (indicated by the achieved endurance (AE)). In other words,
our algorithms may be further improved to achieve better wear-leveling in all scenarios. As can be observed for the
dijkstra benchmark, the data and BSS sections need specific wear-leveling in some cases as well. In addition, the specific
solution for the text segment does not resolve access hot-spots in the Global Offset and Procedure Linkage tables. We
intend to improve upon these shortcomings in future work.
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