
Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
A

cc
ep

te
d

in
E

C
M

L
PK

D
D

20
22

Immediate Split Trees: Immediate Encoding of
Floating Point Split Values in Random Forests

Christian Hakert, Kuan-Hsun Chen, Jian-Jia Chen
TU Dortmund University, Germany
University of Twente, Netherlands

Citation: Accepted in the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECMLPKDD) 2022

BIBTEX:
@article{hakert2022ecml,

author = {Hakert, Christian and Chen, Kuan-Hsun and Chen, Jian-Jia},
title = {Immediate Split Trees: Immediate Encoding of Floating Point
Split Values in RandomForests},
journal = {European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases},
year = {2022}

}

© copyright by the author(s)

computer
science 12



Immediate Split Trees: Immediate Encoding of
Floating Point Split Values in Random Forests

Christian Hakert∗ (�), Kuan-Hsun Chen†, Jian-Jia Chen∗

∗ TU Dortmund University, Germany † University of Twente, Netherlands
christian.hakert@tu-dortmund.de, k.h.chen@utwente.nl,

jian-jia.chen@cs.tu-dortmund.de

Abstract. Random forests and decision trees are increasingly interest-
ing candidates for resource-constrained machine learning models. In or-
der to make the execution of these models efficient under resource lim-
itations, various optimized implementations have been proposed in the
literature, usually implementing either native trees or if-else trees. While
a certain motivation for the optimization of if-else trees is to benefit the
behavior of dedicated instruction caches, in this work we highlight that
if-else trees might also strongly depend on data caches.
We identify one crucial issue of if-else tree implementations and propose
an optimized implementation, which keeps the logic tree structure un-
touched and thus does not influence the accuracy, but eliminates the need
to load comparison values from the data caches. Experimental evaluation
of this implementation shows that we can greatly reduce the amount of
data cache misses by up to ≈ 99%, while not increasing the amount of
instruction cache misses in comparison to the state-of-the-art. We addi-
tionally highlight various scenarios, where the reduction of data cache
misses draws important benefit on the allover execution time.

1 Introduction

Increasing focus on resource-constrained machine learning throughout the last
years brings up random forests and decision trees in various shapes and flavours
as premier candidates for resource-limited classification or regression models.
Although decision trees can be tuned toward resource limitation on the tree
structure already, by for instance limiting the amount of nodes and thus the
total memory consumption, considering the underlying computing architecture
turns out to allow even further optimization, e.g., [3,4,7,11,12]. As one particular
aspect of the computing architecture, memory hierarchies and caches turn out to
allow a certain interplay with decision trees. Caches are organized in a way, that
they store a copy of intensively used memory contents in a small and fast memory,
in order to reduce memory access latencies. The decision, which memory contents
are stored in the cache, is made by the hardware, following certain prefetching
and preemption strategies. Since the probability of accessing certain nodes in a
decision tree can be profiled at training time, a certain prediction of memory
accesses and memory access sequences can be made. This can be consequently
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used to shape the trees in a way that the hardware caches automatically prefetch
the data objects, which are likely used during further execution.

Towards this, implementation of decision trees yield two common realiza-
tions: 1) native trees and 2) if-else trees [1]. The former ones aim to encode tree
nodes in a large data array and build up the tree structure by following pointers
to the right or left child node at every node. The latter ones aim to translate
every node of a tree to an if-else construct in the programming language and
build up the tree structure by extensively nesting these if-else constructs. Gen-
erally, although most computers implement the von Neumann architecture and
contain a unified data and instruction memory, the CPU implements different
methods for data and instruction memory accesses. Within the CPU pipeline,
data and instruction memory accesses can be performed at different stages and
therefore utilize different hardware units. Furthermore, systems with cache hi-
erarchies usually partition caches (mostly the first level caches) into instruction
and data cache, leading to distinct access behavior and access latencies. Due to
these aspects, considering data and instruction memory accesses of a program
separately and focus on their optimization can lead to important performance
improvements.

Since native trees intend to intensively utilize data memory and data caches,
optimization of native trees targets to modify the node array structure in order
to comfort data cache prefetching [4]. Contrarily, if-else trees intend to inten-
sively use instruction memory and therefore optimization of if-else tree tries to
reshape the structure of nested if-else blocks in order to comfort the prefetching
of instruction caches [4]. When random forest models exceed the capacity of a
cache, which likely happens for first level caches, compulsory cache misses in
the instruction cache and data cache happen during the execution and cause
increased latencies since caches are usually faster by orders of magnitude than
main memory. Optimizing the prefetching of caches, as described before, can help
to lower the introduced additional latency. When caches are partitioned into in-
struction and data caches, prefetching as well is separated for both caches, which
highlights the need for separate optimization of instruction and data memory
accesses.
Problem: In this work, we take a closer look to the memory behavior of if-
else tree implementations and highlight that, counter intuitively to the design
principle, if-else trees depend on intensive use of data memory and data caches as
well, causing data cache misses, which is not considered and targeted by existing
optimizations [3, 4].
Solution: Consequently, we propose an optimized implementation of if-else trees
with floating point split values, where we eliminate large parts of the use of data
caches. Thus, we can apply existing optimizations for if-else trees subsequently
and improve their execution.

Experimental evaluation on X86 and ARMv8 based server and embedded
systems highlights that our proposed optimization can reduce the amount of
data cache misses by up to 99%, while not increasing the amount of instruction
cache misses. In addition to the great reduction of data cache misses, we show
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that the reduction of data cache misses directly contributes to a reduction of the
allover execution time in various scenarios. End-to-end timing measurements
demonstrate that we can reduce the allover execution time of decision trees with
our proposed optimization, especially on server systems.
Our novel contributions:
– Analysis of the state-of-the-art optimization for if-else trees regarding the

usage of the data cache.
– An optimized implementation, reducing large portions of data cache misses

in if-else trees
– Experimental evaluation of the proposed implementation and comparison to

the state of the art

2 Related Work

Several techniques have been proposed in the literature to speed up the execu-
tion of inference for tree-based ensembles. For binary search trees, Kim et al.
in [7] presents an optimized realization by using vectorization units on X86, con-
sidering the register sizes, cache sizes, and page sizes specifically. However, such
a technique requires a specific support from the underlying architectures. The
concept of vectoring the tree structures is also applied to the context of ranking
models in [9], which enhances the QuickScorer algorithm for gradient boosted
trees [5, 8]. Ye et al. in [13] further improve the scalability of such vectorization
methods by encoding the node representation to compact the memory footprint.
These techniques decompose the tree-ensembles into different data structures
based on the feature values, which is especially effective for large ensembles of
smaller trees. Without traversing trees one by one, however, the target applica-
tions are mainly limited to batch-processing.

Architecture-aware implementations for decision trees have started from [12],
which optimizes the implementations of decision trees on different architectures,
i.e., CPUs, FPGAs, and GPUs. By fixing the tree-depth, Prenger et al. in [11]
further show an effective pipelining approach over these computing units, based
on the CATE algorithm during training. However, the impact of cache misses
was not taken into account. The two common implementations for decision trees,
i.e., native trees and if-else trees, are first distinguished in [1], which provides the
first attempt to increase data locality for native trees. By leveraging the proba-
bility model of accessing nodes during tree traversal in [2], Buschjäger et al. in [3]
propose several optimizations for memory layout over different tree implementa-
tions to improve the memory locality and show the potential speed-ups can be
up to 2-4x over different architectures. Chen et al. enhance this method further
by compiler based binary size estimation [4]. Hence, we consider the proposed
optimization for if-else trees from [4] as the state-of-the-art approach.

3 Problem Analysis

After training of a random forest model (e.g. with scikit-learn [10]), the model is
derived in a logic representation (e.g. encoded in JSON). Executing this model
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without special operating system or library support requires a realization in
a programming language and compilation to machine code. The realization of
decision trees and random forests as if-else trees, as introduced by [1] intensively
utilizes instruction caches during the execution, as the entire tree structure is
encoded in instructions itself. Only loading of the data point for inference is
mandatory from data memory and therefore uses data caches. Listing 1.1 depicts
an example of the implementation of a single tree node as an if-else tree in C++.

1 i f (pX [ 3 ] <= ( f loat ) 1 .500000){
2 return 1 ;
3 } else { . . .

Listing 1.1. C++ node example

It can be seen that the loading of the data point (stored in pX) is an array access
and therefore a data memory access. The split value, which is used to decide in
combination with the data point if the left or right subtree should be further
traversed, is immediately encoded in the source code, also the prediction value is
immediately encoded with the return statement. To illustrate the conversion to
assembly code, we investigate the assembly code for an X86 machine, produced
by the gcc compiler in version 11.1.0 in the following. Later in this paper we
consider both X86 and ARMv8 architectures.

1 movss 0xe50(%r i p ) ,%xmm9
2 comiss 0xc(%rd i ) ,%xmm9
3 jmp 2 fa0

Listing 1.2. Assembly node example

Listing 1.2 illustrates the relevant assembly code for the implementation of the
node from Listing 1.1. Line 1 is responsible for loading the split value, Line 2
loads the feature value from the data point and performs the comparison to the
split value. Line 3 then performs the according jump. Counter intuitively to the
C++ implementation, the split value is not encoded as an immediate value, but
rather leads to a data memory load within the comiss (compare scalar ordered
single-precision floating point) instruction. Since the X86 instruction set does
not offer immediate values for floating point instructions, the compiler decides
to place the split values at a central position in data memory and translate the
accesses to regular data loads1. Please note that the movss instruction (which
loads a floating point number to a register) uses the immediate encoding for
the offset within main memory, but not for the floating point constant itself. In
consequence, two out of the three relevant instructions for an if-else tree perform
data accesses and utilize the data cache. The motivational concept of intensively
utilizing instruction memory and caches for if-else trees does not hold all along.

To further illustrate the impact of this condition, we investigated the state-
of-the-art implementation of if-else trees from Chen et al. [4]. Specifically, we
studied two possible implementations of the same logic model in the following:

1 This observation is not necessarily bounded to the X86 architecture, the ARMv8
architecture neither does offer such a feature.
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Fig. 1. Execution time, icache misses and dcache misses for if-else tree optimization
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1) a naive implementation of if-else trees, where every node in the logic tree
structure becomes an if-else block and the left and right subtree is placed within
the corresponding if or else block. 2) the generated trees with the state-of-the-
art optimization [4], where the tree is reordered with regards to the branch
probability within every node. This reordering aims to optimize cache prefetching
and minimize the amount of cache misses. We generated a large set of random
forests for data sets, which resulted in floating point split values for the naive
and the optimized if-else tree implementation. As datasets we chose from the
UCI machine learning repository [6]: the EEG Eye State Data Set (eye), the
Gas Sensor Array Drift Data Set (gas), the MAGIC Gamma Telescope Data
Set (magic), the Sensorless Drive Diagnosis Data Set (sensorless) and the Wine
Quality Data Set (wine), which are all classification data sets. We divided all
datasets into 75% training data and 25% test data. We did not perform hyper-
parameter tuning but rather tune the maximal depth of the decision trees in
order to derive different sized models. We executed these models on a X86 server
machine (2x AMD EPYC 7742, 32kB L1 i/dcache, 256GB RAM) and compare
them with respect to their execution time, their amount of misses in the level 1
instruction cache and the amount of misses on the level 1 data cache.

Figure 1 depicts the recorded results from the execution of the implemen-
tations with the performance analysis tools for Linux (Perf). We normalize the
results of the optimized implementation (applying the optimization method from
Chen et al. [4]) to the naive implementation. We tuned two knobs: The max-
imal depth of single trees and the amount of trees within the ensemble. The
resulting size of the model is based on the measurement of the binary size of
the implementation after the compilation, which is illustrated along the x axis.
Please not that the binary size of the model is only indirectly controlled by the
maximal depth and the amount of trees, hence not for every size on the x axis
also a model is generated. We consider the optimized implementation, even if it
may result in a different binary size, to the original binary size from the naive
implementation. Hence, even if optimizing the model increases the binary size,
the performance still is compared to the corresponding naive implementation
of the same tree structure. An increase in the binary size potentially causes a
higher amount of cache misses, which is then reported in the normalized data.
We further group the models in size groups (0kB-300kB, 300kB-600kB, ...) and
compute the geometric mean of the normalized improvements. This value is the
ultimately depicted in the figure. The green bars with diagonal lines indicate the
reduction in total execution time, the red bars with horizontal lines indicate the
reduction in L1 icache misses, and the blue bars with vertical lines indicate the
reduction in L1 dcache misses.

It can be observed that, though the optimization reduces the total execution
time and amount of icache misses for large models2, the amount of L1 dcache
misses is not reduced similarly. This stems from the fact that the if-else tree op-

2 The optimization targets to optimize the memory layout, such that cache misses are
reduced. Thus, effects likely only can be observed when the model size exceeds the
cache capacity, which is only for larger models the case.
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timization proposed by Chen et al. [4] only modifies the sequence of the source
code in order to reduce the amount of L1 icache misses. The placement and
loading of the split values is not considered and thus not handled in the opti-
mization. When the dcache misses can be reduced as well, a further reduction of
the execution time can be possible. Furthermore, load can be released from the
instruction memory, which may comfort other applications within the system.

Observing this shortcoming in the existing optimization motivates us to de-
velop a new optimization technique, which specifically focuses on the optimiza-
tion of dcache misses by handling the loading of the split values in a dedicated
manner. One trivial method is to round the floating point split values to integer
values and subsequently encode them in the immediate field of the instructions
itself, such that they do not need to be loaded from data memory at all. This,
however, potentially induces a loss in accuracy due to the rounding of the split
values. In this paper, we alternatively present an implementation, where the full
floating point split value can be encoded in the immediate field of instructions
and therefore also omits the need to load the split values from data memory.

4 Immediate Encoding in If-Else Trees

As mentioned before, when it comes to the optimization of the cache behavior
of if-else implementations of decision trees, both cache types, i.e. the instruction
cache and the data cache, need to be handled. In general, optimization methods
profile the execution of the decision tree on the training dataset and deter-
mine empirical branch probabilities. These probabilities are used subsequently
to shape the tree implementation in an optimized manner. When the total model
size exceeds the capacity of a cache, which likely happens for kilobyte sized level
1 caches, cache misses cannot be avoided during execution of the tree.

Hence, the optimization target is to reduce the amount of cache misses in
order to improve the total execution time of the decision tree. Such optimizations
usually can exploit two aspects: 1) the tree is shaped in a way that frequently
accessed parts of the decision tree are less likely evicted from the cache as in a
naive implementation and therefore do not cause cache misses on access, and 2)
the tree is shaped in a way that automatic prefetching of (spatial) local memory
contents is utilized to load parts of the tree into caches before they are accessed
and thus omit cache misses at the access time itself. To shape the tree itself,
data memory and instruction memory needs to be distinguished. Data memory
is usually used to store variables and arrays. If a tree implementation uses large
arrays, changing the layout of the array allows to shape the tree. Instruction
memory is used to store the instruction sequence of the tree itself. If the tree
implementation uses many instructions, changing the sequence of instructions
allows to shape the tree regarding the behavior of instruction caches.

As motivated before, the naive implementation of an if-else tree in C++ uses
data memory to load both feature values and split values. Access to the feature
values cannot be omitted and hardly be optimized, since the input tuple is not
created by the tree implementation itself. Thus, data memory accesses to the
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1 __rtitt_lab_27_0 :
2 movss 12(%1) , %%xmm1
3 //0 x3fc00000=1. 5
4 mov $0x3fc00000 , %%eax
5 movd %%eax , %%xmm2
6 comiss %%xmm1, %%xmm2
7 jnb __rtitt_lab_29_0

Listing 1.3. Optimized assembly implementation (X86)

1 "__rtitt_lab_27_0 : "
2 ldr s1 , [%1 , 12 ]
3 //0 x3fc00000=1. 5
4 movz w2 , #0x0000
5 movk w2 , #0x3fc0 , l s l 16
6 fmov s2 , w2
7 fcmp s1 , s2
8 b.le __rtitt_lab_29_0

Listing 1.4. Optimized assembly implementation (ARMv8)

feature values are compulsory. In consequence, optimization of the data memory
accesses for the split values is challenging, since these accesses are necessarily
interleaved with the accesses to the feature values. Therefore, the implementation
we propose in this paper alters the loading of the split value from data memory to
instruction memory. Subsequently, the tree is shaped by ordering the instruction
sequence with respect to the behavior in the instruction cache.

Based on the arch-forest framework3, used in [4], we implement a new code
generator module for the generation of our optimized if-else tree. The code gen-
erator does not generate C or C++ code, but rather directly generates X86 or
ARMv8 assembly code, which is embedded by inline assembly to the rest of the
framework. In order to explain the assembly implementation, we focus on the
example node from Listing 1.1.

Listing 1.3 illustrates the output of our code generator for the example node.
In line 2, similarly as in the compiler generated code, the feature value is loaded
from data memory, which cannot be omitted. Afterwards, the split value (1.5) is
converted to IEEE-754 32 bit representation in line 4 and loaded as a bitmask
to a general purpose register4. The movd instruction subsequently copies the
register content without conversion to a floating point register and in line 6 and
7 the according comparison and jumps are executed.

Listing 1.4 similarly depicts an example of the ARMv8 code, which is gen-
erated by our code generator. The key difference is that ARMv8 does not offer

3 https://github.com/tudo-ls8/arch-forest
4 Our generator also supports double precision floating points; the code is generated
accordingly on demand.
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compiler based version

movss 0xe50(%rip),%xmm9
comiss 0xc(%rdi),%xmm9
jmp 2fa0

instruction mem. data mem.

optimized version

movss 12(%1), %%xmm1
mov $0x3fc00000, %%eax
movd %%eax, %%xmm2
comiss %%xmm1, %%xmm2
jnb __rtitt_lab_29_0

instruction mem. data mem.

Fig. 2. Optimized loading of constants from memory

pseudo instructions to load 32 or 64 bit immediate values, thus we decompose
these into a set of movz (move and zero contents before) and movk (move and
keep contents) instructions with according bit shifts. The fmov instruction in
ARMv8 is the respective instruction to move contents from a general purpose
register to a floating point register without conversion.

Figure 2 illustrates the difference in memory accesses between the compiler
generated code and our generated code for X86. All instructions, by default,
access instruction memory, since the instruction has to be loaded from instruc-
tion memory. In the compiler generated version, two out of three instructions
in addition access data memory, in our optimized version only one out of five
instructions additionally accesses data memory. Despite moving the split value
entirely to the instruction memory, we also inherit the code sequence optimiza-
tion from [4] in our code generator. For every node, the relative probability to
visit the left or right child is compared and the more probable child is placed
as the subsequent instructions. The less probable child hence is labeled and tar-
geted by the jump / branch instruction. Implementation wise, this requires a
swap of the branch condition, since the branch must be taken either on the ≤
or on the > condition. We achieve this by either generating a jnb (jump if not
below) / b.le (branch if less or equal) or a jb (jump if below) / b.gt (branch
if greater than) instruction.

In order to integrate our code generation in a generally applicable shape,
we implement all possible combinations for datatypes within if-else trees in the
code generator. This includes various combinations of datatypes for the feature
and for the split values, since the comparison has to be realized accordingly. Our
code generator allows to generate if-else trees for 32 and 64 bit floating point
split values, including the optimization from [4], in assembly code and eliminates
a large portion of data memory loads, at the cost of few additional instructions,
which are used to encode the data directly in the immediate field. Thus, the
data cache misses are likely reduced when employing this implementation.
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Beyond our implementation, this method is applicable to other models and
structures as well. Floating point constants are required for a large set of ma-
chine learning models, e.g. neural networks or simple regression models. Such
models are usually trained by adjusting a set of constants (weights, parameters,
etc.), which are then incorporated for computation during inference. Since the
computation is implemented as code execution in a CPU based variant, con-
stants can be similarly immediately encoded and possibly allow a performance
improvement of other models.

5 Evaluation

In order to evaluate our proposed implementation of encoding the split values
in the immediate fields of integer instructions, we focus on two central aspects:
1) the reduction of data cache misses and 2) the effect of the reduction on the
total execution time. For the evaluation, we investigate again the data sets from
the UCI machine learning repository [6]: The EEG Eye State Data Set (eye),
the Gas Sensor Array Drift Data Set (gas), the MAGIC Gamma Telescope Data
Set (magic), the Sensorless Drive Diagnosis Data Set (sensorless) and the Wine
Quality Data Set (wine). These data sets are all classification data sets. We used
the arch-forest framework together with our custom code generator to generate
ensembles of different amount of trees and tree sizes for all data sets. We gen-
erated subsequently three implementations for every tree: 1) a naive if-else tree
implementation without any optimization, 2) the optimized if-else tree imple-
mentation from Chen et al. [4] as the state of the art and 3) our assembly-based
implementation, as presented in Section 4. As test platforms, we chose four dif-
ferent systems, two server systems with X86 and ARMv8 architectures and two
embedded systems with X86 and ARMv8 architectures. The system details can
be found in Table 1. We executed all generated ensembles on all of the systems

CPU L1 icache L1 dcache Memory
X86 Server 2x AMD EPYC 7742 32 kB 32 kB 256 GB

DDR4
X86 Embedded Intel Atom x5-Z8350 32 kB 24 kB 2GB DDR3
ARMv8 Server 2x Cavium Thunder

X2
32 kB 32 kB 256 GB

DDR4
ARMv8
Embedded

Amlogic S9052 32 kB 32 kB 2 GB DDR3

Table 1. Test system details

and used the performance analysis tools for Linux (Perf) to record instruction
cache misses, data cache misses and the total execution time for every configura-
tion. We again determined the model size in bytes after compilation to compare
the different configurations regarding their final size. Similarly, we consider the
optimized implementations for the binary size of the naive implementation and
build size groups, which we use to compute the geometric mean and present
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Fig. 3. Instruction cache misses of immediate encoded split values - server

the results. Thus, even if the model size is increased by the optimization, the
normalized ratio still is depicted for the same logic model structure.

Figure 3 depicts the icache misses for the server systems, Figure 4 depicts the
dcache misses, and Figure 5 depicts the execution time, respectively. Figure 6
depicts the icache misses for the embedded systems, Figure 7 the dcache misses
and Figure 8 the execution time, respectively. We again compute the normal-
ized ratio between the optimized and the naive implementation. Thus, a number
larger than 1 indicates worse performance in comparison to the naive implemen-
tation. Each figure includes results for the X86 architecture and for the ARMv8
architecture. Comparing the reduction for the optimization from the state of
the art and our optimization leads to another, relative improvement, which is
illustrated in Table 2. The #IMPROVED and #IMPROVED(> 900k) values
describe in how many of the tested models our optimization performs better
regarding instruction cache misses, data cache misses or execution time than
the optimization from Chen et al. The latter value only considers models, which
lead to a binary size of more than 900kB. We further compute the improvement
ratio by 1− Immediate Split

Chen et al. . Hence, a number of +100% for the cache misses would
mean that our optimization eliminates all cache misses, which are left after the
optimization from the state of the art. We compute this improvement for all
data sets and report the geometric mean for models larger than 900kB and the
peak value in the table.

5.1 Discussion

Generally, it can be observed that for rather small ensembles (up to ≈ 900kB)
a diminished performance can be observed for most configurations. If a small
model anyway can be held entirely in the level 1 cache, there is no requirement
for any optimization. The optimization, however, induces certain overheads by
introducing more instructions, which leads to an ultimate performance decrease.
In consequence, this draws the conclusion that the optimization should only
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Fig. 4. Data cache misses of immediate encoded split values - server
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Fig. 5. Execution time of immediate encoded split values - server

be applied in meaningful scenarios, where the ensemble size exceed the level 1
cache size and necessarily produces cache misses. Therefore, we focus on these
meaningful scenarios only.

Focusing on the instruction cache misses only, it can be seen that for most
configurations with large model sizes the amount of icache misses is further de-
creased by our proposed optimization, compared to the state of the art (on the
X86 server system in 95% of the relevant cases in geomean by 14.7%). Consid-
ering the data cache misses, considerable reductions can be observed for larger
ensembles in comparison to the state of the art as well. For the X86 server, the
amount of data cache misses for large ensembles is even reduced in 84% of the
relevant cases by up to ≈ 92% in peak. In case of the ARMv8 server, a slighter
reduction of dcache misses can be observed, up to ≈ 65% in peak and even an
increase of ≈ 4% in geomean for large ensembles. Focusing on the embedded sys-

6 The geomean values in this table are computed for models only, which are larger
than 900 kB.
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X86 ARMv8
Server Embd. Server Embd.

Time
#IMPROVED 33.7% 09.6% 34.6% 06.1%
#IMPROVED(>900k) 80.9% 10.7% 68.3% 06.5%
GEOMEAN(>900k) +08.4% −16.4% +01.5% −17.8%
Peak +39.5% +36.7% +29.7% +38.7%

ICache
#IMPROVED 60.0% 33.7% 55.5% -
#IMPROVED(>900k) 95.2% 60.7% 76.9% -
GEOMEAN(>900k) +14.7% +00.3% +02.6% -
Peak +90.4% +26.8% +61.8% -
DCache
#IMPROVED 64.1% 76.8% 41.6% 37.5%
#IMPROVED(>900k) 84.5% 100.0% 39.4% 27.8%
GEOMEAN(>900k) +26.1% +96.1% −4.7% +4.6%
Peak +92.3% +99.8% +65.5% +87.7%

Table 2. Average and peak improvements compared to [4]6 for server and embedded
systems

tems, similar behavior can be observed for the data cache, the behavior for the
icache misses contrarily differs7. Data cache misses are reduced by up to ≈ 99%
in peak and ≈ 96% in average for X86. Instruction cache misses, however, are
not significantly reduced on the X86 embedded system. For the ARMv8 embed-
ded system, the improvement of dcache misses as well is comparably lower to
the X86 embedded system.

Despite reducing icache and dcache misses, the allover execution time of the
optimized implementation matters. In general, it can be observed that a high
reduction in dcache misses does not necessarily result in a high reduction in
execution time. For large ensemble sizes on the server machines, a consistent
reduction of execution time can be however observed for our proposed optimiza-
tion. The majority of relevant cases (more than 65%) yields an improvement
in execution time on the X86 and ARMv8 servers. The improvement is up to
≈ 40% in peak for X86 and ARMv8, compared to the state of the art. For small
ensemble sizes, it can be observed that the execution time is increased beyond
the naive implementation with our optimized implementation. In theses cases,
the additional overheads due to the immediate encoding cannot be leveraged by
the improvement. Investigating the embedded systems, the execution time can
only be improved for few cases (≈ 10% on the X86 and ≈ 6% on the ARMv8
system). In geomean, the execution time is enlarged for the relevant cases, al-
though the amount of dcache misses is drastically reduced for X86. This suggests
that dcache misses are not the limiting factor for the execution in this scenario.
Furthermore, this also implies that the CPU architecture is an important factor
to the intended reduction of dacache misses with our optimization.

Although the results reveal that our proposed optimization cannot improve
performance unconditionally, especially for small model sizes and embedded sys-

7 The ARMv8 system we use does not allow tracking of icache misses with perf.
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tems, we can report scenarios with a massive reduction of dcache misses and also
a reduction of icache misses. Such a reduction can be useful to comfort paral-
lel running applications. In several cases, the reduction of cache misses further
directly relates to reduction of total execution time. When generating imple-
mentations, various versions can be profiled on the training data set so the best
implementation can be chosen. Thus, for the cases where we achieve a worse
result, the implementation of Chen et al. can still be chosen. Similarly for small
models, where the optimized implementation induces a high overhead, the native
implementation can be chosen.
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Fig. 6. Instruction cache misses of immediate encoded split values - embedded
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Fig. 7. Data cache misses of immediate encoded split values - embdedded

6 Conclusion and Outlook

In this paper, we investigate the realization of random forests as if-else trees,
which is one popular way of implementing random forests. We show that, counter
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Fig. 8. Execution time of immediate encoded split values - embedded

intuitively to the design principle, data memory accesses and therefore poten-
tially data cache misses play a big role in if-else tree implementations. The
state-of-the-art optimization for if-else trees does not target data memory ac-
cesses specifically, therefore we propose an optimized implementation in this
paper, where we eliminate a huge portion of data memory accesses. Experimen-
tal evaluation shows that our optimization can reduce the amount of data cache
misses by up to 99% upon the state-of-the-art and can even lower the allover
execution time by up to 40% on server systems. We further conclude that the
overheads, which are introduced by our optimization, can only be leveraged for
model sizes, which exceed the size of the level 1 caches. Thus, the optimization
should be only applied in these cases. On embedded systems, the execution time
is overall not significantly lowered, although the amount of cache misses can be
drastically reduced. Hence, different aspects should also be explored. The imple-
mentation of our code generation fully supports X86 and ARMv8 architectures
with different width integer and floating point data types. The source code is
available at https://github.com/tu-dortmund-ls12-rt/arch-forest/tree/
immediatesplittrees.

For future work, we plan to include model-based optimizations to our im-
plementation, where we try to estimate the cache behavior during compile time
with precise models and layout the trees accordingly. We also plan to investigate
the relation between cache misses and execution time more intensively.

Acknowledgement

This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within
the project OneMemory (project number 405422836), the SFB876 A1 (project
number 124020371), and Deutscher Akademischer Austauschdienst (DAAD) within
the Programme for Project-Related Personal Exchange (PPP) (project number
57559723).

15

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
A

cc
ep

te
d

in
E

C
M

L
PK

D
D

20
22



References

1. Asadi, N., Lin, J., de Vries, A.P.: Runtime optimizations for tree-based machine
learning models. IEEE Transactions on Knowledge and Data Engineering 26(9)
(Sept 2014)

2. Buschjäger, S., Morik, K.: Decision tree and random forest implementations for
fast filtering of sensor data. IEEE Transactions on Circuits and Systems I: Regular
Papers PP(99), 1–14 (2017). https://doi.org/10.1109/TCSI.2017.2710627

3. Buschjäger, S., Chen, K.H., Chen, J.J., Morik, K.: Realization of random forest for
real-time evaluation through tree framing. In: 2018 IEEE International Conference
on Data Mining (2018). https://doi.org/10.1109/ICDM.2018.00017

4. Chen, K.H., Su, C., Hakert, C., Buschjäger, S., Lee, C.L., Lee, J.K., Morik, K.,
Chen, J.J.: Efficient realization of decision trees for real-time inference. ACM
Transactions on Embedded Computing Systems (TECS) (2022)

5. Dato, D., Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Tonellotto, N.,
Venturini, R.: Fast ranking with additive ensembles of oblivious and non-oblivious
regression trees. ACM Transactions on Information Systems (2016)

6. Dua, D., Graff, C.: Uci machine learning repository (2017), http://archive.ics.
uci.edu/ml

7. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A., Kaldewey, T., Lee, V.,
Brandt, S., Dubey, P.: FAST: Fast architecture sensitive tree search on modern
CPUs and GPUs. In: Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data. ACM (2010)

8. Lucchese, C., Nardini, F., Orlando, S., Perego, R., Tonellotto, N., Venturini, R.:
Quickscorer: A fast algorithm to rank documents with additive ensembles of re-
gression trees. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 73–82. ACM (2015)

9. Lucchese, C., Perego, R., Nardini, F.M., Tonellotto, N., Orlando, S., Venturini,
R.: Exploiting CPU SIMD extensions to speed-up document scoring with tree
ensembles. In: SIGIR 2016 - Proceedings of the 39th International ACM SI-
GIR Conference on Research and Development in Information Retrieval (2016).
https://doi.org/10.1145/2911451.2914758

10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Édouard Duchesnay: Scikit-learn:
Machine learning in python. Journal of Machine Learning Research 12(85) (2011)

11. Prenger, R., Chen, B., Marlatt, T., Merl, D.: Fast map search for compact ad-
ditive tree ensembles (cate). Tech. rep., Tech. rep., Lawrence Livermore National
Laboratory (LLNL), Livermore, CA (2013)

12. Van Essen, B., Macaraeg, C., Gokhale, M., Prenger, R.: Accelerating a random for-
est classifier: Multi-core, gp-gpu, or fpga? In: Field-Programmable Custom Com-
puting Machines (FCCM), 2012 IEEE 20th Annual International Symposium on.
pp. 232–239. IEEE (2012)

13. Ye, T., Zhou, H., Zou, W.Y., Gao, B., Zhang, R.: RapidScorer: Fast tree ensemble
evaluation by maximizing compactness in data level parallelization. In: Proceedings
of the ACM International Conference on Knowledge Discovery and Data Mining
(2018). https://doi.org/10.1145/3219819.3219857

16

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
A

cc
ep

te
d

in
E

C
M

L
PK

D
D

20
22


