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Abstract—Modern low power distributed systems tend to integrate machine learning algorithms. In resource-constrained setups, the
execution of the models has to be optimized for performance and energy consumption. Racetrack memory (RTM) promises to achieve
these goals by offering unprecedented integration density, smaller access latency, and reduced energy consumption. However, to
access data in RTM, it needs to be shifted to the access port first. We investigate decision trees and develop placement strategies to
reduce the total number of shifts in RTM.
Decision trees allow profiling during training, resulting in tree paths’ access probabilities. We map tree nodes to RTM so that the total
number of shifts is minimal. Concretely, we present two different placement approaches: 1) where tree nodes are closely packed and
placed uniformly in a single RTM location and 2) where decision tree nodes are decomposed to separate RTM blocks. We discuss
theoretical cost models for both approaches, we formally prove an upper bound of 4× for the unified and an upper bound of 12× for the
decomposed organization towards the optimal placement. We conduct a thorough experimental evaluation to compare our algorithms
to the state-of-the-art placement strategies Our experimental evaluations show that the unified and decomposed solutions reduce the
number of shifts by 58.1% and 80.1%, respectively, leading to a 53.8% and 46.3% reduction in the overall runtime and 52.6% and
61.7% reduction in the energy consumption, compared to a naive baseline.

Index Terms—Non-volatile Memory, Decision Tree, Optimal Linear Ordering, Racetrack Memory

✦

1 INTRODUCTION

The rise of non-volatile memories (NVMs) as SRAM and
DRAM competitive memory technologies allows systems to
benefit from their richer densities, lower per-bit cost and
energy consumption and comparable access latencies. Espe-
cially in battery-powered embedded systems, maintenance
cycles can be significantly increased by carefully exploiting
the advantages of NVMs and reduce the overall system en-
ergy consumption. An important application for low power
computing “on the edge” is data processing and gathering,
e.g., for distributed sensor nodes. Such setups can be im-
proved by executing machine learning models already on
the edge. One popular candidate for resource-constrained
and efficient classification models are decision trees, since
they do not require complex arithmetic operations and are
highly configurable with only a few parameters. Assuming
a decision tree should be executed on the edge to classify
data points on the fly, the memory layout of the decision
tree has to be carefully considered to achieve both energy
efficiency and performance optimization.

Racetrack memory (RTM) is a new class of NVM, which
features high integration density, low unit cost, and low en-
ergy consumption at the cost of access pattern specific shift
latencies [1]. In RTM, data cannot be randomly accessed;
it needs to be shifted to an access port first before it can
be read out. The distance, i.e., how far the data needs to
be shifted, defines the additional shift latency. Researchers
target the problem of optimally mapping data structures
to RTM, with respect to the shift latency by proposing

placement heuristics, since exhaustively searching for the
optimal placement is often not feasible [2], [3]. The heuristics
usually profile the access probabilities of the data objects
either in advance or during runtime. The major shortcoming
of such placement heuristics is that they treat all data objects
equally and, therefore, consider all data objects possibly
being accessed pairwise consecutively.

A single cell in RTM is a magnetic nanowire equipped
with one or more access ports and can store up to 100 data
bits. The nanowires are grouped into domain block clusters
(DBCs) that allow accessing all bits of a data word in
parallel. The RTM array then consists of multiple DBCs,
where each DBC has multiple locations. The selection of a
target DBC in RTM requires no shifting and allows random
accessing while accessing DBC locations is still sequential
and requires shift operations. This provides an additional
tuning knob, i.e., how data objects are placed within DBCs
to minimize the necessary shifts and how they are dis-
tributed across DBCs. Existing optimization approaches to
reduce the shift overhead try to find relations and depen-
dencies between data objects and try to place such objects
close together in order to reduce the shift overhead. As
these approaches however have to assume a very generic
structure of data objects, achieving optimality is likely not
feasible.

Hence, we study domain specific placement approaches
for decision trees in this paper, which assume a more con-
crete and simpler structure of the data objects, limited to
the structure of binary trees. We investigate two strategies
for organizing decision trees across racetrack DBCs. In the
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first approach, we place the entire decision tree into a single
DBC [4]. The width of the DBC is chosen such that a single
position contains an entire node of the decision tree. This
approach uses the decision tree nodes’ probabilities but
considers the nodes themselves as black boxes.

The decision tree node data structure consists of pointers
to child nodes (two in the case of binary trees) and the node
data (the split decision value). In every iteration of the tree
traversal, only one child’s pointer needs to be retrieved from
the RTM. However, since all elements in the unified node
are tightly coupled, the entire DBC is shifted to retrieve a
particular node. The second approach uses this observation
to decouple the pointer and data elements and store them in
separate DBCs, resulting in a split value DBC, a left pointer
DBC, and a right pointer DBC. This decomposition enables
accessing RTM at the DBC granularity, thereby avoiding
unnecessary shifts. For instance, if the tree is traversed
towards the left child, only the split value and the left
pointer DBCs need to be shifted, and the right pointer DBC
remains unaffected.

The unified and decomposed approaches impose dif-
ferent costs in terms of required racetrack shifts during
the traversal of the decision trees. We develop theoretical
cost models that allow further argumentation and discus-
sion about optimal solutions for the placement problem.
We introduce a domain-specific placement algorithm and
compare it to the optimal placements for both approaches.
For both cases, we also proof and find upper bounds, i.e., we
make sure that our placement algorithm delivers a solution
that never requires more than 4× the number of shifts of
an optimal solution on the unified organization. For the
decomposed organization, we prove that our placement al-
gorithm does not cause more than 12× the number of shifts
an optimal solution would cause. We further prove that any
specific placement on the unified organization cannot cause
more than 3× shifts on the decomposed organization.

In addition to the theoretical proofs and reasoning, we
conduct a thorough experimental evaluation to compare
the unified and decomposed approaches and our domain-
specific placement algorithm to the state-of-the-art RTM
placement algorithms. We compare the different solutions in
terms of shift operations, runtime, and energy consumption.
Concretely, we make the following contributions:

• A unified and a decomposed nodes’ organization ap-
proach for decision trees on racetrack memory, includ-
ing their formal cost models.

• A domain-specific placement algorithm for decision
trees, including formal proofs of the upper bound to-
wards the optimal solution on both organization ap-
proaches.

• Experimental evaluation and comparison to state-of-
the-art methods, including end-to-end latency and en-
ergy evaluation.

2 SYSTEM MODEL AND PROBLEM DEFINITION

In this work, we target low-power embedded systems for
machine learning inference. A typical scenario for such
systems could be the deployment of battery-powered sensor
nodes. Instead of transmitting the raw sensor data via

CPUL1 Cache
...

Main Memory (DRAM / SRAM / ...)

RTM Scratchpad

Fig. 1. System Memory Architecture

radio transmission, the system could locally perform the
model inference and only submit the derived result, thereby
considerably saving transmission energy. The target system
is assumed to be equipped with a simple CPU core (e.g.,
few MHz clock rate), a small main memory (e.g. SRAM or
DRAM) and integrated RTM scratchpad memory. The RTM
scratchpad is assumed to not be covered by further caches
and directly serve requests from the CPU core. The system
architecture is illustrated in Figure 1. Mapping the RTM
scratchpad to a certain memory location may reduce the
average access latency, the energy consumption for accesses
to that memory location can be drastically reduced. This
work assumes that the decision tree model is mapped to
this RTM scratchpad memory, so the access patterns of the
tree nodes determine the access latency and energy con-
sumption. This work further assumes that the execution of a
single decision tree is not parallelized across multiple cores,
since parallelism in random forests is usually achieved by
executing different trees on different cores in parallel.

2.1 Decision Tree and Probabilistic Model
In this work, we consider Decision Trees as the inference
model, where the leaf nodes contain the prediction values
of the model under supervised learning. The input data is
classified by its values for a fixed amount of features. Each
inner node in the decision tree compares exactly one feature
value from the input data with a fixed split value, deciding
if the inference goes further to the left or the right child.
Decision trees are a famous inference model for resource
constrained machine learning. Furthermore, decision trees,
in contrast to graph based networks, allow a probabilistic
view on required data objects for the execution.

Each tree consists of nodes N = {n0, n1, ..., nm−1},
divided into inner nodes Ni and leaf nodes Nl with
N = Ni ∪ Nl and Ni ∩ Nl = Ø, n0 is the root node.
Each node nx ∈ N \ {n0} has exactly one parent node
P (nx). Each node consists of three values: a split value, a
pointer to the left child, and a pointer to the right child.
In the unified organization, the entire node is mapped to
a single array element in a consecutive array of size m.
In the decomposed organization approach, we place each
component of a node into a separate array, resulting in three
arrays of size m. The indices of all components of a node
in different DBCs, however, have to be synchronized. If the
split value of node nx is stored at index i, its corresponding
left and right pointer values must also be stored at index i in
their corresponding arrays. For a single array, the racetrack
shifting cost of accessing index i and j with 0 ≤ i, j < m
is |i − j|. A valid placement of nodes N to array indices
I : N → {0, 1, ...,m− 1} must be bijective.

The inference model always starts at the root node
and follows a certain path according to the comparisons
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Fig. 2. RTM cell structure

at each node until reaching at a leaf node. By following
the probabilistic model proposed in [5], each comparison
is modeled as a Bernoulli experiment, by which each node
is assigned a probability to be accessed from the parent
node prob : N → [0, 1] ⊂ Q with prob(n0) = 1 and
∀np ∈ Ni :

∑
nx∈N :P (nx)=np

prob(nx) = 1. That is, the sum
of the probabilities of the children of the node np is 1.

2.2 RTM Cell Structure
The basic unit of storage in an RTM is a magnetic nanowire
called track. Each track consists of multiple small magnetic
regions (domains) which are separated by domain walls,
and each of them has its own magnetization orientation
as shown in Figure 2. A domain in a track represents a
single bit (i.e., a “0” or “1”) determined by its magnetization
orientation. Each track is equipped with a single or multiple
access ports responsible for performing a read or a write
operation that requires the desired domain to be shifted
along the track towards the access port by applying an
electrical current. After aligning the desired domain to the
respective access port, the relevant data is either read by
sensing its magnetization orientation or written by updating
its magnetization orientation.

2.3 RTM Architecture
The hierarchical organization of RTM, like other memory
technologies, consists of banks, subarrays, domain wall
block clusters (DBCs), tracks, and domains as depicted in
Figure 3. Each structure at the highest level (e.g., bank)
is decomposed into smaller structures at the next level
(e.g., subarray). An RTM’s essential structure is a DBC that
contains T tracks, each comprising K domains. A single
DBC can store K data objects with T -bit, where each object
is stored in an interleaved pattern across the T tracks. Under
a single port and K domains per track assumption, the shift
cost to access a particular data object in a DBC may range
from zero to T × (K − 1).

A DBC can store up to 100 data objects, i.e., K can be
as high as 100 [1]. However, many recent designs consider
K = 64, which is more realistic and enables efficient uti-
lization of the address bits This work also assumes that 64
nodes of a decision tree can be placed within a single DBC,
containing a subtree of the maximal depth of 5. Since we
use balanced decision trees in this paper, larger trees can be
easily split into such subtrees by introducing dummy leaves,
pointing to the next subtree. Subtrees in different DBCs can
be accessed without additional shifting costs.

2.4 State-of-the-art Data Placement in RTMs
Recent works [2], [3] propose compiler-guided approximate
and optimal solutions for objects placement in RTMs. A
memory access trace S is represented with an undirected

DBCBank

RT0 RTT-1

b0 bT-1

Sub-
array

V0

V1

VK-1Bank

Bank

Bank

Sub-
array

Sub-
array

Sub-
array

DBC

DBC

DBC

Fig. 3. An overview of the RTM hierarchical organization

graph of the form G(V,E) where V is the set of vertices
representing data objects and E is the set of edges between
vertices. Each edge has an associated edge weight value
corresponding to the number of consecutive occurrences
of the connecting vertices. The heuristic in [3] maintains a
single group g and assigns objects to it. In the first step,
the data object with the highest access frequency (number
of accesses) in S is assigned to it. Afterward, the remaining
data objects (i.e., vertices in V ) are appended to g one by one
by prioritizing the vertex with the highest adjacency score.
The chronological order in which vertices are added to the
group determines the assignment of the corresponding data
objects to the DBC, from left to right. However, this may
lead to many costly long shifts because the data object
with the highest frequency is placed on one end of the
DBC. To overcome this problem, ShiftsReduce [2] uses a
two-directional grouping to place the data objects with the
highest access frequency in the middle of the DBC and
places temporally close accesses at nearby locations inside
the RTM.

2.5 Problem Definition

In this work, we focus on placement optimization to mini-
mize the number of racetrack shifts for decision trees, which
are trained beforehand, on memory devices with a single
access port. This work is not about changing any logic
structure of the decision tree, we take a logic representation
of a trained tree as an input and determine a memory
mapping, which maintains the logic structure. The problem
is defined as follows:
• Input: A binary decision tree, consisting of a set N with
m nodes, where each node is associated with a probability
to be accessed from its parent. The probability is profiled
on the training dataset. The information of the rooted tree
is defined in Section 2.1.

• Output: A bijective placement of tree nodes to memory
array indices that uses the node access probabilities and
minimizes the required racetrack shifts while accessing
the tree nodes during inference. The objective of min-
imized racetrack shifts is different for the unified and
decomposed organizations.

Figure 4 illustrates a simplified instance of the problem.
The input is the logic tree structure with profiled proba-
bilities on the left, the output is a mapping of nodes to
array indices on the right. The mapping results in a total
expected shifting cost. For the upper mapping, the cost for
shifting from the root to n1 and back to the root is 2, the
cost for shifting to n2 and back is 4, thus weighted with the
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n0

n1 n2

100%

20% 80%

n0 n1 n2

expected shifts: 3.6

n0 n2 n1

expected shifts: 2.4

Fig. 4. Simplified example of optimized decision tree mapping

probability, the cost is 0.2 · 2 + 0.8 · 4. Following the same
consideration, the lower mapping is an optimized (yet not
optimal) mapping, causing an expected cost of 2.4.

Due to the rooted tree structure, each node nx in N
has a unique access path from the root to nx. We use
rlpath(nx) to denote the set containing all nodes from the
root node down to nx. With the help of this, we declare
the absolute access probability of node nx as absprob(nx) =
Πnz∈rlpath(nx)prob(nz). In addition, every node nx ∈ N has
a subtree with a subset of leaf nodes leafs(nx) ⊆ Nl where
∀ny ∈ leafs(nx) : nx ∈ rlpath(ny).

Definition 1. For a given node nx ∈ N , the sum of probabilities
of its direct children must always be 1 (cf. Section 2.1). By
definition, the absolute probability of nx can be then expressed
as:

absprob(nx) =
∑

ny∈leafs(nx)

absprob(ny) (1)

3 UNIFORM ORGANIZATION

This section presents our unified organization approach, i.e.,
placing all components of the decision tree node at one
index in the DBC. We first define the cost model of decision
tree execution for this approach and introduce our novel
placement strategy subsequently. We deliver a formal proof,
assessing the optimality of our strategy.

3.1 Cost Model
Given some valid placement I , the expected cost to infer an
input value, i.e., following a path from the root to a leaf, is
given by Eq. (2):

Cdown =
∑

nx∈N\{n0}
absprob(nx) · |I(nx)− I(P (nx))| (2)

After finishing one inference iteration, the DBC needs to
be shifted back to the root node so that the next inference
iteration can again start at the root. The expected cost of
shifting from leaf nodes back to the root node is given by
Eq. (3):

Cup =
∑

nx∈Nl

absprob(nx) · |I(nx)− I(n0)| (3)

Combining them leads to the total expected shifting cost
under the profiled dataset (Eq. (4)):

Ctotal = Cdown + Cup (4)

An optimal placement I∗ for a decision tree on racetrack
memory in the unified organization approach is a placement
that reduces Ctotal to the absolute minimum. This problem
is an instance of the Optimal Linear Ordering (OLO) prob-
lem [6]–[8]. The OLO problem, in general, is to map the

nodes of a graph G to slots, where all slots are in a row, and
adjacent slots are one unit apart, such that the total sum of
arc weights multiplied with the distance between the nodes,
connected by the arc, is minimal. The OLO (or also called
Optimal Linear Arrangement) problem is an instance of the
Quadratic Assignment Problem and is NP-complete [9]. As
a special case, the OLO problem for rooted trees with the
root node on the leftmost position can be optimally solved
in time complexity O(m logm) [6]. Although decision trees
are a rooted tree structure, the node access structure is a
cyclic graph, since a leaf node is always followed by the
root node for the next data tuple. Ignoring the cost of this arc
in the access graph (i.e. only optimizing Cdown) makes the
optimization of the racetrack shifts within decision trees an
instance of a rooted tree, but is not optimal for the total cost
Ctotal. Therefore we analyze the optimally of the solution
for Cdown on Ctotal in the following.

3.2 Optimal Linear Ordering for Decision Trees

In this section, we prove an upper bound of the optimality
of a placement, only considering Cdown, on the studied
problem of optimizing Ctotal. Therefore, we show how
an optimal solution for Ctotal can be transformed into a
solution, which has the form of the output of the optimal
algorithm for optimizing Cdown. For the different transfor-
mation steps, we explain the caused increase in shifting cost.
Ultimately, we derive the upper bound from the fact that the
transformed solution must not be better than the derived
solution for Cdown.

Throughout this section we use the notation defined in
Table 1:

Placement Explanation
I arbitrary placement
I∗ optimal placement which optimizes Ctotal

C∗
opt total cost Ctotal caused by I∗

I∗↓ optimal placement which optimizes Cdown

C∗↓
down Cdown caused by I∗↓←−
I arbitrary placement with the root on the left←−
I∗ optimal placement with the root on the left←−
C∗

down Cdown caused by
←−
I∗

TABLE 1
Placement Notation

Suppose that C∗
opt is the minimum expected cost Ctotal

of the optimal placement I∗ of the decision tree. In the
following, we show how to derive a sub-optimal placement,
which at most causes 4 times the cost of C∗

opt. A root leaf
path, defined as rlpath(nℓ), from the root node n0 to a leaf
node nℓ ∈ Nl in a placement I is monotonically increasing if
I(nx) > I(P (nx)) for every node nx in rlpath(nℓ) \ {n0}.
Contrarily, such a path is monotonically decreasing if I(nx) <
I(P (nx)) for every node nx in rlpath(nℓ) \ {n0}.
Definition 2. We define placement I unidirectional if all paths
in the given decision tree are monotonically increasing in this
placement.

Definition 3. We define placement I bidirectional if every
path in the decision tree is either monotonically increasing or
monotonically decreasing.
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Fig. 5. Reassignment of nodes and root to the left

Lemma 1. Let I∗↓ be a placement which only minimizes C∗↓
down

and ignores C∗↓
up. Then,

C∗↓
down ≤ C∗

opt (5)

Proof. This comes from the definition as certain terms in the
objective function are removed and all terms are positive.

We now restate an existing property that was already
used by Adolphson and Hu [6] regarding the optimization
of I∗↓ when the root has to be put on the leftmost position.

Lemma 2 (Page 410 in [6]). (restated) There exists an optimal
unidirectional placement

←−
I∗ for the OLO problem when the input

is a rooted tree, i.e.,
←−
C∗

down = C∗↓
down, under the constraint that

the root is on the left most position.

Deriving a unidirectional or bidirectional placement in-
duces the special property that optimizing Cdown implicitly
optimizes Cup, which is shown by the following lemma.

Lemma 3. If a placement I is unidirectional or bidirectional,
Cdown = Cup.

Proof. The full proof can be found in the appendix. Basically,
in a unidirectional mapping the leaf is always the right most
node, thus going from the root to the lead (down) is the
same distance as going from the leaf to the root (up).

In the following, we point out the relation between a
placement I and a placement

←−
I which puts the root on the

leftmost position.

Lemma 4. Any placement I can be converted into a placement←−
I which places the root on the left most position by increasing

the expected cost of
←−
C down with at most a factor of 2:
←−
C down ≤ 2 · Cdown (6)

Proof. For spatial and readability reasons, the full proof
can be found in the appendix. The basic concept how to
construct this transformation is illustrated in Figure 5, where
the original mapping is illustrated in the top and the new
mapping is illustrated in the bottom. The root is moved to
the left most position. A symmetric amount of nodes around
the original root is interleaved, such that the distance to the
of each interleaved node is at most doubled. All other nodes
can remain at their position, since the movement of the root
increases their distance by a factor of less than 2.

Suppose that
←−
I∗ is an optimal unidirectional placement

of the rooted tree (with the root on the leftmost position)
and optimizes the cost

←−
C∗

down. Further suppose that I∗↓ is
an optimal placement which optimizes C∗↓

down. We conclude
the following corollary:

Corollary 1.
←−
C∗

down ≤ 2 · C∗↓
down (7)

Proof. I∗↓ is an unconstrained placement that achieves the
optimal C∗↓

down. By Lemma 2, we know that
←−
I∗ is an optimal

placement for the cost
←−
C∗

down under the condition that the
root is on the left most position. Therefore, C∗↓

down is a lower
bound of any solution when the root is on the left most
position. By Lemma 4, I∗↓ can be converted into a placement←−
I , in which the root is put to the left most position, with a

cost up to
←−
C down ≤ 2 ·C∗↓

down. Therefore,
←−
I ∗, as the optimal

placement under the root constraint, must not cause a higher
cost
←−
C∗

down than
←−
C down.

Theorem 1. An optimal unidirectional placement has an approx-
imation factor of 4 of the studied problem.

Proof. Based on Lemma 3, we know that the expected cost,
denoted as

←−
C∗

total, of the optimal unidirectional placement
for the decision tree (including the down- and up-parts) is
exactly 2 · ←−C∗

down. Therefore, together with Corollary 1 and
Lemma 5, we reach the conclusion.

←−
C∗

total = 2 · ←−C∗
down ≤ 4 · C∗↓

down ≤ 4 · C∗
opt.

We now explain how to derive an optimal unidirec-
tional solution that minimizes

←−
C∗

down efficiently. Adolph-
son and Hu [6] proposed an algorithm to solve this case
optimally. Specifically, according to [6], the OLO problem for
rooted trees with the root mapped to the leftmost slot is to
find an optimal allowable linear ordering of tree nodes. An
allowable linear ordering in their terminology means that if
node np = P (nx) is the parent of node nx, it has to be left of
nx in the ordering. The algorithm from Adolphson and Hu
always derives an optimal allowable linear ordering to
minimize the OLO problem in O(m logm) time complexity.
The algorithm is implemented by recursively condensing
subtrees underneath every node. This means, the algorithm
decides whether further nodes of the underlying subtree
should be placed close to the node, or if another node with
relative high access probability should be put close in the
mapping. This is achieved by dynamically keeping track of
internal weights, which relate the node access probability
and the length of mapped subtree nodes underneath. The
algorithm basically skips mapping subtree nodes, once the
increasing expected cost of other nodes exceeds the gain
in expected cost for subtree nodes. Please note that the
OLO problem is studied further in the literature and even
more efficient algorithms for rooted trees are proposed
(e.g. Skodinis proposes an algorithm with O(m) runtime
complexity [10]). However, these algorithms differ in their
time complexity, but all of them provide optimal solutions
to the OLO problem for rooted trees. In this paper we base
on the linear allowable property from Adolphson and Hu.
In addition, we compute the tree layouts offline, thus both,
O(m logm) and O(m), are feasible for all our trees.
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n0
←−
I∗ of left subtree ∪ right subtree

Adolhpson and Hu’s placement

n0rev(
←−
I∗ of left subtree)

←−
I∗ of right subtree

BLO placement

Fig. 6. Suboptimal Placement Correction

4 BIDIRECTIONAL LINEAR ORDERING

Deriving a placement by the algorithm from Adolphson and
Hu at most causes 4× the cost compared to the optimal so-
lution for the unified organization approach. The algorithm
from Adolphson and Hu has the major drawback of placing
the root node to the leftmost slot in any solution, which is
not optimal when the cost for going back from leafs to the
root between inferences is considered. Our novel proposed

Algorithm 1 BLO Mapping Algorithm
Given a tree with root nr

TL ← left subtree of nr

TR ← right subtree of nr

IL ← OLO mapping of TL

IR ← OLO mapping of TR

return {reverse(IL), 0, IR}

algorithm computes a Bidirectional Linear Ordering (BLO)
(Algorithm 1). We map the two subtrees underneath the root
by the algorithm from Adolphson and Hu, which derives a
placement IL for the left subtree and a placement IR for the
right subtree (Figure 6). Both placements cause an expected
cost of at least two shifts less than the total expected cost of
the entire tree since one node, and therefore a shift at least
by one slot is missing on every root leaf path to a leaf and
back to the root. We then form the final BLO placement by
placing I⋄ = {reverse(IL), 0, IR}. In this placement, two
shifts are then added again to every root leaf path into and
out of the right and left subtree, thus C⋄

total ≤ Ctotal. In
consequence, the upper bound of 4× holds for BLO as well.
The amount of shifts, however, is expected to be reduced by
using BLO instead of OLO.

The reverse ordering can be done in O(m), the place-
ment of the root is performed with constant time overhead.
Therefore, the time complexity of BLO is O(m logm).

5 DECOMPOSED ORGANIZATION

The last two sections explain the unified organization ap-
proach and discuss how the optimal linear ordering prob-
lem is related to our shifts minimization objective. This sec-
tion focuses on the decomposed organization approach and
analyzes how OLO and BLO perform for the decomposed
trees. We revise the cost model and provide another formal
proof about the solution’s optimality for the OLO problem.

The decomposed approach is motivated by two major
challenges in the unified organization approach: (1) it re-
quires very wide DBCs and is less scalable (ii) leaf nodes
that make ≈ 50% of the total number of tree nodes do not

need to store pointers for left and right child nodes. How-
ever, since the node information in the unified approach is
tightly coupled, storage can not be optimized. This leads to
storage wastage and yields suboptimal latency and energy
consumption.

The DBC size is generally defined by two parameters,
i.e., the number of (useful) domains per track and the num-
ber of tracks per DBC. Increasing the number of domains
per track increases the capacity but at the cost of increased
latency and increased position-error rate [11]. Similarly, the
number of tracks per DBC affects the number of address
bits, decoder’s size, and ultimately performance and energy
consumption. For a fixed size RTM, increasing the number
of tracks per DBC reduces the number of DBCs and requires
fewer address bits. However, this comes at the cost of
storage wastage and increased energy consumption. Smaller
width DBCs allow for storing different memory objects
in different parts of the RTM that can be accessed and
controlled independently. This also avoids wasting the RTM
storage space.

We propose a decomposed approach to find a better
solution to store decision trees in optimized width DBCs.
We split every tree node into three components: (1) the
split value/feature index, which is used to decide on an
incoming data tuple to traverse the tree further to the left
or right; (2) the left child pointer, and (3) the right child
pointer. We place all these three components in separate
DBCs at synchronized indices, leading to one DBC for right
child pointers, one for left child pointers, and one for split
values and feature indices. It should be noted here that we
assume all DBCs to have the same width, such that they
can be arbitrarily allocated to the split values or pointer
values. As the indices need to be synchronized (i.e. the
right pointer of node nx has the same index in the right
pointer DBC as the left pointer in the left pointer DBC),
the placement I is modeled in the same manner as before.
The central advantage of the decomposed DTs is that the
width of the DBCs is reduced, and the right pointer and
left pointer DBCs do not need to store leaf nodes which can
result in a considerable reduction in the memory footprint
of the DTs (of ≈ 33%). From the programming perspective,
only few changes are required to access the decomposed
organization during inference. In the unified organization,
every tree node is stored as one object in an array, thus
access to the three node elements require an access at the
corresponding array index and the according offset within
the object. For the decomposed organization, the three node
components are stored as three different objects in three
arrays. Thus, the array index for the current node stays the
same, but instead of accessing different offsets within one
object, accesses for the same index in different arrays need
to be performed. This induces minor changes of the decision
tree code.

Although the proposed decomposition can be realized
straightforwardly, it yields a different optimization objec-
tive. The decision tree inference causes a different cost in the
decomposed structure. Eventually, an optimal placement for
a unified decision tree may not be optimal for its corre-
sponding decomposed tree. Therefore, we need to revisit the
upper bound of our proposed BLO algorithm, respecting
the modified structure of an optimal placement. In order
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to formalize the decomposition, we introduce following
notation:

Cdecomp
down /Cdecomp

up /

Cdecomp
total

denotes the cost for an unconstrained ar-
bitrary placement I to traverse the tree in
decomposed DBCs.

C∗decomp
down /C∗decomp

up /

Cdecomp
∗total

denotes the cost in decomposed DBCs for
an optimal placement I∗decomp, which op-
timizes C∗decomp

total .←−
C ∗decomp

down /
←−
C ∗decomp

up /←−
C ∗decomp

total

denotes the cost for an optimal placement←−
I ∗ with the root on the left most position,

which is caused on decomposed DBCs and
optimizes

←−
C ∗

down.
TABLE 2

Decomposition Notation

It should be noted here that we consider the cost as a
number of shifts within the DBCs. A DBC shift in RTM
is different from the bit shifts, which are dependent on
the DBC width. We hereby count shifts for the unified
organization scenario with the same weight as shifts for
the decomposed organization scenario to make the cost
definitions comparable and relate them. However, when it
comes to the realization of the decomposed DBCs, every
shift contributes 1

3 to the bit shifts and energy consumption
compared to a single shift in the unified DBC. Hence, if a
placement results in 3× the cost on decomposed DBCs as on
unified DBCs, ultimately, the energy consumption penalty is
roughly the same in both cases.

For the rest of this section, we first revisit the cost model
for our decomposed approach and then define the objective.
We subsequently analyze and adjust the upper bound on
our BLO placement.

5.1 Revisited Cost Model
During inference of the decomposed tree, the split value
always has to be checked first. Thus, the split value DBC
has to be shifted to every node during inference and there-
fore features the same cost for traversing the tree down
(Cdecomp

split,down) and back to the root (Cdecomp
split,up) as for the unified

organization approach:

Cdecomp
split,down =

∑

nx∈N\{n0}
absprob(nx) · |I(nx)− I(P (nx))|

(8)
Cdecomp

split,up =
∑

nx∈Nl

absprob(nx) · |I(nx)− I(n0)| (9)

For the right pointer and left pointer DBC, the decision to
shift to a certain index depends on the previous decision
on the split value. Indeed, only the right pointer DBC or
the left pointer DBC needs to be shifted for any node, but
not both. Constructing the cost for this requires additional
definitions. In the following, we denote the left child of node
nx by LC(nx) and the right child RC(nx), respectively:

Definition 4. We define path(nx, ny) = {ni1 , ni2 , ..., nim} as
a part of a root leaf path where ni1 = nx and nim = ny and
P (nix) = nix−1 or as the empty set if nx is neither a direct, nor
an indirect parent of ny .

Definition 5. We define isleft(nx) for all nodes nx ∈ N \
{n0} as 1 if nx = LC(P (nx)) and as 0 for all other cases. We
symmetrically define isright(nx) for all nodes nx ∈ N \ {n0}
as 1 if nx = RC(P (nx)) and as 0 for all other cases.

LP LP

Fig. 7. Illustration of the left most parent of a node (2 exmaples)

Definition 6. We define LP (nx) as the leftmost parent of node
nx for all nodes nx ∈ N \ {n0}:
∀ny ∈ path(LP (nx), nx) \ {LP (nx)} : LC(ny) ̸∈
path(LP (nx), nx) ∧ LC(LP (nx)) ∈ path(LP (nx), nx)
If such a node does not exist, LP (nx) = ϵ. In other words, the
leftmost parent is the closest node to nx on its path from the root,
where the left child is taken (illustrated in Figure 7).
We symmetrically define RP (nx) as the rightmost parent of node
nx for all nodes nx ∈ N \ {n0}:
∀ny ∈ path(RP (nx), nx) \ {RP (nx)} : RC(ny) ̸∈
path(RP (nx), nx) ∧RC(RP (nx)) ∈ path(RP (nx), nx)
If such a node does not exist, RP (nx) = ϵ.

These definitions imply that for all nodes ny ∈
path(LP (nx), nx) \ {LP (nx)} in between a node nx and
LP (nx), isleft(ny) = 0. This also holds symmetrically
for the RP definition. With the help of Definition 5 and
Definition 6 we can investigate every node within the tree
and compute the shifting distance in the left pointer and
right pointer DBC if that specific node requires an inference
of the right or left pointer DBC. This leads to the cost for
traversing the right and left pointer DBC down:

Cdecomp
lptr,down =

∑

nx∈N\{n0}
absprob(nx) · isleft(nx)·

|I(P (nx)− I(LP (P (nx))))|
(10)

Cdecomp
rptr,down =

∑

nx∈N\{n0}
absprob(nx) · isright(nx)·

|I(P (nx)− I(RP (P (nx))))|
(11)

For simplicity, we denote that |x, ϵ| = 0 for an arbitrary
number x. The cost for going up the tree between two
inferences is not necessarily the cost for shifting back to
the root in the left pointer and right pointer DBC. Instead,
there is a set of nodes, which are candidates to be accessed
first in the right and left pointer DBCs, i.e. the nodes nx

where LP (nx) = ϵ or RP (nx) = ϵ, respectively. Thus, for
computing the estimated cost, all these candidates need to
be considered with their respective absolute probabilities:

Cdecomp
lptr,up =

∑

nx∈Nl

absprob(nx) ·
∑

nr:LP (nr)=ϵ

absprob(nr) · prob(LC(nr)) · |I(nr)− I(LP (nx))|
(12)

Cdecomp
rptr,up =

∑

nx∈Nl

absprob(nx) ·
∑

nr:RP (nr)=ϵ

absprob(nr) · prob(RC(nr)) · |I(nr)− I(RP (nx))|
(13)

Combining these partial costs, the total cost can be deduced
by adding all components:

Cdecomp
down = Cdecomp

split,down + Cdecomp
lptr,down + Cdecomp

rptr,down (14)
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Cdecomp
up = Cdecomp

split,up + Cdecomp
lptr,up + Cdecomp

rptr,up (15)

Cdecomp
total = Cdecomp

down + Cdecomp
up (16)

5.2 Towards Optimal Decomposition
Due to the revisited cost model, the considerations about an
optimal decision tree placement to the decomposed DBCs
also need to be revisited. This section conducts a proof about
the relation of the placement solution produced by the OLO
algorithm to the optimal solution.

Throughout this section, we clarify the relation between
placements for the unified organization approach, the cost
they cause on the decomposed organization, and how a
placement for unified DBCs can be constructed from a place-
ment for decomposed DBCs. First, we have to clarify the
relation between the cost Ctotal for an arbitrary placement I
on a unified DBC and the cost Cdecomp

total the exact placement
causes on decomposed DBCs. Intuitively, the cost for the
unified DBC can be seen as the cost for the DBC containing
the split and feature values since this DBC has to access
every node. In the following, a restructuring of the cost
model is considered:

Lemma 5.

Cdecomp
split,down =

∑

nl∈Nl

absprob(nl)·
∑

nx∈rlpath(nl)\{n0}
|I(nx)− I(P (nx))|

(17)

Cdecomp
lptr,down =

∑

nl∈Nl

absprob(nl)·
∑

nx∈rlpath(nl)\{n0}
isleft(nx) · |I(P (nx))− I(LP (P (nx)))|

(18)

Cdecomp
rptr,down =

∑

nl∈Nl

absprob(nl)·
∑

nx∈rlpath(nl)\{n0}
isright(nx) · |I(P (nx))− I(RP (P (nx)))|

(19)

The cost for traversing the tree down in decomposed DBCs can
be restructured as a per path cost, which is weighted with the
absolute probability of the leaf node on this root leaf path.

Proof. From the definition of the tree structure, we know
that probabilities are entirely inherited. Thus, summing up
the absolute probabilities of all leaf nodes underneath a cer-
tain node nx must result in the absolute probability of this
node: absprob(nx) =

∑
nl∈leafs(nx)

absprob(nl). In Eq. (17),

each distance between each node and the parent is weighted
with exactly this sum of absolute probabilities of underlying
leafs, since for every leaf the entire root leaf path is con-
sidered. Consequently, Eq. (17) can be rewritten to Eq. (8).
The same principle can be applied to Eq. (18) (transofrms to
Eq. (10)) and to Eq. (19) (transforms to Eq. (11)).

Lemma 6.

Cdecomp
lptr,down ≤ Cdecomp

split,down = Cdown (20)

Cdecomp
rptr,down ≤ Cdecomp

split,down = Cdown (21)

The summed cost for shifting down in decomposed DBCs in the
left and right pointer tree is smaller than the cost for shifting down
in the split value DBC, which is equal to the cost for shifting down
in the unified DBC case.

Proof. The full proof can be found in the appendix. Basically,
the left and right pointer DBCs visit a subset of nodes from
the split DBC, thus there cannot be more shifts.

Lemma 7.
Cdecmp

down ≤ Cdecomp
total (22)

The cost for traversing the tree down in a decomposed placement
is a part of the total shifting cost (compare to Lemma 1).

Proof. Cdecomp
total is the sum of Cdecomp

down and Cdecomp
up , where

Cdecomp
up itself is a sum of non-negative terms.

Lemma 8.
Cdown ≤ Cdecomp

down (23)

The summed cost for shifting through the decomposed DBCs
while traversing the tree downwards is at at least the cost of
shifting through a tree on a unified DBC downwards with the
same placement.

Proof. From the definition of the cost function, we know that
Cdown = Cdecomp

split,down. We further know that Cdecomp
rptr,down and

Cdecomp
lptr,down only consists of a sum of terms which are either 0

or positive. According to Eq. (14), Cdecomp
down is the sum of only

these 3 components. Thus, Cdown = Cdecomp
split,down ≤ Cdecomp

down .

Next, we need to consider the cost relation of a linear
allowable placement produced by OLO. As reported by
Adolphson and Hu, there is always a linear allowable
placement, which features the optimal cost Cdown under the
constraint that the root is placed to the leftmost position [6].
Thus, we denote the cost of such an optimal linear allowable
placement in the following by

←−
C ∗...

... .

Lemma 9.
←−
C ∗decomp

lptr,up ≤ ←−C ∗decomp
split,up =

←−
C ∗

down (24)

←−
C ∗decomp

rptr,up ≤
←−
C ∗decomp

split,up =
←−
C ∗

down (25)

The cost for shifting up in the left and right pointer DBCs in
a linear allowable placement can be upper bounded by the cost
for shifting up in the split value DBC, which is the same cost as
shifting down in the unified DBC case.

Proof. This proof can be found in the appendix. The consid-
erations are similar to Lemma 6.

Corollary 2.
←−
C ∗decomp

total ≤ 6 · ←−C ∗
down = 3 · ←−C ∗

total (26)

If a linear allowable placement is deployed to decomposed DBCs,
the total cost for shifting through the decomposed DBCs is at most
6× the cost of shifting the unified DBC downwards.

Proof. Eq. (26) follows from the definition of the cost
model (Eq. (16)) and Lemma 9, Lemma 6 and Lemma 3:←−
C ∗decomp

lptr,down ≤
←−
C ∗

down,
←−
C ∗decomp

rptr,up ≤ ←−C ∗
up,
←−
C ∗decomp

split,down =
←−
C ∗

down,
←−
C ∗decomp

lptr,up ≤ ←−C ∗
up =

←−
C ∗

down,
←−
C ∗decomp

rptr,down ≤
←−
C ∗

up =
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←−
C ∗

down,
←−
C ∗decomp

split,up =
←−
C ∗

up =
←−
C ∗

down. In total,
←−
C

(
total ∗

decomp) consists of 6 terms, which are all upper bounded
by
←−
C ∗

down. Lemma 3 further leads to
←−
C ∗

total = 2·←−C ∗
down.

Combining the above considerations, we can construct
the according upper bound.

Theorem 2. ←−
C down ≤ 2 · Cdecomp

total (27)

Any placement for decomposed trees can be transformed into a
placement with the root on the left most position, where the cost
for traversing the tree downwards in a unified DBC is at most 2×
the cost for traversing the entire tree on decomposed DBCs.

←−
C ∗decomp

total ≤ 12 · C∗decomp
total (28)

An optimal linear allowable placement for shifting downwards in
a unified DBC, as obtained by OLO, is an upper bound of 12 of
the optimal placement for decomposed DBCs.

Proof. Eq. (27) directly follows from Lemma 7,Lemma 8 and
Lemma 4.

Eq. (28) can be proven by contradiction. Suppose that
the optimal linear allowable placement for a unified DBC←−
C ∗

down would cause a cost
←−
C ∗decomp

total larger than 12× of
the optimal placement for decomposed DBCs C∗decomp

total . Ac-
cording to Corollary 2, we know that the optimal placement
must have at least a cost of 1

6 on the unified DBC then, thus←−
C ∗

down > 12 · 16 · C
∗decomp
total ⇔ ←−C ∗

down > 2 · C∗decomp
total . We

further know that according to Eq. (27) we can build a solu-
tion for the unified DBC with a cost less than 2 · C∗decomp

total ,
which contradicts the optimality of

←−
C ∗

down.

5.3 Towards Bidirectional Linear Optimization

The BLO heuristic (Section 4) can be applied to the de-
composed organization scenario without any limitation. The
consideration that the BLO extension does not introduce
additional shifting cost, however, does not remain valid for
this scenario. Potentially, the left or right pointer DBC can
be shifted from a certain node within the right subtree to
another node within the left subtree, without loading the
root and vice versa. Thus, both nodes may be placed closer
in the OLO placement as in the BLO placement. However,
the proof upper bounds the cost for going up and down
in the left and right pointer DBCs with the cost for the
split value DBC, i.e. with the cost of starting at the root
and ending at a leaf in Lemma 9. Theorem 2 consequently
takes this bound in to determine the ultimate upper bound.
Hence, under this worst-case scenario, upper bound of 12×
is valid for BLO and OLO.

6 EVALUATION

In addition to the proven upper bound of our BLO algo-
rithm on unified and decomposed organisation, this section
presents experimental evaluation of the BLO algorithm and
provides a comparison to the state-of-the-art. The proven
upper bounds for BLO consequently hold for the state-
of-the-art methods, since these cannot achieve better per-
formance than the optimum. The relation between these

approach in realistic scenarios, however, is empirically stud-
ied in this section. We first discuss the shifts reduction
of different solutions and then show the impact of shifts
reduction on the runtime and energy consumption.

6.1 Experimental Setup
In order to compare our Bidirectional Linear Ordering (BLO)
approach to the state-of-the-art (i.e., ShiftsReduce [2] and
Chen et al. [3]) on unified and decomposed organization,
we adopt an open-source framework published in [12] and
select eight typical machine learning classification datasets
from the UCI Machine Learning Repository [13] and [14]:
adult, bank, magic, mnist, satlog, sensorless-drive, spam-
base, and wine-quality. For each dataset, we use 75% of
the data for training and 25% for testing. We train decision
trees by using tree classifiers in the sklearn package [15].
We run the default configuration of sklearn, without tuning
hyper-parameters.

To derive differently sized trees, we specify the maxi-
mum depth of the trees, e.g., DT1 means that the tree has
a maximum depth of 1, thus two levels, and DT3 means
that the tree has four levels. After the trees are generated,
we profile the node probabilities on the training data by
counting how often each node’s left child or the right child
is visited. This delivers us empirical branch probabilities
and absolute node access probabilities. For further evalu-
ation, we simulate the execution of the decision trees by
generating a code implementation, which produces a trace
of visited nodes during the data inference. We infer the data
points from the test data on the trees and generate a node
access trace, which provides the node access paths on a
logic level. Subsequently, we place the trees to RTM with
different layouts and compute the required amount of shifts
by considering the node access trace and the node mapping.
Based on the amount of shifts, wen can also compute the
latency and energy consumption. Concretely, we compare
the following.

• Naive / NaiveD: A baseline breadth-first order placement
in which indices are assigned to tree nodes layer-wise in
increasing order. The placement is used for the unified
(Naive) and decomposed organization (NaiveD).

• ShiftsReduce / ShiftsReduceD: The state-of-the-art data
placement algorithm from [2]. We evaluate the heuris-
tic on the unified organization (ShiftsReduce) and the
decomposed organization (ShiftsReduceD).

• Chen / ChenD.: The data placement algorithm from [3],
evaluated on the unified organization (Chen) and the
decomposed organization (ChenD).

• BLO / BLOD: Our proposed bidirectional linear order-
ing solution for unified trees. It is evaluated on the
unified and decomposed organization.

• MIP / MIPD: The mixed integer programming formula-
tion of the cost model (Eq. (4) for unified organization
and Eq. (16) for decomposed organization). The solver,
in case it converges, returns the optimal tree placement.

We replay the node access trace for all configurations
to derive the total amount of required racetrack shifts. For
the decomposed trees, the performance and energy numbers
reported in this section consider all, i.e., the split value
and pointers DBCs. Although the number of RTM shifts
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Fig. 8. Comparison of Total Shifts During Inference
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Fig. 9. Comparison of Total Shifts During Inference on Decomposed Trees

already allows a quantitative comparison of the different
placement approaches, we further compute the energy con-
sumption and total runtime on a realistic model derived
from the various memory placements. For the runtime, we
use the per-access and per-shift latencies in Table 3 and
compute the overall runtime. Given the amount of RTM
accesses naccesses and the total amount of shifts in between
nshifts, the total runtime for the unified organization is
runtime = ℓR ·naccesses+ ℓS ·nshifts. In the case of decom-
posed trees, since the DBCs are not moved synchronously,
the total runtime also includes the penalty to align pointer
DBCs. The total energy consumption is derived from read
and shift dependent dynamic energy consumption and from
the runtime dependent static energy consumption (leakage):
energy = eR · naccesses + eS · nshifts + p · runtime, where
the parameters can be found in Table 3.

Ports per track, domains per track 1, 64
Tracks per DBC: unified, decomposed 96, 32

Leakage power [mW]: unified, decomposed p 36.2, 36.9
Write energy [pJ]: unified, decomposed eW 106.8, 40.7
Read energy [pJ]: unified, decomposed eR 62.8, 23.4
Shift energy [pJ]: unified, decomposed eS 51.8, 17.3
Write latency [ns]: unified, decomposed lW 1.79, 1.75
Read latency [ns]: unified, decomposed lR 1.35, 1.32
Shift latency [ns]: unified, decomposed lS 1.42, 1.39

TABLE 3
RTM parameters values for a 128KiB SPM

As previously mentioned, we only investigate the race-
track shifts caused when inferring data points on the de-
cision trees. Since we assume that the decision trees are
mapped to an isolated scratchpad memory for our target
system, the memory accesses to the decision trees are not
disrupted by any operating system interaction. However,
the total energy consumption and latency still strongly de-
pend on concurrent applications and the underlying system

software. This could be investigated by further full-system
simulation, which is out of the scope of this paper.

6.2 RTM Shifts Analysis
Figure 8 and Figure 9 compare the total amount of RTM
shifts for different placements for the unified and decom-
posed DBCs, respectively. All results are normalized to the
naive placement. The MIP formulation is implemented in
the Gurobi optimizer [16] and is given a time limit of 8
hours per dataset and per tree configuration. For the DT1
and DT3 instances in all datasets, the MIP converges to the
optimal solution. In all other cases, the results are based on
the Gurobi heuristic. Results which are worse than 1.2× of
the baseline are not illustrated in the figures.

A detailed analysis of the results shows that for the cases
where the MIP and MIPD finds an optimal placement (for
DT1 and DT3), BLO and BLOD achieves the same or only
marginally worse results than the optimum. This supports
the heuristic design principle of BLO (Section 4). Compared
to state-of-the-art solutions, it can be observed that BLO
and BLOD achieve the best reduction in shifts for most of
the investigated cases. This supports the design concept of
a domain specific placement approach, which can achieve
better results by assuming a simpler structure. Consider-
ing the geometric mean (geomean) improvement over all
evaluated datasets and trees, BLO reduces the amount of
bit shifts by 58.1% compared to the naive placement (see
Figure 8). ShiftsReduce reduces them by 50.8%. BLO thus
further reduces the amount of necessary bit shifts by 14.3%
upon ShiftsReduce.

In the decomposed trees (BLOD), the absolute number of
RTM bit shifts compared to the unified trees reduces (BLO)
by an average of 37.6%. However, for the same unified naive
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placement baseline, BLOD reduces the amount of RTM bit
shifts by a geomean 80.1%, compared to 58.13% by BLO (see
Figure 9). Compared to the MIPD solution, BLOD performs
slightly better than the unified BLO placement in terms
of RTM shifts. The ShiftsReduceD and ChenD solutions
report comparable improvement for the decomposed and
the unified trees. Note that the placement decisions in all
heuristics are based on the training dataset while they are
evaluated on the test dataset.

The reduction of the total shifts does not directly imply
a similar improvement in runtime and energy consumption.
To estimate the shifts reduction impact on the runtime and
energy consumption, we consider a realistic setup as ex-
plained in Section 2.3. Larger decision trees are first split into
smaller trees, and the placement heuristic is then executed
on multiple trees of maximal depth of 5. Note that the
assignment of these smaller trees to different DBCs may
affect the cost of the overall shift. Techniques such as [17]
can be applied to distribute tree nodes to different DBCs in-
telligently, but this is beyond the scope of this work. For the
runtime and energy consumption results, we use decision
trees up to DT5 and present the results in Section 6.4.

6.3 Unified vs. Decomposed DTs
Although the previous results report the performance of the
BLO and BLOD algorithm on the unified and decomposed
trees, the question which of both realizations should be used
for a concrete system remains open. Eq. (26) implies that any
linear allowable placement cannot cause more than 3× shifts
on the decomposed DBCs as on the unified DBCs. Under the
ideal assumption that each single DBC in the decomposed
setup only needs 1

3 of bit-lines and therefore also only
yields 1

3 of the energy consumption, the decomposed setup
cannot be worse than the unified setup in no scenario. In
reality, however, constructing the decomposed setup may
create additional static overheads or consume additional
resources (such as chip space or leakage power), which is
only desirable if the decomposed setup can significantly
reduce the resource consumption.

In order to assess the resource savings when considering
the decomposed setup, we take the placement of all config-
urations and replay the node access traces on the unified
and decomposed organizations. We compute the relation
of the total amount of shifts for all configurations in the
unified and decomposed approaches. Theoretically, the ratio
between the unified shifts and the decomposed shifts must
range between 1× and 3×. We evaluate this and show the
ratios based on experimental results in Figure 10. For trees
with a maximum depth of 1 i.e., DT1, the decomposed and
unified approaches result in exactly the same amount of
shifts in all placements. This is because a DT1 has 2 levels,
thus only a single node with pointers which is mapped
to the first location in a single DBC (unified) or multiple
DBCs (decomposed). Therefore, no shifts in the right and
left pointer DBC are required. Note that we assume that
the access ports in all DBCs are initially aligned to the first
position. For deeper trees, the increase in shifts ratio shows
similar trend for all placement approaches. For the deepest
trees considered in this evaluation, the number of shifts in
the decomposed trees can be as high as 2.59 for the BLO
algorithm.

In the decomposed organization, the highest shift reduc-
tion is expected from scenarios where the pointer DBCs are
rarely shifted. For DT1, the best case is achieved because
the left and right pointer DBCs do not need to be shifted
at all. As the trees get deeper, the probability of frequently
accessing left and right pointers also increases. Thus, for
deeper trees the shifts reduction in the decomposed setup is
reduced, which can be seen in the reported results as well.

However, focusing on the realistic tree sizes of at most
3 or 4 layers, which can be placed into a single DBC, the
experimental data suggests that the amount of shifts is
increased by at most a factor of 2× when switching to the
decomposed setup. This is a considerable margin to leverage
static overheads from the the decomposition and provide a
reduction in the total resource consumption.

6.4 Runtime and Energy

BLO reduces the total runtime by 53.8% compared to the
naive placement, as shown in Figure 11. In comparison, for
the same baseline, ShiftsReduce and BLOD reduce the total
runtime by 45.7% and 46.3%, which are 13.3% and 13.9%
longer compared to the BLO, respectively. Comparing this
to the reduction of shifts for trees with maximum depth of
5 only, BLOD reduces the required shifts by 85.1%, BLO by
77.5%, and ShiftsReduce by 72.4%. Thus BLOD, compared
to BLO and ShiftsReduce, further reduces the amount by
shifts by 9.8% and 17.5% respectively. This suggests that a
reduction in shifts may not necessarily result in the runtime
reduction, or at least not with the same proportion. When
comparing Figure 8 and Figure 9 to Figure 11 and Figure 12,
please note the different scaling on the y axis and that results
are averaged across datasets for the latter figures.

In the decomposed placement approach, the total run-
time increases due to the alignment time in the pointers
DBCs. The split value DBC is checked first to determine
whether a pointer DBC needs to be accessed or not. Subse-
quently, depending on the node access probabilities, a shift
request may be sent to the left or the right pointer DBC. The
lazy shift approach in pointers DBCs improves the overall
shift energy due to the reduced amount of shifts. However,
this negatively impacts the runtime due to the shift penalty
required to align the access port to the desired location if
it is not aligned with the split value DBC. To quantify the
impact of the decomposed approach on the runtime, we
compare it with other methods, as presented in Figure 11.
For the same baseline (naiveD), BLOD has an average
runtime overhead of 7.5% compared to BLO. Consequently,
BLOD also increases the leakage energy compared to BLO
However, this deterioration in the leakage energy is offset
by the reduction both in the shift and access component
of the energy (cf. Figure 13). Similarly, other decomposed
approaches (e.g., naiveD, MLPD) induces a runtime penalty
compared to their unified counterparts (e.g., naive, MLP).

BLOD achieves the most reduction in energy consump-
tion compared to all other approaches. This is because the
total energy consumption of RTM is largely dependent upon
the number of bit shifts, which affect the shift energy and
the runtime, which determine the leakage energy. Figure 12
and Figure 13 show the overall energy consumption and
the energy breakdown of different placement approaches

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
A

cc
ep

te
d

in
IE

E
E

Tr
an

sa
ct

io
ns

on
C

om
pu

te
rs



IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, JUN 2021 12

1×1×

1.6×

2.2×

3×

DT1

ad
ul

t

•∗⋄×

ba
nk

•∗⋄×

m
ag

ic

•∗⋄×

m
ni

st

•∗⋄×

sa
tl

og

•∗⋄×

se
ns

or
le

ss
-d

ri
ve

•∗⋄×

sp
am

ba
se

•∗⋄×

w
in

e-
qu

al
it

y

•∗⋄×

DT3

ad
ul

t
•∗⋄×

ba
nk

•∗⋄×
m

ag
ic

•∗⋄×

m
ni

st

•∗
⋄
×

sa
tl

og

•∗⋄×

se
ns

or
le

ss
-d

ri
ve

•∗⋄×

sp
am

ba
se

•∗⋄×

w
in

e-
qu

al
it

y

•∗⋄×

DT4

ad
ul

t

•∗⋄×

ba
nk

•∗⋄×

m
ag

ic

•∗⋄×

m
ni

st

•∗⋄×

sa
tl

og

•∗⋄×

se
ns

or
le

ss
-d

ri
ve

•∗⋄×

sp
am

ba
se

•∗⋄×

w
in

e-
qu

al
it

y

•∗⋄×

DT5

ad
ul

t

•∗⋄×

ba
nk

•∗⋄×

m
ag

ic

•∗⋄×

m
ni

st

•∗
⋄
×

sa
tl

og

•∗⋄×

se
ns

or
le

ss
-d

ri
ve

•∗×

sp
am

ba
se

•∗⋄×

w
in

e-
qu

al
it

y

•∗⋄×

DT10

ad
ul

t

•∗×

ba
nk

•∗×

m
ag

ic

•∗×

m
ni

st

•∗×

sa
tl

og

•∗×

se
ns

or
le

ss
-d

ri
ve

•
∗×

sp
am

ba
se

•∗×

w
in

e-
qu

al
it

y

•∗×

DT15

ad
ul

t

•

∗×

ba
nk

•∗×

m
ag

ic

•∗×

m
ni

st

•

∗×

sa
tl

og

•∗×

se
ns

or
le

ss
-d

ri
ve

•∗×

sp
am

ba
se

•∗×

w
in

e-
qu

al
it

y

•∗×

DT20

ad
ul

t

•
∗×

ba
nk

m
ag

ic

•∗×

m
ni

st

•∗×

sa
tl

og

•∗×

se
ns

or
le

ss
-d

ri
ve

•∗×

sp
am

ba
se

•∗×

w
in

e-
qu

al
it

y

•∗×

Naive (unified)

• BLOD

∗ ShiftsReduce

⋄ MIP

× Chen

Fig. 10. Increase of Total Shifts During Inference between Unified and Decomposed Trees
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Fig. 11. Runtime of different configurations for different tree size. The results are average across all benchmarks.
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Fig. 13. Energy consumption breakdown into shifts energy, leakage
energy and access energy for various configurations. BLOD records
the lowest shift and total energy consumption compared to all other
configurations.
for the unified and the decomposed DBCs normalized to
the naive placement. Compared to the naive solution, BLOD
delivers a 61.7% reduction in the RTM energy consumption,
compared to 52.6% in BLO and 45.8% in ShiftsReduce for
the same baseline.

Figure 13 highlights that the energy efficiency of BLOD
compared to existing unified approaches is achieved via a
significant reduction in the energy consumed by the shift
operation and a slight reduction in the access energy. The

leakage energy, compared to the naive solution (NaiveD),
is also reduced by 44.7%. The improvement in the shift
energy is due to reduced shift cost, while the reason for the
leakage energy saving is the reduced runtime (cf. Figure 11).
Compared to the unified BLO solution, despite an increase
in the leakage energy by 16.2%, the decomposed approach
consumes 17.3% less energy. Overall, for the naive baseline
(Naive), BLOD on average achieves (95.3%, 35%, 21.5%,
17.3%, 150%, 1.7%) more energy reduction compared to
(Chen, ShiftsReduce, MLP, BLO, naiveD, MLPD).

7 RELATED WORK

A rich body of research has explored the efficient employ-
ment of RTM at various levels in the memory hierarchy
for numerous application domains and system setups. In
this context, optimization techniques for RTM have been
proposed to facilitate their adoption in the register file [18]–
[20], scratchpads [2], [21], [22], caches [23]–[30], network-on-
chip [31], off-chip memory [32], and solid state drives [33].
Therefore, RTM can be fitted in all levels of the memory
hierarchy, making it a promising candidate for universal
memory.

To provide performance, area, and energy benefits, var-
ious optimizations have been proposed in the literature at
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cell-level [28], circuit-level [29], layout-level [27], [30], [34],
and cross-level [35]. RTM’s leakage power and capacity
advantages give it a competitive edge over existing memory
technologies, but the expensive shift operations present a
daunting challenge. In this context, various techniques for
RTM shift cost reduction have been proposed, such as run-
time data swapping [25], [28], [36], data compression [26],
[37], preshifting [18], [38], access port management [24], [25],
[28], intelligent instruction [39], and data placement [2], [3].
For data placement, Chen et al. in [3] present a heuristic
appending data objects according to the adjacency infor-
mation sequentially. Khan et al. in [2] formulate the data
placement problem with an integer linear programming
and further propose ShiftsReduce heuristic to enhance the
previous heuristic by introducing a tie-breaking scheme and
a two-directional objects grouping mechanism assuming a
single access port RTMs. Whereas the above techniques are
generalized solutions, this work considers the data objects of
decision trees where the dependencies between tree nodes
strictly limit possible access patterns.

Recently, it has been shown that domain-specific ap-
proaches not only guarantee better performance and energy
consumption but also enable better predictability of the
runtime [21]. In fact, the studied problem can be treated
as an instance of the quadratic assignment problem (QAP),
which was introduced in 1957 [40], considering the problem
of allocating a set of facilities to a set of locations. When the
facilities are all in a line (like the locations within in a DBC),
such a special case is named the linear ordering/arrangement
problem [7]. Suppose that the number of vertices is m and
the length of an edge is defined as the linear distance be-
tween the vertices involved. Specifically, for tree graphs, the
common objective is to minimize the sum of edge lengths
as the total shift cost in this work. For undirected trees,
Shiloach proposes an O(m2.2) algorithm [41]. For directed
trees, Adolphson and Hu in [6] present an algorithm to
derive an optimal placement in O(m logm). For the studied
problem of this work, Adolphson and Hu’s algorithm is
no longer optimal since the additional distance induced by
shifting back a nanowire from leaves to the root between
two inferences needs to be considered.

The imperfection in the fabrication technologies and
fluctuation in the current density required for the shift
operation may cause pinning faults and position errors in
RTMs. Of late, many position error detection and correction
schemes have been proposed to guard RTMs against such
errors and improve their reliability [11], [42], [43]. This work
focuses on reducing the shift operations in RTMs, which
indirectly reduces the probability of position error but does
not explicitly consider this aspect.

8 CONCLUSION

In this paper, we present BLO, a domain-specific place-
ment heuristic for decision trees on RTM. BLO exploits the
knowledge of the internal structure of decision trees and
the profiled probabilities for nodes being accessed, which
are gathered on a previously known dataset. BLO bases
on an optimal algorithm to solve the OLO problem for
rooted trees [6] and eliminates the main reason for improper
placements on RTM. We introduce two different approaches
to organization decision trees on racetrack memory. The

decomposed organization decouples the storage of deci-
sion tree nodes and allows optimization regarding memory
space consumption.

BLO causes at most 4× of the RTM shifts than the
optimal placement on the unified organization. The upper
bound is proven to be 12× on the decomposed organization
approach. Our empirical evaluations show that BLOD de-
livers the best bit shifts reduction for the most realistic use-
case of decision trees (depth 5) (geomean of 80%). In terms
of runtime, BLO compared to BLOD performs better due to
the longer stalls in BLOD pointers’ DBCs. In terms of energy
consumption, BLOD outperforms all other configurations.
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[5] S. Buschjäger and K. Morik, “Decision tree and random forest im-
plementations for fast filtering of sensor data,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 65, 2018.

[6] D. Adolphson and T. C. Hu, “Optimal linear ordering,” SIAM
Journal on Applied Mathematics, vol. 25, 1973.

[7] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis, The
Quadratic Assignment Problem, 1998, pp. 1713–1809.

[8] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout prob-
lems,” ACM Comput. Surv., vol. 34, Sep. 2002.

[9] M. R. Garey and D. S. Johnson, Computers and intractability.
[10] K. Skodinis, “Computing optimal linear layouts of trees in linear

time,” in European Symposium on Algorithms. Springer, 2000.
[11] S. Ollivier, D. K. Jr., K. A. Roxy, R. G. Melhem, S. Bhanja, and A. K.

Jones, “Leveraging transverse reads to correct alignment faults in
domain wall memories,” in DSN. IEEE, 2019.
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Lemma 3. If a placement I is unidirectional or bidirectional, Cdown = Cup.

Proof. As I is unidirectional or bidirectional, we know that a leaf node nx ∈ Nl

is always the rightmost node or the leftmost node within its root leaf path
rlpath(nx) if the path is monotonically increasing or decreasing, respectively.
We further know that following the path from parents to their children must
always be a movement monotonically to the right or monotonically to the left.
Therefore we can follow that the distance from the root to a leaf node is equal
to the sum of all distances on the path:

∀ny ∈ Nl : |I(ny)− I(n0)| =
∑

nz∈rlpath(ny)\n0

|I(nz)− I(P (nz))| (1)

This leads to:

Cup =
∑

ny∈Nl


absprob(ny) ·

∑

nz∈rlpath(ny)\{n0}
|I(nz)− I(P (nz))|


 (2)

The summation is reorganized with respect to each node nx ∈ N by using the
following observation: if nz is in rlpath(ny), then ny is in leaves(nz). That
is, a node nx ∈ N contributes to Equation (2) exactly |I(nx) − I(P (nx))| ·∑

ny∈leaves(nx)
absprob(ny). Therefore,

Cup =
∑

nx∈N\{n0}


|I(nx)− I(P (nx))| ·

∑

ny∈leaves(nx)

absprob(ny)


 (3)

Applying Definition 1 leads to Equation (4):

Cup =
∑

nx∈N\{n0}
(|I(nx)− I(P (nx))| · absprob(nx) = Cdown (4)

Lemma 4. Any placement I can be converted into a placement
←−
I which places

the root on the left most position by increasing the expected cost of
←−
C down with

at most a factor of 2: ←−
C down ≤ 2 · Cdown (5)

Proof. Suppose that the root of the decision tree is assigned at position r in
the placement I. Due to space limitation, we present only the proof of the case
that m − r ≥ r, as the other case is symmetric. The placement is replaced as
follows:

• reassign every node in position r + i in I to r + 2 · i for i = 1, 2, . . . , r.

• keep all nodes in position r+ i in I for i = r+1, r+2, . . . ,m at their original
position, which becomes 2 · r + i relative to the root.

• reassign every node in position r − i in I to r + 2 · i− 1 for i = 1, 2, . . . , r.
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r

r − i
i = 1, 2, ..., r

r + i
i = 1, 2, ..., r

r + i
i = r + 1, ...,m

Figure 1: Reassignment of nodes and root to the left

Figure 1 gives a concrete example of the remapping of different nodes. After
that, every node is then shifted by r positions towards the left, and the root is
on the leftmost position, i.e., 0.

For notational brevity, we denote P (nx) as nz for the rest of this proof. Due
to the above reassignment, we have

←−
I (nx) =





2 · (r − I(nx))− 1 I(nx) < r

2 · (I(nx)− r) r ≤ I(nx) ≤ 2 · r
I(nx) 2 · r < I(nx),

(6)

which also holds in the same manner for
←−
I (nz). We analyze four cases for

different conditions of I(nz) and I(nx) based on Equation (6) to prove

|←−I (nx)−
←−
I (nz)| ≤ 2 · |I(nx)− I(nz)|. (7)

Case 1: I(nz) ≤ 2 · r and I(nx) ≤ 2 · r: We further consider the following
scenarios:

• Case 1a: I(nx) and I(nz) are both ≥ r: Then,

|←−I (nx)−
←−
I (nz)| = 2 · |I(nx)− I(nz)|, i.e., Equation (7) holds.

• Case 1b: I(nx) and I(nz) are both < r: Then,

|←−I (nx)−
←−
I (nz)| = 2 · |I(nx)− I(nz)|, i.e., Equation (7) holds.

• Case 1c: one of I(nx) and I(nz) is < r and the other is ≥ r: Suppose for

the first sub-case that I(nx) > I(nz). Then, |
←−
I (nx)−

←−
I (nz)| = 2 · (I(nx)−

r)− 2 · (r − I(nz)) + 1 < 2 · (I(nx)− r)− 2 · (r − I(nz)) + 4 · (r − I(nz)) =
2 · (I(nx) − I(nz)) = 2 · |I(nx) − I(nz)|, where < is due to the assumption
that I(nz) < r and I(nz) is an integer, i.e., 1 ≤ r − I(nz). The other case
that I(nz) > I(nx) is symmetric. Therefore, the condition in Equation (7)
remains to hold.

Case 2: I(nz) > 2 · r and I(nx) > 2 · r: In this case, the reassignment does not

change their positions, i.e.,
←−
I (nz) = 2 · r+(I(nz)− 2 · r) = I(nz) and

←−
I (nx) =

2
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2 · r + (I(nx)− 2 · r) = I(nx). As a result, |←−I (nx)−
←−
I (nz)| = |I(nx)− I(nz)|,

and Equation (7) holds.

Case 3: I(nz) > 2 · r and I(nx) ≤ 2 · r: When I(nx) ≥ r, we have |←−I (nx) −←−
I (nz)| = I(nz) − 2 · |I(nx) − r| = I(nz) − 2I(nx) + 2 · r ≤ 2 · |I(nz) − I(nx)|.
When I(nx) < r, we have |←−I (nx) −

←−
I (nz)| = I(nz) − 2 · r + 2 · I(nx) + 1 <

I(nz)−2·r+2·I(nx)+4·r−4·I(nx) = I(nz)+2·r−2·I(nx) ≤ 2·|I(nz)−I(nx)|,
where < above is due to the assumption that I(nz) < r and hence r−I(nz) ≥ 1.
Therefore, Equation (7) holds.
Case 4: I(nz) ≤ 2 · r and I(nx) > 2 · r: This is the symmetric case of Case 3.

As a result, Equation (7) holds for all cases, so the lemma is proved.

Lemma 6.
Cdecomp

lptr,down ≤ Cdecomp
split,down = Cdown (8)

Cdecomp
rptr,down ≤ Cdecomp

split,down = Cdown (9)

The summed cost for shifting down in decomposed DBCs in the left and right
pointer tree is smaller than the cost for shifting down in the split value DBC,
which is equal to the cost for shifting down in the unified DBC case.

Proof. We investigate entire root leaf paths from the root to a leaf node. Ac-
cording to Lemma 5, each path contributes to the total cost with the shifts
along the path and the absolute leaf probability. From the definition of the cost
function we know that Cdown = Cdecomp

split,down. Investigating the cost in the left
and right pointer DBCs ( Equation 18 and Equation 19 ) two cases need to be

distinguished. As this consideration is symmetric for Cdecomp
lptr,down and Cdecomp

rptr,down,
we only discuss the left pointer case here. Considering an arbitrary root leaf
path from the root node to a leaf node rlpath(nl) \ {n0} = {np0, np1, ..., npm},
we know from the definition of isleft and LP that for all positions i0, i1, ...
on the path where isleft(npix) = 1, LP (P (npix)) = P (npix−1), i.e. the left-
most parent LP of the parent is always the immediate previous parent node
which contributes to Equation 18. Further, |I(P (npx)) − I(LP (P (npx)))| ≤∑
npy∈path(npx,LP (npx))\{npx,LP (pnx)}

|I(npy)− I(P (npy))| since an arbitrary path

between two indices cannot be longer than the direct path. Thus, the con-
tributed cost to Cdecomp

lptr,down for this specific node is at most the contributed

cost of this node and the omitted nodes (isleft = 0) to Cdecomp
split,down. In total,

Cdecomp
lptr,down ≤ Cdecomp

split,down and Cdecomp
rptr,down ≤ Cdecomp

split,down.

Lemma 9. ←−
C ∗decomp

lptr,up ≤ ←−C ∗decomp
split,up =

←−
C ∗

down (10)

←−
C ∗decomp

rptr,up ≤
←−
C ∗decomp

split,up =
←−
C ∗

down (11)

The cost for shifting up in the left and right pointer DBCs in a linear allowable
placement can be upper bounded by the cost for shifting up in the split value
DBC, which is the same cost as shifting down in the unified DBC case.
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Proof.
←−
C ∗decomp

split,up =
←−
C ∗

up directly follows from the definition of the cost func-

tions ( Equation 9 and Equation 2 ).
←−
C ∗

up =
←−
C ∗

down follows from Lemma 3. By
investigating Equation 9 and Equation 12 the outer sum is over the same (leaf)
nodes. In a linear allowable placement, n0 must have the left most position,
further I(LP (nx)) < I(nx) since LP is an indirect parent relation. Thus, all
terms |I(nr) − I(LP (nx))| ≤ |I((nx) − I(n0)|. The nodes considered in the
inner sum of Equation 12, namely nr : LP (nr) = ϵ, must form a single consec-
utive path of nodes where always the right child is taken by definition. Each
node on the path contributes a certain portion of their absolute probability
(absprob(nr) · prob(LC(nr))), the remaining part is inherited to the right child
by definition, which then itself contributes a part of the inherited probability.
Thus,

∑
nr:LP (nr)=ϵ

absprob(nr) · prob(LC(nr)) ≤ absprob(n0) = 1 Consequently,

the inner sum is a weighted average of upper bounded terms, thus the entire
sum can be upper bounded by |I((nx) − I(n0)|. The case for the right pointer
DBC is symmetric.
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