

Robust and Efficient Machine Learning for Emerging Resource-Constrained Embedded Systems

Mikail Yayla¹, Hussam Amrouch², Jian-Jia Chen¹

¹Design Automation for Embedded Systems Group, Technical University of Dortmund, Germany ²Chair of AI Processor Design, Technical University of Munich (TUM), Germany

Vision of this Thesis

Robust BNNs with approximate memory and computing units, while training on the edge

Efficient Analog-based BNN Accelerators

Analog BNN accelerators use lots of ADCs \rightarrow Expensive designs!

- BNN robustness optimization
- HW/SW codesign methods for robust and efficient BNN inference

Robustness Optimization of BNNs

Goal: Achieve robustness without bit flip injection

- Classes: C_i . Index i of neuron with largest output determines predicted class index
- MHL maximizes the margins between the outputs of the last-layer neuron
- Margin-maximization leads to robustness without the need of error models

- LTA approximates global thesholdings by local thresholdings
- Using LTA, ADCs and digital components are not required or only used rarely
- Area and energy usage significantly smaller in LTA circuit compared to SOTA

Efficient BNN Training on the Edge

Efficient BNN training through reduced FP formats

• Bias: $b = -\lfloor \log_2(m_{sample}^{absmax}) \rfloor + 1$ • Exponent: $c = \lceil \log_2(-\log_2(\alpha \tau) - b + 1) \rceil$ • Mantissa: $U(Q, \mathbf{M}_t) = \frac{1}{|\mathbf{M}_t|} \sum_{m_t \in \mathbf{M}_t} \mathbf{1} \left[|\Delta m_t| < \frac{|Q(m_t) - q_{v^*}|}{2} \right]$

BNNs with FeFET Memory

Explore FeFET memory as on-chip memory for BNNs

- FeFET sensitive to temperature fluctuations, unacceptable BNN accuracy drop
- Countermeasures achieve temperature tolerance across entire range of operating temperature: (1) Training with errors (2) BERA algorithm

BNNs with FeFET-based XNOR LiM

Trade off speed of FeFET-based XNOR gates with BNN reliability

PT6	О	-	$1 \operatorname{sign}, 5 \operatorname{exp}.$	80		0.06
FP8	О	O-	$1 \operatorname{sign}, 5 \operatorname{exp.}, 2 \operatorname{mant.}$	A 70		FUCIPERIO
FP10	Ο	O -	$1 \operatorname{sign}, 5 \operatorname{exp.}, 4 \operatorname{mant.}$	in 60		
FP12	0	0	$1 \operatorname{sign}, 5 \operatorname{exp.}, 6 \operatorname{mant.}$	accare 50		
FP16b	+	0	$1 \operatorname{sign}, 8 \operatorname{exp.}, 7 \operatorname{mant.}$	0V est		
FP32	+	+	$1 \operatorname{sign}, 8 \operatorname{exp.}, 23 \operatorname{mant.}$	$\begin{bmatrix} -40\\ -30 \end{bmatrix}$		
				00	0 10	00
					Ep	och

Research tools available: github.com/myay

- SPICE-TORCH: Connect SPICE and PyTorch simulations
- TREAM: Error evaluations of tree-based models in sklearn
- DAEBI: Enables design space exploration of BNN accelerators in VHDL regarding different accelerator architectures and dataflows

- BNNs employ approximate FeFET-based XNOR gates for LiM
- Investigate the probability of error in FeFET-based XNOR LiM
- Exploit robustness of BNNs, trading off speed and reliability using the design objective $WSAD_{\ell,p_{\ell}} = \frac{s_{\ell,p_{\ell}}}{AD_{\ell,p_{\ell}}} \frac{c_{\ell}}{c_{max}}$

Acknowledgements

This research has been supported by Deutsche Forschungsgemeinschaft (DFG) project OneMemory (405422836), by the SFB876 "Providing Information by Resource-Constrained Analysis" (project number 124020371), and by the Federal Ministry of Education and Research of Germany and the state of NRW as part of the Lamarr-Institute for ML and AI, LAMARR22B.

References

- [1] S. Buschjäger, J.-J. Chen, K.-H. Chen, M. Günzel, C. Hakert, K. Morik, R. Novkin, L. Pfahler, and M. Yayla. Marginmaximization in binarized neural networks for optimizing bit error tolerance. In DATE, 2021.
- [2] M. Yayla and J.-J. Chen. Memory-efficient training of binarized neural networks on the edge. DAC, 2022.
- [3] M. Yayla, F. Frustaci, F. Spagnolo, J.-J. Chen, and H. Amrouch. Global by local thresholding in binarized neural networks for efficient crossbar accelerator design. (under single blind peer review).
- [4] M. Yayla, S. Buschjäger, A. Gupta, J.-J. Chen, J. Henkel, K. Morik, K.-H. Chen, and H. Amrouch. FeFET-based binarized neural networks under temperature-dependent bit errors. *IEEE Transactions on Computers*, 2022.
- [5] M. Yayla, S. Thomann, S. Buschjäger, K. Morik, J.-J. Chen, and H. Amrouch. Reliable binarized neural networks on unreliable beyond von-neumann architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.
- [6] M. Yayla, Z. Valipour Dehnoo, M. Masoudinejad, and J.-J. Chen. Tream: A tool for evaluating error resilience of tree-based models using approximate memory. In SAMOS, 2022.