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Vision of this Thesis
Robust BNNs with approximate memory and computing units, while
training on the edge
• BNN robustness optimization
• HW/SW codesign methods for robust and efficient BNN inference
• Train BNNs efficiently on the edge
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Robustness Optimization of BNNs
Goal: Achieve robustness without bit flip injection
• Classes: Ci. Index i of neuron with largest output determines predicted class index
• MHL maximizes the margins between the outputs of the last-layer neuron
• Margin-maximization leads to robustness without the need of error models

y1 = 40

y2 = 20

y3 = 18

C1

C2

C3

W1, X

W2, X

W3, X

y1 > y2 > y3 →C1 is prediction
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can only change yi by 2

With |y1 − y2| = m, the number of
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max{0, bm/2c − 1}
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BNNs with FeFET Memory
Explore FeFET memory as on-chip memory for BNNs
• FeFET sensitive to temperature fluctuations, unacceptable BNN accuracy drop
• Countermeaures achieve temperature tolerance across entire range of operating

temperature: (1) Training with errors (2) BERA algorithm
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FeFET Simulation

p 0→1 = 2.198%
p 1→0 = 1.090%
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BNNs with FeFET-based XNOR LiM
Trade off speed of FeFET-based XNOR gates with BNN reliability
• BNNs employ approximate FeFET-based XNOR gates for LiM
• Investigate the probability of error in FeFET-based XNOR LiM
• Exploit robustness of BNNs, trading off speed and reliability using

the design objective WSAD`,p`
= s`,p`

AD`,p`
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Efficient Analog-based BNN Accelerators
Analog BNN accelerators use lots of ADCs → Expensive designs!
• LTA approximates global thesholdings by local thresholdings
• Using LTA, ADCs and digital components are not required or only used rarely
• Area and energy usage significantly smaller in LTA circuit compared to SOTA

−

+

A1

−

+

A2

V 1

L

R1

V 1

out

Vref

..
.

−

+

A1

−

+

A2

V m
L

R1

V m
out

Vref

−

+

A3

R3

V Final
out

VMaj

R2

R2

+ Reg Bin

M
u
x

ADC

Analog path (AP), β ≤ mn

Digital path (DP), β > mn

Efficient BNN Training on the Edge
Efficient BNN training through reduced FP formats
• Bias: b = −blog2(mabsmax

sample )c + 1
• Exponent: c = dlog2(− log2(ατ ) − b + 1)e
• Mantissa: U(Q, Mt) = 1

|Mt|
∑

mt∈Mt
1
[
|∆mt| < |Q(mt)−qv∗|

2

]
Encoding Range Precision Realization

PT6 o - 1 sign, 5 exp.
FP8 o o- 1 sign, 5 exp., 2 mant.
FP10 o o- 1 sign, 5 exp., 4 mant.
FP12 o o 1 sign, 5 exp., 6 mant.

FP16b + o 1 sign, 8 exp., 7 mant.
FP32 + + 1 sign, 8 exp., 23 mant.
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Research tools available: github.com/myay
• SPICE-TORCH: Connect SPICE and PyTorch simulations
• TREAM: Error evaluations of tree-based models in sklearn
• DAEBI: Enables design space exploration of BNN accelerators in VHDL regarding

different accelerator architectures and dataflows
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