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Vision of this Thesis

Robust BNNs with approximate memory and computing units, while
training on the edge

e BNN robustness optimization
e HW/SW codesign methods for robust and efficient BNN inference

e Train BNNs efliciently on the edge Oy
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Robustness Optimization of BNNs

Goal: Achieve robustness without bit flip injection
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e Classes: (. Index 7 of neuron with largest output determines predicted class index
e MHL maximizes the margins between the outputs of the last-layer neuron

e Margin-maximization leads to robustness without the need of error models
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BNNs with FeFET Memory

Explore FeFET memory as on-chip memory for BNNs

e FeF'E'T sensitive to temperature fluctuations, unacceptable BNN accuracy drop

e Countermeaures achieve temperature tolerance across entire range of operating
temperature: (1) Training with errors (2) BERA algorithm

M no bit flip
W bit flip

v
[}
h

Device Parameters
Temperature

P o—s1 — 2198%

»i1s0 = 1.090% BNN Flip-Training

h

4 ; Temperature- E RSN o
e : Intel 14nm L : :
dependent
Bit Error Model

333
ent (Ipg) [Al

cy (%

Q Q Q9 Q
= 3. © [
Transistor Drain Curr

0.0 055 1. 1.65 2.20
0.0 0.27 0.55 0.82 1.09
Bit Error Rate (%)

Error Tolerant BNNs

. 02 04 06
Transisor Gate Voltage (V¢ [V]

FeFET Simulation
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BNNs with FeFET-based XNOR LiM
Trade off speed of FeFET-based XNOR gates with BNN reliability

e BNNs employ approximate FeFET-based XNOR gates for LiM
e [nvestigate the probability of error in FeFET-based XNOR LiM

e Exploit robustness of BNNs, trading off speed and reliability using
the design objective WSADy,, = Sty ¢
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Efficient Analog-based BININN Accelerators

Analog BNN accelerators use lots of ADCs — Expensive designs!

e LTA approximates global thesholdings by local thresholdings
e Using LTA, ADCs and digital components are not required or only used rarely

e Area and energy usage significantly smaller in LTA circuit compared to SOTA
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Efficient BNN Training on the Edge
Efficient BNN training through reduced FP formats
o Bias: b = —log,(mmar)| + 1
o Exponent: ¢ = [logy(—logy(ar) — b+ 1)]
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Research tools available: github.com/myay

e SPICE-TORCH: Connect SPICE and PyTorch simulations

e TREAM: Error evaluations of tree-based models in sklearn

e DAEBI: Enables design space exploration of BNN accelerators in VHDL regarding
different accelerator architectures and dataflows
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