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Abstract—While preemptive Earliest-Deadline-First (EDF) has
been studied extensively in real-time systems, there are only
few results when considering tasks with dynamic self-suspension
behavior scheduled under EDF. Furthermore, all schedulability
tests that have been developed in this context are based on
analyzing specific intervals, hindering the performance of the
analytical tightness of the result. In this work, we develop a
schedulability test for EDF, built on a dynamic interval extension.
That is, whenever the analysis cannot derive a decision to
conclude the schedulability test, we iteratively extend the analysis
interval to include additional carry-in jobs into the analysis. This
is achieved by specifying execution-exceedance requirement for
infeasibility of the system, i.e., by specifying how much workload
must be accumulated within a certain time interval to achieve a
deadline miss. Our approach outperforms all previous analyses
and is the first to surpass the schedulability guarantees that
can be provided for Deadline-Monotonic (DM) scheduling for
dynamic self-suspending tasks, hence achieving a milestone in
the analysis of EDF scheduling.

Index Terms—real-time systems, schedulability analysis, EDF
scheduling, self-suspending tasks, dynamic interval extension

I. INTRODUCTION

Self-suspension refers to scenarios in which tasks yield
their ready state despite being incomplete. Such behavior
is found in many complex cyber-physical real-time systems,
e.g., computation offloading to an external device, waiting on
access rights for shared resources or data, and multiprocessor
locking protocols [2], [7], [8]. Further applications can be
found in the review paper by Chen et al. [10]. Since the debut
made in 1988 [24], it is widely known that self-suspending
tasks need a special treatment in the analysis. In the literature,
schedulability tests for self-suspending tasks have been studied
under different scheduling algorithms such as preemptive
fixed-priority (FP) [3], [9], [11], [13], [15], [17]–[19], [22],
Earliest-Deadline-First (EDF) [1], [12], [16], [21], and EDF-
like (EL) [18], [26].

This paper considers the schedulability test of dynamic self-
suspending sporadic real-time tasks under preemptive EDF
on a single processor platform. Specifically, a dynamic self-
suspending task may suspend arbitrarily often as long as
the job’s total suspension time does not exceed the specified
maximum suspension time. There are four schedulability tests
[1], [12], [16], [21] for EDF, in which Günzel et al. [16]
and Aromolo et al. [1] focus on uniprocessor EDF and

This paper has passed an Artifact Evaluation process. The artifact support-
ing this paper is available at https://doi.org/10.5281/zenodo.17203679 [14].

Dong and Liu [12] and Liu and Anderson [21] focus on global
EDF in multiprocessor systems. For uniprocessor systems,
Günzel et al. [16] show that the test by Dong and Liu [12] is
the same as suspension-oblivious analysis (by considering sus-
pension as computation) and the test by Liu and Anderson [21]
is dominated by the test developed by Günzel et al. [16] in case
all tasks self-suspend. All the known results of schedulability
tests [1], [12], [16], [21] for dynamic self-suspending tasks
under EDF are developed based on analyzing a specific
analysis interval and none of them has been improved by
considering more intervals in the analysis. This limitation to a
specific analysis interval may hinder analytical performance.

To the best of our knowledge, this work is the first to achieve
a dynamic interval extension procedure for self-suspending
tasks under EDF. To achieve that, our approach formalizes
requirements for infeasibility, specifying how much workload
must be accumulated within a certain time interval for a
deadline miss to happen. If a requirement for infeasibility
within a time interval holds, it leads to system infeasibility;
otherwise, if a requirement does not hold, it is not a valid
requirement. Only in case it is not possible to validate whether
a requirement for infeasibility holds or not due to the difficulty
to quantify the number of carry-in jobs (i.e., those jobs
that are released before but still execute during the analysis
interval), we substitute the original requirement by a new set
of requirements with expanded analysis intervals. During this
interval expansion, we are able to determine the additional
suspension that has to be considered for the analysis. Our
approach continues testing the requirements and dynamically
extending the analysis interval, until a schedulability decision
is reached.

Contributions: In this work, we propose a requirement-based
analysis approach for dynamic self-suspending tasks under
preemptive EDF. Specifically, the contributions are as follows:

• The requirement-based analysis procedure is detailed
and formalized in Section III. Since requirement-based
analysis relies on a novel dynamic interval extension,
we discuss its conceptual novelty in relation to known
analysis approaches [1], [16] and the classical demand
bound function approach [5] in Section IV.

• While the analysis is tunable with threshold values Θ, we
propose a setting of the threshold in Section V.

• Our evaluation in Section VI shows that this requirement-
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based approach outperforms previous analyses in schedu-
lability ratio often by a large margin. Additionally, while
prior suspension-aware analyses under preemptive EDF
consistently perform worse than those under preemptive
Deadline-Monotonic (DM) scheduling, our test is the first
to provide schedulability guarantees for EDF that surpass
those for DM found in the literature.

II. SYSTEM MODEL

This work assumes a discrete time domain (i.e., using Z),
following the typical behavior of computing systems, which
run with discrete time segments (i.e., system ticks).

Tasks and Jobs: We consider a task set T = {τ1, . . . , τn} of
n sporadic tasks with dynamic self-suspending behavior. Each
task τi ∈ T releases countably many jobs τi(j), j ∈ Z≥1, and
we specify the behavior of each task τi by three parameters

τi ∈ Spor(Ti) ∩WCET (Ci) ∩DynSus(Si). (1)

That is, the minimum inter-arrival time Ti ∈ Z≥1 denotes that
for each job τi(j), j ∈ Z≥1 released at a time point ri,j ∈ Z its
subsequent job τi(j+1) is released no earlier than at ri,j+Ti,
the worst-case execution time (WCET) Ci ∈ Z≥1 is an upper
bound on the amount of execution demand of each of its jobs,
and the maximum suspension time Si ∈ Z≥0 specifies that
each job τi(j) of τi can suspend itself as long and as often as
its maximum suspension time Si is not exceeded. Additionally,
each task τi ∈ T has a relative deadline Di ∈ Z≥1, which
indicates that each job of τi must complete its execution within
Di upon its release. We consider constrained-deadline tasks
in this work, i.e., Di ≤ Ti for all τi ∈ T.

System Evolutions: Since the specification of tasks from
Equation (1) only provides bounds for the execution, sus-
pension, and release behavior, different execution-suspension
patterns and different release patterns can be observed when
running the system. The different system behaviors are for-
malized using the notion of system evolutions. A system
evolution ω = (ρω, χω) is composed of a release pat-
tern ρω and an execution-suspension pattern χω . Formally,
a release pattern ρω is the collection the releases rωi,j for
each job τi(j), i.e., ρω = (rωi,j)τi∈T, j∈Z≥0

, where inter-
arrival time is respected, i.e., rωi,j+1 ≥ rωi,j + Ti for all
τi ∈ T and j ∈ Z≥0. Furthermore, an execution-suspension
pattern χω specifies the sequence of execution and suspen-
sion segments (cωi,j,1, s

ω
i,j,1, c

ω
i,j,2, . . . , s

ω
i,j,mω

i,j−1, c
ω
i,j,mω

i,j
) ∈

Zmω
i,j

≥0 for each job τi(j). Formally, χω is defined as χω =
((cωi,j,1, s

ω
i,j,1, c

ω
i,j,2, . . . , s

ω
i,j,mω

i,j−1, c
ω
i,j,mω

i,j
))τi∈T, j∈Z≥0

, with
∑mω

i,j

ξ=1 cωi,j,ξ ≤ Ci and
∑mω

i,j−1

ξ=1 sωi,j,ξ ≤ Si for all τi ∈ T
and j ∈ Z≥0. We denote the set of all possible system
evolutions ω of the task set T as Ω. Please note that although
in a real system the observed system evolution might depend
on the scheduling decisions made by the system, the system
evolutions defined in this work do not need to capture these
dependencies. Rather, for a safe analysis it is sufficient to
aggregate all patterns Ω that can possibly occur.

Schedules: Dependent on the system evolution and algo-
rithm for scheduling, different schedules can be observed. A
schedule describes which task is executed at which time and
can formally be defined by a function S : Z → T×Z≥1∪{⊥}
where S(t) = (τi, j) denotes that the job τi(j) is executed
during [t, t+1), and S(t) = ⊥ denotes that no job is executed
during [t, t+1). A schedule fulfills the following conditions:

• No job executes before its release, i.e., for all τi ∈ T and
j ∈ Z≥0 we have S−1(τi, j) ∩ (−∞, rωi,j−1) = ∅.

• No job executes more than specified by the system
evolution ω, i.e., for all τi ∈ T and j ∈ Z≥0 we have
|S−1(τi, j)| ≤

∑mω
i,j

ξ=1 cωi,j,ξ.
• The schedule respects the suspension segments, i.e., be-

tween two execution segments cωi,j,ξ and cωi,j,ξ+1, the job
is not executed for sωi,j,ξ time units.

We denote the set of all schedules S of a given system
evolution ω ∈ Ω as σω . We say that a job starts its execution
when it is executed for the first time, i.e., at min(S−1(τi, j)).
Furthermore, we say that a job finishes when it reaches the
demand specified in the system evolution ω, i.e., at the smallest
t ≥ rωi,j such that |S−1(τi, j) ∩ [rωi,j , t)| =

∑mω
i,j

ξ=1 cωi,j,ξ. If no
such t exists, we say that the job starves, and for convenience
say that the job finishes at ∞.

Scheduling Algorithms and Schedulability: This work
tests the schedulability on one processor under work-
conserving preemptive EDF, i.e., for schedules S ∈ σω where
at each time the unfinished job with the earliest deadline
(which is not currently suspending itself) is executed on the
processor. Specifically, we say that T is schedulable under
work-conserving preemptive EDF if, for all system evolutions
ω ∈ Ω, all jobs meet their deadlines in the schedule S ∈ σω

obtained by work-conserving preemptive EDF.
For the constructions to prove the correctness of the schedu-

lability test presented in Section III, we impose more relaxed
conditions (which are only adopted to ensure the correctness
of our analysis). That is, we sometimes consider the more
general job-level fixed-piority (J-FP) schedules where each
job is assigned a priority level (which, in contrast to EDF,
does not necessarily have to be derived from the absolute
deadline) and at each time the job with the highest priority
is executed. Furthermore, some jobs may be executed in a
non-work-conserving manner, i.e., the job execution can be
delayed even if the job does not suspend itself.

III. REQUIREMENT-BASED ANALYSIS

In this section, we present our proposed requirement-
based schedulability analysis. Specifically, the approach for-
malizes requirements (L,E) ∈ R2

≥0, intuitively specifying
that a certain amount of workload E must be accumulated
inside an interval of length L to achieve a deadline miss
(cf. Lemma 3). In multiple iterations, each requirement is
tested (using Lemma 6) or extended into a larger set of
requirements (using Lemma 9) until a decision is made. The
full schedulability test is summarized in Algorithm 1.

Before we dive into the details of the schedulability analysis,
we introduce the task set T′ = {τ1, τ2, τ3} with parameters
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Table I
PARAMETERS FOR THE RUNNING EXAMPLE T′ = {τ1, τ2, τ3}.

τi Ti Ci Si Di

τ1 9 1 3 9
τ2 15 3 8 15
τ3 10 2 2 9

= execution = suspension = interference

τ2(j)

0 2 4 6 8 10 12 14 16
=D2−S2

=D2

Figure 1. Deadline miss of a job τ2(j) in the running example. Upward and
downward facing arrows denote job release and deadline, respectively. During
the interval of length D2 more than D2 −S2 execution (indicated by dashed
lines) has to be accumulated to achieve a deadline miss.

described in Table I to be used as a running example for this
section. If this task set T′ is unschedulable, then there exists
a system evolution ω such that at least one of the jobs has a
deadline miss in the schedule S ∈ σω obtained by preemptive
EDF. In Figure 1, the deadline miss of a job τ2(j) of task τ2
is depicted. In the general case, to achieve a deadline miss
for a job of τi, during an interval of length Di more than
Di − Si execution has to be accumulated. For our running
example, this results in three initial requirements: For i = 1:
Accumulate more than D1 − S1 = 9 − 3 = 6 amount of
execution inside an interval of length D1 = 9. For i = 2:
Accumulate more than 15−8 = 7 amount of execution inside
an interval of length 15. For i = 3: Accumulate more than
9 − 2 = 7 amount of execution inside an interval of length
9. In the following we formalize such execution-exceedance
requirements.

Definition 1 (Execution-Exceedance Requirements). We de-
fine an execution-exceedance requirement by (L,E) ∈ (R≥0)

2

with an interval length L and an exceedance value E. In-
tuitively, an execution-exceedance requirement asks whether
within an interval of length L enough execution can be accrued
to exceed the value E that is required to miss a deadline.

Formally, we use a test function T to test the requirement.

Definition 2 (Test for EDF). We define a test function for
EDF by T : (R≥0)

2 → {True,False} where T (L,E) is True
if there exist a system evolution ω ∈ Ω, a schedule S ∈ σω ,
and an interval I = [a, b] of length L = b − a, such that the
following two scheduling conditions C1 and C2 as well as the
exceedance condition EC hold:

C1 S is obtained from work-conserving preemptive EDF.
C2 All jobs with deadline < b have no deadline miss in S.

EC The amount of execution time after a by jobs with
deadline ≤ b exceeds E.

Otherwise, the test returns T (L,E) = False . We say that an
execution-exceedance (L,E) requirement holds or is fulfilled
under T if and only if T (L,E) = True .

The idea of the requirement-based analysis is to specify a
set of requirements R of which at least one must be satisfied
to achieve a deadline miss. That is,

T EDF unschedulable =⇒
∨

(L,E)∈R
T (L,E), (2)

where
∨

denotes the logical OR-operator. Hence, if all require-
ments R can be falsified, then the task set T must be schedu-
lable under EDF. To determine and test the requirements R,
this section is organized as follows: In Section III-A, we
determine an initial set of requirements R0. In Section III-B,
the considered schedule is relaxed to enable more freedom for
modifications of the schedule during the analysis and to inte-
grate a tuning parameter Θ. Specifically, this section defines
a test function T ∗

Θ for the relaxed schedule. In Section III-C,
we detail an approach to test requirements under the relaxed
test function T ∗

Θ . In Section III-D, we consider requirements
for which no decision with the test from Section III-C can be
made. For those, we substitute the requirement by a new set of
requirements with enlarged analysis intervals. In Section III-E,
we control the size of the requirement set by identifying
dominated requirements which can be safely removed. In
Section III-F, the full schedulability test is concluded.

A. Initialization

We use the following initial set of execution-exceedance
requirements R0.

Lemma 3 (Initiation). If T is unschedulable, then at least one
of the execution-exceedance requirements (Di, Di−Si) with
τi ∈ T is fulfilled under the test T for EDF, i.e.,

T EDF unschedulable =⇒
∨

(L,E)∈R0

T (L,E) (3)

with R0 := {(Di, Di − Si) | τi ∈ T}.

Proof: If T is unschedulable, then there exists a system
evolution ω such that the schedule S ∈ σω obtained by
preemptive EDF has at least one deadline miss. Let τi(j)
be the job with the earliest deadline which has a deadline
miss in S, in which ties are broken arbitrarily. Then we
consider the interval I = [rωi,j , r

ω
i,j +Di]. During this interval,

the job τi(j) is suspended for up to Si time units, and the
remaining must be either execution from τi(j) or from jobs
with higher priority, i.e., from jobs with deadline ≤ rωi,j +Di.
The schedule S and interval I fulfill conditions C1 and C2
because of the construction of S and τi(j) being the earliest
job with deadline miss. Furthermore, the amount of execution
of jobs with deadline ≤ rωi,j + Di exceeds Di − Si because
τi(j) experiences a deadline miss. Hence, EC is fulfilled with
E = Di − Si. By Definition 2, T (Di, Di − Si) is True, i.e.,
Equation (3) holds.

Based on Lemma 3, for our running example T′,

R0 = {(9,6), (15,7), (9,7)} and (4)

T′ EDF unschedulable ⇒ T (9, 6)∨T (15, 7)∨T (9, 7). (5)
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Now that we have requirements R0 for unschedulability of the
task set, if we can show that all these requirements do not hold,
then this means that the task set must be schedulable under
EDF. Hence, Equation (3) serves as a schedulability test.

B. Relaxing the Schedule

To decide the schedulability of a task set in general, the
requirement-based analysis uses a testing procedure (which
determines whether a test returns True or False) in Sec-
tion III-C, and a substitution procedure (which replaces the
original requirement with a set of requirements with larger
intervals in case no decision could be made with the test) in
Section III-D. However, to control the length of the extended
analysis interval, the substitution procedure relies on moving
job releases to the latest possible time to produce a periodically
released task.1 When limiting our attention to EDF schedules
only, a change of release times changes the absolute deadlines
of jobs, which possibly results in a change of the priority order
under EDF and unexpected changes in the schedule.

To mitigate this problem, we relax the conditions of the
schedule used by the test function to consider arbitrary work-
conserving job-level fixed-priority schedules.2 Additionally,
we also introduce a relaxation threshold Θi for each task
τi ∈ T which relaxes the work-conserving property for certain
jobs. While the analysis is applicable with any choice of
thresholds, they have an immediate impact on the number of
task sets for which a decision can be made in Section III-C
(specifically, Lemma 6) and hence on the number of interval
extensions to be conducted in Section III-D. Therefore, the
thresholds give us a lever to tune the schedulability test in
Section V. The following formalizes the test function T ∗

Θ that
is used to specify whether the requirement holds with the
relaxed schedule and thresholds Θ.

Definition 4 (Test for Relaxed Schedule). Consider thresholds
Θ = (Θ1, . . . ,Θn) with Θi ∈ [0, Di]. We define a test function
for a relaxed schedule by T ∗

Θ : (R≥0)
2 → {True,False}

where T ∗
Θ(L,E) is True if there exists a system evolution

ω ∈ Ω, a schedule S ∈ σω , and an interval I = [a, b]
such that the following scheduling conditions C1*–C3* and
the exceedance condition EC from Definition 2 hold:

C1* S is a job-level fixed-priority schedule.
C2* In S, all jobs τi(j) with release time rωi,j < a−Θi must

be executed work-conservingly, and the jobs with release
rωi,j ≥ a−Θi can be executed non-work-conservingly.

C3* In S, all jobs with deadline ≤ a have no deadline miss,
and the jobs with deadline > a are not constrained to
meet their deadlines.

1This modification of release times is only an analytical procedure (namely,
for the proof of Lemma 7) and does not have to be performed in the analyzed
application. More specifically, the analyzed application does not need to allow
the modification of release times to make our analysis applicable.

2Please note that this does not mean that the test is available to all work-
conserving job-level fixed-priority scheduling algorithms. The reason is that
important features of the EDF schedule are still preserved. For example, only
jobs with deadline until the deadline of the job under analysis are considered
for the accumulated workload.

We observe that conditions C1*–C3* are less restrictive than
conditions C1, C2. As such, T ∗

Θ can be used to replace T , as
formalized by the following lemma.

Lemma 5 (Relaxing the test function). Let Θ ∈ ∏n
i=1[0, Di]

be task-specific thresholds for T, then
∨

(L,E)∈R0

T (L,E) ⇒
∨

(L,E)∈R0

T ∗
Θ(L,E) (6)

with R0 defined as in Lemma 3.

Proof: Given that there exists (L,E) ∈ R0 such that
T (L,E) = True , there is a system evolution ω and a schedule
S ∈ σω such that C1, C2 and EC hold. Note that, when
C1 holds, also C1*–C3* hold, given that (i) EDF is a JLFP
scheduler (C1*), (ii) C2* does not exclude work-conserving
EDF scheduling after time rωi,j ≥ a − Θi, and (ii) C3* is
unrelated to the scheduling algorithm. Furthermore, when C2
holds, also C1*–C3* hold, given that (i) C1* and C2* are
unrelated to deadline misses, and (ii) C3* does not constrain
deadline hits in [a, b]. Hence, T ∗

Θ(L,E) = True as well.
For our running example, by using Lemma 5, the schedu-

lability test from Equation (5) can be reformulated as:

T′ EDF unschedulable ⇒ T ∗
Θ(9, 6) ∨ T ∗

Θ(15, 7) ∨ T ∗
Θ(9, 7)

(7)
For the remainder of Section III, we consider Θ = (0, 0, 0) for
our running example T′, meaning that carry-in jobs (i.e., those
that are released before the analysis interval but still within it)
are executed work-conservingly.

C. Test Requirements

In this section, we formulate sufficient conditions to de-
termine whether a requirement (L,E) ∈ R is True or False
under the test T ∗

Θ . If the requirement is False, we can safely
remove it from the set of requirements R to be considered.
However, if the requirement is True, the task set is potentially
unschedulable and hence a sufficient schedulability test based
on it would stop with decision Unknown.

To test the requirement (L,E) ∈ R, consider a task τi ∈ T
and an analysis interval I = [a, b] with b−a = L. Considering
only jobs with deadline ≤ b, up to

⌊
L+Ti−Di

Ti

⌋
many jobs of

τi have release times ≥ a and hence can execute after a. In
addition to this number of jobs, since all jobs with deadline
≤ a have no deadline miss due to C3*, at most one job arriving
before a might be carried in and executed after a. That is, there
might be a carry-in job for task τi when (L+ Ti −Di) mod
Ti > Ti −Di. We denote the indices of such tasks by

I(L) := {i ∈ {1, . . . , n} | (L+ Ti −Di) mod Ti > Ti −Di} .
(8)

Furthermore, given the thresholds Θ = (Θ1, . . . ,Θn), if we
have (L + Ti − Di) mod Ti ≥ Ti − Θi, then we know that
the carry-in job can be executed non-work-conservingly in a
relaxed schedule. Specifically, its execution can be pushed
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τi
Θi

|I| = L

L+ Ti −Di

(L+ Ti −Di) mod Ti

Ti −Θi

Ti −Di

Figure 2. Illustration of the reasoning behind Equations (8) and (9). That is,
there is possibly a carry-in job if (L+Ti−Di) mod Ti ≥ Ti−Di, and that
carry-in job can possibly be executed work-conservingly if (L+Ti−Di) mod
Ti ≥ Ti −Θi. For convenience of the presentation, only the deadline of the
first and the latest job are depicted.

after a and we have to consider its full workload for EC.
We define the indices of such tasks by I∗(L,Θ) ⊆ I(L) with

I∗(L,Θ) := {i ∈ I(L) | (L+Ti−Di) mod Ti ≥ (Ti−Θi)} .
(9)

Based on the previous observations, illustrated in Figure 2, we
formalize our testing procedure using the following lemma.
Please note that T ∗

Θ(L,E) might not be able to be determined
by the lemma in case I(L) ̸= I∗(L,Θ).

Lemma 6 (Testing Requirements). Let (L,E) be an
execution-exceedance requirement. If

n∑

i=1

⌊
L+ Ti −Di

Ti

⌋
Ci +

∑

i∈I(L)

Ci ≤ E, (10)

then T ∗
Θ(L,E) = False . Furthermore, given thresholds Θ, if

n∑

i=1

⌊
L+ Ti −Di

Ti

⌋
Ci +

∑

i∈I∗(L,Θ)

Ci > E, (11)

then T ∗
Θ(L,E) = True .

Proof: We prove (10) by contradiction, assuming
T ∗
Θ(L,E) = True . Then, as this implies that C3* is satisfied,

all jobs with deadline ≤ a cannot be executed after a,
and the execution of jobs with deadline in (a, b] has to be
determined for EC. The number of jobs of τi with release
≥ a and deadline ≤ b is bounded by ki :=

⌊
L+Ti−Di

Ti

⌋
,

and since we consider constrained-deadline tasks, there can
be at most one more job with deadline in (a, b]. The ki-th
latest job of τi with deadline ≤ b is released no later than
γi := b + Ti − Di − ki · Ti = a + L + Ti − Di − ki · Ti

which is the same as γi = a + (L + Ti − Di) mod Ti.
Therefore, the (ki+1)-th latest job of τi with deadline ≤ b is
released no later than γi−Ti and has deadline no later than at
γi−Ti+Di. Checking whether γi−Ti+Di > a is equivalent
to (L + Ti − Di) mod Ti > Ti − Di, i.e., i ∈ I(L). Hence,
the workload from jobs with deadline in (a, b] is bounded by∑n

i=1 ki ·Ci +
∑

i∈I(L) Ci. Condition EC would then require
this amount to exceed E, thereby reaching a contradiction.

For Equation (11), we show how to construct a relaxed
schedule that guarantees conditions C1*-C3* and EC. Con-
sider an interval I = [a, b] of length L and the JLFP schedule,

τ1 1

τ2 ?
3

τ3

0 2 4 6 8 10 12 14 16 18 20

2

I⇒ T ∗
Θ(9, 6) = False

Figure 3. Testing requirement (L,E) = (9, 6) in our running example T′.
The question mark indicates the possibility of τ2’s job being pushed depending
on the schedule (i.e., interference and suspension). The sum of execution
times inside the analysis interval I of length 9 cannot exceed 6, even with
the potential carry-in job of τ2. Therefore, T ∗

Θ(9, 6) = False.

thereby guaranteeing C1*, where one job of each task τi is
released at b − Di and sufficiently many preceding jobs are
released as late as possible, i.e., respecting the minimum inter-
arrival time Ti. In that case, ki =

⌊
L+Ti−Di

Ti

⌋
is the number

of jobs of task τi with deadline ≤ b and release ≥ a. With a
similar reasoning as above, the (ki+1)-th latest job of τi, i.e.,
the latest job of τi released before a, is released at γi−Ti. This
job is not constrained to meet its deadline if γi−Ti > a−Di

by C3*, which is equivalent to i ∈ I(L). The job can further be
executed non-work-conservingly if γi − Ti > a−Θi by C2*,
which is satisfied if i ∈ I∗(L,Θ). By pushing the execution of
carry-in jobs within the interval I , we can ensure that each task
τi with i ∈ I∗(L,Θ) contributes an extra demand of Ci units
that can be executed after a. In total, the amount of execution
demanded within I is

∑n
i=1

⌊
L+Ti−Di

Ti

⌋
Ci +

∑
i∈I∗(L,Θ) Ci.

If this value exceeds E, then EC holds, and we conclude
T ∗
Θ(L,E) = True .
Coming back to our running example, we have already for-

mulated the initial requirements R0 = {(9,6), (15,7), (9,7)}
in Equation (4). We consider (L,E) = (9, 6) ∈ R0. Since
Θ is set to (0, 0, 0), following definitions of I and I∗ yields
I(9) = {2} and I∗(9,Θ) = ∅. Indeed, as depicted in Figure 3,
for an analysis interval I = [a, b], tasks τ1 and τ3 can each
release

⌊
9+T1−D1

T1

⌋
=

⌊
9+T3−D3

T3

⌋
= 1 job with deadline ≤ b

after a without an additional carry-in job, and for τ2 we have
no such job with release ≥ a since

⌊
9+T2−D2

T2

⌋
= 0 but have

one potential carry-in job. Calculating the left-hand side of
Equation (10) with L = 9, we obtain 1·1+ 0·3+ 1·2+ 3 = 6,
which relates to the total amount of execution after a of jobs
with deadline ≤ b including potential carry-in jobs. Since
this value does not exceed E = 6, the execution-exceedance
requirement (9, 6) does not hold, i.e., T ∗

Θ(9, 6) = False .
Therefore, we can remove this requirement from the schedu-
lability test in Equation (7), leading to:

T′ EDF unschedulable ⇒ T ∗
Θ(15, 7) ∨ T ∗

Θ(9, 7) (12)

Next, we continue by considering execution-exceedance
requirement (L,E) = (15, 7). As depicted in Figure 4, there
are up to

⌊
L+Ti−Di

Ti

⌋
= 1 jobs with release and deadline

during I for each task τi ∈ T′. Only tasks τ1 and τ3
can have an additional carry-in job, i.e., I(15) = {1, 3}.
Calculating the left-hand side of Equation (10), we obtain
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τ1 ?
1 1

τ2 3

τ3

0 2 4 6 8 10 12 14 16 18 20

?
2 2

I⇒ T (15, 7) = ?

Figure 4. Testing requirement (L,E) = (15, 7) in our running example T′.
With carry-in, the sum of execution time is 9. However, since the execution
of carry-in jobs is unclear, only 6 time units execution can be guaranteed.
Therefore, we cannot say whether T (15, 7) is True or False.

(1 + 3 + 2) + (1 + 2) = 9. Since 9 > E = 7, we cannot use
Equation (10) to derive that T ∗

Θ(L,E) = False . Therefore, we
consider Equation (11) next. Since Θ = (0, 0, 0), we obtain
I∗(15,Θ) = ∅. Using that, we obtain (1 + 3 + 2) + 0 = 6
for the left-hand side of Equation (11), which is ≤ E = 7.
Hence, we cannot use Equation (11) neither to determine the
outcome of T ∗

Θ(15, 7).

D. Substitution of Requirements

Motivated by the running example in Figure 4, we consider
an execution-exceedance requirement (L,E) ∈ R for which
the sufficient conditions from Lemma 6 do not suffice to
make a decision, i.e., neither Equation (10) nor Equation (11)
holds. For such requirements, we derive a set of new require-
ments that can be used to substitute (L,E). To derive new
requirements, our strategy is to extend the analysis window
to include additional carry-in jobs to refine our analysis.
However, due to uncertainty in the sporadic release pattern
and the execution-suspension pattern, many different schedules
and release patterns have to be considered, making it non-
trivial to find the right intervals for the extension. To that
end, Lemma 7 limits the amount of possible schedules and
determines a critical task τicr which is released periodically.
This critical task serves as an anchor for the interval extension
afterwards in Lemma 8.

Lemma 7 (Determine Critical task). Consider a task set T
with task-specific thresholds Θ and an execution-exceedance
requirement (L,E) such that T ∗

Θ(L,E) = True but Equa-
tion (11) does not hold. Then there exists a system evolution
ω, a schedule S ∈ σω , an analysis interval I = [a, b] and a
job τicr (jcr ) with icr ∈ I(L) \ I∗(L,Θ) such that

1) C1*–C3* and EC is fulfilled,
2) τicr (jcr ) is still pending (i.e., not finished) at time a in

S, and
3) τicr (jcr ) is released at rωicr ,jcr = b−

⌈
L+Ticr −Dicr

Ticr

⌉
·Ticr+

Ticr −Dicr .
We call such τicr from this lemma a critical task.

The proof of Lemma 7 is based on a construction (in the
discrete time domain) of a concrete schedule which allows
a critical task. To achieve that, job releases have to be
actively postponed in the transformation. To avoid that the
modification of job releases impacts the prioritization of jobs
and hence the underlying schedule (as it would be the case

with classical EDF), the relaxed scheduling conditions C1*–
C3* are substantial because they allow more freedom than
EDF. Since the proof of Lemma 7 is rather technical, it is
moved to Appendix A for readability.

Using the critical task τicr , we can extend the analysis inter-
val. The rationale is that during the interval [rωicr ,jcr , a), when-
ever no job is executed, the carry-in job τicr (jcr ) of the critical
task τicr must suspend itself. Since [rωicr ,jcr , a) has a length of⌈
L+Ticr −Dicr

Ticr

⌉
·Ticr −Ticr +Dicr −L and the carry-in job of

the critical task has suspension of at most Sicr , the remaining
max

(⌈
L+Ticr −Dicr

Ticr

⌉
· Ticr − Ticr +Dicr − L− Sicr , 0

)
must

be executed. Given that the execution-exceedance require-
ment (L,E) holds, it can be substituted by the execution-
exceedance requirement (

⌈
L+Ticr −Dicr

Ticr

⌉
·Ticr−Ticr+Dicr , E+

max(
⌈
L+Ticr −Dicr

Ticr

⌉
·Ticr−Ticr+Dicr−L−Sicr , 0)). Formally,

the execution-exceedance requirement can be substituted as
follows.

Lemma 8 (Extension of Analysis Interval). Given that
T ∗
Θ(L,E) = True , but Equation (11) does not hold, we con-

sider a critical task τicr from Lemma 7. Then, T ∗
Θ(L′

icr
, E′

icr
) =

True holds with:

L′
icr =

⌈
L+ Ticr −Dicr

Ticr

⌉
· Ticr − Ticr +Dicr

E′
icr = E +max(L′

icr − L− Sicr , 0)

(13)

Proof: We consider ω, S, I = [a, b], and τicr (jcr )
provided by Lemma 7. Since τicr (jcr ) is pending during
[rωicr ,jcr , a) by 2), whenever the schedule idles in [rωicr ,jcr , a) the
job τicr (jcr ) must be suspended. This is possible for at most
min(Si, a − rωicr ,jcr ) time units. Since further a − rωicr ,jcr =

a − b +
⌈
L+Ticr −Dicr

Ticr

⌉
· Ticr − Ticr + Dicr = L′

icr
− L by

3), the total idle time in [rωicr ,jcr , a) is upper bounded by
min(Si, L

′
icr

− L). Since [rωicr ,jcr , a) has length L′
icr

− L,
the total execution time in [rωicr ,jcr , a) is lower bounded by
max(L′

icr
− L − Sicr , 0). By EC, the execution after a ex-

ceeds E, we conclude that the execution after rωicr ,jcr exceeds
E +max(L′

icr
− L− Sicr , 0) = E′

icr
. Since by increasing the

analysis interval to I = [rωicr ,jcr , b] conditions C1*–C3* are
still satisfied, we conclude that ω and S fulfill all conditions
C1*–C3* and EC for the execution-exceedance requirement
(L′

icr
, E′

icr
). Hence, T ∗

Θ(L′
icr
, E′

icr
) = True .

For our running example, in Section III-C, we already
determined (L,E) = (15, 7) to be an execution-exceedance
requirement for which Lemma 6 is not sufficient to derive
a decision. Different possible critical settings for (L,E) are
illustrated in Figure 5, with a possible interference from earlier
jobs during the interval [2, 3]. Specifically, in the all three
critical settings, I = [5, 20] is marked red, and the additional
part for the interval extension is marked blue. Figure 5a shows
a critical setting where only τ1 has a carry-in job (that is
still pending at the beginning of I). Hence, icr = 1, and the
new requirement (L′, E′) can be computed using Lemma 8
as (L′, E′) = (18, 7). Figure 5b shows a critical setting
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τ1
3

1 1

τ2 3

τ3

0 2 4 6 8 10 12 14 16 18 20

2 2

3
⇒ (L′, E′) = (15 + 3, 7 + (3− 3)) = (18, 7)

(a) Carry-in: τ1 only.

τ1 1 1

τ3

0 2 4 6 8 10 12 14 16 18 20

2
2 2

τ2 3

4
⇒ (L′, E′) = (15 + 4, 7 + (4− 2)) = (19, 9)

(b) Carry-in: τ3 only.

τ1
≤ 3

1 1

τ3

0 2 4 6 8 10 12 14 16 18 20

2 2

τ2 3

3
⇒ (L′, E′) = (15 + 3, 7 + (3− 3)) = (18, 7)

(c) Carry-in: Both τ1 and τ3.

Figure 5. Expansion procedure for different carry-in scenarios for the running example T′ with execution-exceedance requirement (L,E) = (15, 7). Due to
the expansion procedure, the requirement (15, 7) is replaced by (18, 7) and (19, 9).

where only τ3 has a carry-in job. Here, icr = 3 and the
interval extension yields (L′, E′) = (19, 9). In Figure 5c, both
tasks τ1 and τ3 have a carry-in job. Here, the task with the
lowest-priority carry-in job is the critical task, i.e., icr = 1,
which results in the new requirement (L′, E′) = (18, 7).
We see from this example that different tasks τi with index
i ∈ I(L) \ I∗(L,Θ) can potentially become critical tasks.
Hence, we need to investigate all of them. This leads to the
following lemma for substitution.

Lemma 9 (Substitution). Let (L,E) be an execution-
exceedance requirement such that Equation (11) does not
hold. Then one of the requirements (L′

icr
, E′

icr
) defined by

Equation (13) with icr ∈ I(L) \ I∗(L,Θ) must be satisfied
if T ∗

Θ(L,E) is True . Formally, we have:

T ∗
Θ(L,E) ⇒

∨

icr∈I(L)\I∗(L,Θ)

T ∗
Θ

(
L′
icr , E

′
icr

)
(14)

Proof: If T ∗
Θ(L,E) = False , then the implication of

Equation (14) is trivially correct. Otherwise, if T ∗
Θ(L,E) =

True , then there exists a critical task τicr with icr ∈ I(L) \
I∗(L,Θ) by Lemma 7 and further T ∗

Θ(L′
icr
, E′

icr
) = True

by Lemma 8. We conclude that Equation (14) is a correct
implication in both cases.

Using this substitution for our running example we achieve
T ∗
Θ(15, 7) ⇒ T ∗

Θ(18, 7) ∨ T ∗
Θ(19, 9). Using this substitution

for the set of requirements R = {(15,7), (9,7)}, we obtain
R = {(18,7), (19,9), (9,7)}. This changes the schedulability
test from Equation (12) to:

T′ EDF unschedulable ⇒ T ∗
Θ(18, 7) ∨ T ∗

Θ(19, 9) ∨ T ∗
Θ(9, 7)

(15)
After substitution, our approach continues testing and sub-

stituting the requirements in R until a schedulability decision
can be reached or until the number of iterations exceeds a
predefined bound.

E. Reducing the Space of Requirements

To avoid that R (by applying the substitution mechanism
in Lemma 9) grows too large, we identify dominated require-
ments. Specifically, a requirement (L1, E1) ∈ R is dominated
by another requirement (L2, E2) ∈ R if (L1, E1) can only be
satisfied if (L2, E2) is satisfied. In that case, the requirement
(L1, E1) can safely be removed from R without any impact
on the analysis.

One such example of dominated requirements can be found
in the set of requirements R = {(18,7), (19,9), (9,7)} of our
running example. That is, if (L1, E1) = (9, 7) is satisfied,
i.e., for an analysis interval I = [b−9, b] of length 9 more
than 7 time units of execution can be accumulated, then
these 7 time units can also be accumulated for an analysis
interval I = [b−18, b] of length 18, i.e., (L2, E2) = (18, 7) is
satisfied. Hence, (9, 7) is dominated by (18, 7) and can safely
be removed from R. The following lemma provides a general
rule to identify dominated execution-exceedance requirements.

Lemma 10 (Dominance of Requirements). Given two
execution-exceedance requirements (L1, E1) and (L2, E2), if
E2 ≤ E1 and L2 ≥ L1, then T ∗

Θ(L1, E1) ⇒ T ∗
Θ(L2, E2). We

say that (L1, E1) is dominated by (L2, E2).

Proof: If T ∗
Θ(L1, E1) = True , then by Definition 4 there

exist ω, S and I = [a, b] with length b−a = L1 such that C1*–
C3* and EC hold. In particular, the accumulated execution
after a exceeds E1, jobs of τi released before a − Θi are
executed work-conservingly, and jobs with deadline ≤ a have
no deadline miss. Since b − L2 ≤ a, this also means that
the accumulated execution after b−L2 exceeds E1 (which is
≥ E2), jobs of τi released before b − L2 − Θi are executed
work-conservingly, and jobs with deadline ≤ b− L2 have no
deadline miss. Hence, for the same ω and S but with analysis
interval I = [b−L2, b], the execution-exceedance requirement
(L2, E2) is satisfied for test T ∗

Θ , i.e., T ∗
Θ(L2, E2) = True

For the two requirements (L1, E1) = (9, 7) and (L2, E2) =
(18, 7) from R, indeed Lemma 10 determines that (9, 7) is
dominated by (18, 7). Hence, by utilizing the dominance, we
can remove (9, 7) from R. Hence, the schedulability test is:

T′ EDF unschedulable ⇒ T ∗
Θ(18, 7) ∨ T ∗

Θ(19, 9) (16)

Our approach continues testing and substituting execution-
exceedance requirements until a decision is made. The dom-
inance of requirements is tested each time new requirements
are added in the substitution process.

F. Concluding the Schedulability Test

In the previous subsections, we have derived an initialization
of the set of requirements R = R0 in Lemma 3, a test of
requirements in Lemma 6, a substitution of requirements in
Lemma 9, and a dominance of requirements in Lemma 10.
Using these results, the full procedure of our schedulability
test is summarized in Algorithm 1. The schedulability test is
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sufficient and therefore returns either Feasible or Unknown.
Besides the task set T, a set of task-specific thresholds Θ ∈∏n

i=1[0, Di], and a maximal number of iterations M ∈ Z≥0∪
{∞} is specified. While the analysis is correct for all values of
Θ and M , heuristics to choose Θ are discussed in Section V,
and M = ∞ yields the best result if runtime of the analysis
is not a concern. By collecting the lemmas from the previous

Algorithm 1 Requirement-Based Schedulability Test
Input: - T Task set

- Θ Thresholds ▷ Use heuristics from Section V
- M Maximal number of iterations

Output: Feasible or Unknown

1: Initialize R := R0 ▷ Lemma 3
2: while R is not empty do
3: if Number of iterations exceeds M then
4: return Unknown
5: Select and remove (L,E) with smallest L from R
6: if Equation (10) holds for (L,E) then
7: continue ▷ (L,E) is False
8: if Equation (11) holds for (L,E) then
9: return Unknown ▷ One requirement is True

10: for each icr ∈ I(L) \ I∗(L,Θ) do
11: Add (L′

icr
, E′

icr
) from Equation (13) to R

12: Remove dominated requirements in R by Lemma 10
13: return Feasible ▷ All requirements are False

sections, we can prove the correctness of Algorithm 1 as a
sufficient schedulability test.

Theorem 11 (Correctness of Test). The schedulability test for
preemptive EDF presented in Algorithm 1 is correct.

Proof: It is to be shown that at the beginning and at the
end of each iteration of the while loop

T EDF unschedulable =⇒
∨

(L,E)∈R
T ∗
Θ(L,E) (17)

holds. For the initialization in line 1, this is correct due to a
combination of Lemma 3 and Lemma 5. Hence, when starting
the while loop in line 2, Equation (17) holds. During one itera-
tion, if Equation (10) holds in line 6, then T ∗

Θ(L,E) = False ,
as shown by Lemma 6, and (L,E) can safely be removed
while preserving the correctness of Equation (17). Further-
more, if Equation (11) holds in line 8, then T ∗

Θ(L,E) = True
by Lemma 6, and our test terminates with decision Unknown.
Otherwise, we replace (L,E) using the substitution in line 10,
and remove dominated requirements in line 12, which both
preserve Equation (17) by Lemmas 9 and 10, respectively. This
proves the correctness of Equation (17) after each iteration.
The algorithm returns Feasible if R = ∅, which is only
possible if all requirements are shown to be unsatisfied under
T ∗
Θ , i.e., if the right-hand side of Equation (17) is False.

Time Complexity: In the following we discuss the worst-
case time complexity of the proposed Algorithm 1 distinguish-
ing the case M = ∞ and M < ∞. Case M = ∞: If not con-
trolled by the maximum number of iterations M , the analysis
could potentially continue refining indefinitely, and the worst-
case time complexity is unbounded. However, the algorithm

can only refine indefinitely if line 10 in Algorithm 1 can be
reached infinitely many times. This is a corner case in which
for every requirement set R, there is at least one execution
exceedance requirement, for which Lemma 6 is unable to
make a decision (i.e., both Equations (10) and (11) do not
hold). Please note that in the evaluation in Section VI, we run
Algorithm 1 with M = ∞ and never reach a case where the
algorithm does not terminate naturally. Case M < ∞: If M is
set to a finite number by the designer, then Algorithm 1 runs at
most M iterations. In each iteration, checking Equations (10)
and (11) in lines 6 and 8, respectively, of Algorithm 1 has
a complexity of O(n) (where n is the number of tasks).
Furthermore, one interval is removed from R, and up to
n new execution-exceedance requirements can be generated
in line 10 of Algorithm 1 and added into R. Checking for
dominated requirements in line 12 of Algorithm 1 can be
done by checking whether the newly added n intervals are
dominated by the |R| intervals of R (and vice versa), which
has a time complexity of O(|R|n). Since after M iterations
there are not more than M · n elements in R, the worst-case
time complexity for line 12 of Algorithm 1 is O(M · n2).
Hence, the total worst-case time complexity with given M
and n is O(M2 · n2). We note that this is only a naive upper
bound and that it could potentially be tightened by using
for example more dedicated bounds on |R| or more efficient
implementation to check for dominated requirements in line 12
of Algorithm 1.

IV. DYNAMIC INTERVAL EXTENSION IN EDF ANALYSIS

We discuss the conceptual novelty of our requirement-based
analysis in comparison to the state-of-the-art approaches for
uniprocessor preemptive EDF.3

a) Analysis by Günzel et al. [16]: The work by Günzel
et al. provides two methods. The utilization-based approach
identifies redundant self-suspension to improve the classical
suspension-oblivious test. Here, the analysis is statically cho-
sen to be the suspension-aware busy-interval, and no dynamic
interval extension is used at all. The response time analysis
examines jobs τi(j) of task τi by determining the interference
of higher priority jobs on the interval [rωi,j , r

ω
i,j+Di). Although

it relies on an iterative approach to update the determined
bounds on the worst-case response time, there is no interval
extension involved to make the analysis tighter.

b) Analysis by Aromolo et al. [1]: The approach by
Aromolo et al. translates the self-suspending task set into a
task set with jitter and then applies the results by Spuri [25].
The analysis by Spuri relies on the observation that the worst-
case response time is found in a busy period with a specific
release pattern. Hence, the analysis interval is fixed to the busy
period and all jobs inside this busy period have to be checked.
This is structurally very different to the dynamic interval
extension developed in this work, where additional jobs are

3The test by Dong and Liu [12] and the test by Liu and Anderson [21]
are not discussed because they are dominated when considering uniprocessor
EDF with dynamic self-suspending tasks [16].
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only included in the analysis interval if no schedulability
decision can be derived for the current analysis interval.

c) Classical Demand-Based Analysis [5]: For ordinary
sporadic real-time tasks under preemptive EDF, the schedu-
lability can be tested using the demand bound function (dbf)
proposed by Baruah et al. [5]. The proof of the dbf-based
schedulability test can be sketched as follows: Suppose that a
job of task τk is the first job which misses its deadline under
preemptive EDF at time dk. It can be shown that the EDF
schedule is busy and executes jobs whose absolute deadlines
are ≤ dk from a certain time t0 to dk. Furthermore, it can be
proven that only jobs arriving at or after time t0 are executed
in this interval of time. Therefore, the deadline miss of the
job implies that the demand of the jobs whose arrival time is
at or after t0 and absolute deadline ≤ dk is strictly more than
dk − t0. By contrapositive, for all possible intervals from the
release time to the absolute deadline of any two jobs, it has to
be tested whether the demand (i.e., the accumulated execution
time of the jobs that arrive and are due in this interval) exceeds
the interval length. Informally speaking, the unschedulability
of EDF implies the existence of a time interval in which the
required demand is strictly more than the interval length. The
contrapositive nature mathematically results in a test of all
relevant interval lengths.4 To the best of our knowledge, for
dynamic self-suspending sporadic real-time tasks, there is no
schedulability test for preemptive EDF using similar constructs
like demand bound functions. One potential reason is the
difficulty to clearly define t0 and the demand that must be
safely included when considering self-suspending tasks.

Our requirement-based analysis follows a completely differ-
ent concept. We analyze the requirement that further includes
carry-in jobs to make the system infeasible in an interval and
further intentionally expand the interval if necessary due to the
included carry-in jobs to validate the assertion of infeasibility.
In other words, our requirement-based analysis establishes a
new analysis paradigm, which actively expands its intervals of
interest due to the updated requirements for infeasibility.

V. TUNING OF THE THRESHOLD PARAMETER

While any choice of thresholds Θ = (Θ1, . . . ,Θn) ∈∏n
i=1[0, Di] is safe to be used for the schedulability test

presented in Section III, the choice leaves us with a tuning
parameter for the analysis. In this section, we discuss different
options and heuristics to choose Θ.

Obvious choices for Θ are to choose the minimal values
Θ = Θmin or the maximal values Θ = Θmax , with:

Θmin := (0, . . . , 0) Θmax := (D1, . . . , Dn) (18)

While Θ = Θmin means that no additional carry-in jobs have
to be automatically considered for the testing procedure in
Lemma 6, i.e., the set I∗(L,Θ) is empty in Equation (11), this
does also mean that for each possible carry-in job an interval

4There is also an extension of this general concept to multiprocessor [4].
While their work considers multiple extension points, no dynamic interval
extension is conducted. Similar concepts for fixed-priority scheduling have
been studied as well [20].

extension has to be considered in the substitution process in
Lemma 9 (i.e., the set I(L) \ I∗(L,Θ) is the same as I(L)).
On the other hand, for Θ = Θmax we have I∗(L,Θ) = I(L),
meaning that we always assume every possible carry-in job
executed to its WCET and never perform interval expansion.

To come up with a reasonable choice of Θ, we have to
assess whether the pessimism from substitution outweighs the
pessimism of considering the carry-in job being executed with
its worst-case execution time. Our strategy for the heuristic is
to avoid substitution when such a scenario of full carry-in will
be considered. For a task τi and analysis interval I = [a, b]
this is the case if the suspension plus the interference on the
suspension of the potential carry-in job of τi pushes the start of
the carry-in job beyond time a. We know by definition that the
suspension of τi is bounded by Si. Furthermore, the impact of
interference on the suspension Si can be roughly estimated by
enlarging the suspension by the factor 1/(1−(UT−Ui)), where
Ui = Ci/Ti is the utilization of τi and UT is the utilization
of the task set T, i.e., UT =

∑
τi∈T Ui ≤ 1. Hence, the carry-

in job can start after a if it is released no earlier than at a−
Si/(1−(UT−Ui)). This results in a suspension-aware heuristic
Θsus := (Θsus

1 , . . . ,Θsus
n ) with:

Θsus
i := min (Di, Si/(1− (UT − Ui))) (19)

We note that although Si/(1 − (UT − Ui)) is only a rough
estimation of the suspension and interference of task τi, the
analysis remains valid for any choice of thresholds Θ. Hence,
this estimation is sufficient to derive a safe test, and more
precise estimation might yield even better results.

Another aspect to consider is that jobs with very low
execution time are very cheap to include as carry-in and
hence we would like to favor such behavior. One way to
achieve this is to use a factor (1 + (1 − Ci

maxτj∈T Cj
)n) when

calculating the threshold Θi. Intuitively, the closer the WCET
of task τi is to the maximal WCET, the more we rely
on suspension-aware heuristics, and if the WCET of τi is
very small (i.e., close to zero) we double the threshold. The
parameter n accounts for the fact that the more tasks are in
the set, the more likely is it that the maximal and minimal
WCET deviate a lot, which without regulation would nega-
tively affect tasks with medium WCET. The modification of
Θsus results in the suspension-and-execution-aware heuristic
Θsus,exec := (Θsus,exec

1 , . . . ,Θsus,exec
n ) with:

Θsus,exec
i := min

(
Di,

Si

1− (UT − Ui)
· (1 + (1− Ci

maxτj∈T Cj
)n)

)

(20)

VI. EVALUATION

A. Experimental Setup

In the experiments, the evaluated analysis methods are
applied to randomly generated task sets, under various con-
figurations of the task set generator. The implementation of
the experiments is provided as an artifact [14].

The number of tasks n generated for each task set and the
utilization U of each generated task set are varied within the
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Figure 6. Schedulability ratios obtained with different configuration parameters of the task set generation procedure.

experiments. In the generation of a task set T, the UUniFast
algorithm [6] was applied to generate the utilization Ui for
each task in T, such that U =

∑
τi∈T Ui. The minimum inter-

arrival time Ti of each task τi in T was selected from a
discrete log-uniform distribution in the range [Tmin, Tmax],
where Tmin and Tmax are generation parameters representing
the minimum and the maximum possible values of Ti. The
WCET of τi was then set to Ci = Ui · Ti. The maximum
suspension time Si of τi was selected from a discrete uniform
distribution in the range [(Ti − Ci) · βmin, (Ti − Ci) · βmax],
where βmin ≤ βmax ∈ [0, 1]. The relative deadline Di of τi
was selected from a discrete uniform distribution in the range
[Ci + (Ti − Ci) · α, Ti], where α is a generation parameter.
Note that α ∈ [0, 1] produces constrained deadlines (Di ≤ Ti),
whereas α = 1 generates implicit deadlines (Di = Ti). The
experiments are performed by varying the system utilization U
from 0.1 to 1 in increments of 0.05, and generating 1000 task
sets for each value of U . The analysis approaches were then
applied to each of the generated task sets in order to assess
the schedulability ratio achieved by each method with respect
to a specific system utilization U and a given generation
configuration, that is, the ratio of task sets deemed schedulable
by a specific analysis over the number of task sets generated
for that system utilization point U under that configuration.
The following analysis strategies have been assessed:

• REQ-AN: Our proposed requirement-based analysis for
EDF scheduling, using the schedulability test in Algo-
rithm 1 with M = ∞. We tested the setting of Θ by
adopting Equations (18), (19), and (20). We only report
the results based on Equation (20), as it provided the best
performance in our evaluation.

• SO: Suspension-oblivious analysis for EDF, where sus-

pensions are regarded as additional computation time
(i.e., setting the WCETs of each task τi to Ci + Si and
suspension to 0). For implicit deadlines, it is checked
whether the total (inflated) utilization is less than or equal
to 1 [23]. For constrained deadlines, the response-time
analysis for sporadic tasks under EDF by Spuri [25] is
applied to the task set with inflated WCETs.

• RTA-G: Suspension-aware response-time analysis for
EDF scheduling by Günzel et al. [16] (see Section IV),
compatible with task sets with implicit deadlines only.

• RTA-A: Suspension-aware response-time analysis for
EDF scheduling by Aromolo et al. [1] (see Section IV).

• DM: Suspension-aware response-time analysis for Dead-
line Monotonic (DM) scheduling, which assigns higher
fixed priorities to tasks with smaller relative deadlines.
We consider a combination of the unifying analysis by
Chen et al. [9] (using the three main heuristics of the
unifying analysis framework, namely jitter-based analy-
sis, blocking-based analysis, and the linearized unifying
analysis [9]) and the improved jitter-based analysis by
Günzel et al. [17]. A task set was deemed schedulable if
at least one of these analysis classified it as such.

Note that DM considers fixed-priority scheduling rather than
EDF scheduling. This approach is included in the experimental
comparison to better highlight the performance gain attained
by the requirement-based analysis, which is shown to be the
first EDF analysis for self-suspending tasks that can consis-
tently reach or even surpass the schedulability performance of
the existing fixed-priority analyses for self-suspending tasks.

B. Evaluation Results

Implicit Deadlines: Experimental results for the case of
implicit deadlines (α = 1) are provided in Figures 6(a)-(h).
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Figure 7. Analysis runtimes obtained with different configuration parameters of the task set generation procedure.

The configuration parameters are reported above each plot.
Figure 6(a) reports the results obtained with a limited number
of tasks (n = 5) and moderate suspension lengths (βmin =
0.05, βmax = 0.3), considering periods in the range [Tmin =
100, Tmax = 1000]. As expected, the results show de-
creasing schedulability performance with higher values of the
system utilization for all the evaluated techniques. With this
configuration, the proposed approach (REQ-AN) outperforms
the existing suspension-oblivious (SO) and suspension-aware
(RTA-A, RTA-G) analysis techniques for EDF scheduling by
a large margin, achieving a schedulability performance level
comparable to that of the fixed-priority analysis (DM). When
longer suspensions are considered (Figure 6(b)), REQ-AN
still outperforms the existing techniques for EDF, RTA-A and
RTA-G, albeit by a smaller margin, and performs marginally
worse than DM. With short suspensions (Figure 6(c)) REQ-
AN surpasses the performance of all other evaluated analy-
ses, deeming almost all task sets schedulable, even with a
utilization of 90%. Figure 6(d) evaluates a larger range for
the generated periods (Tmin = 10, Tmax = 1000), showing
similar trends to those in Figure 6(a). Figures 6(e)–(g) report
the schedulability achieved with larger task sets composed of
n = 15 tasks, with (f)–(g) evaluating a larger range for the
generated periods (Tmin = 10, Tmax = 1000). While (e)
and (f) show overall similar trends as (a)–(d), when choosing
consistently very long suspensions (βmin = βmax = 0.6) the
schedulability of REQ-AN becomes slightly worse than RTA-
A and RTA-G (Figure 6(g)), meaning that REQ-AN does not
analytically dominate the existing techniques.

Constrained Deadlines: Experimental results for the case
of constrained deadlines (with α = 0.8) are provided in
Figures 6(i)-(l), considering n = 10 or n = 50 tasks and
periods in the range [Tmin=100, Tmax=1000]. We note that
RTA-G was not evaluated since it is limited to implicit-
deadline tasks. Similar trends as for the implicit-deadline cases
can be observed, with REQ-AN surpassing all other analyses
for EDF.

Analysis Runtimes: While the worst-case time complexity
of our approach is discussed in Section III-F, Figures 7(a)–
(b) report, respectively, the average and maximum analysis
runtimes observed when running the experiment in Figure 6(e)
on a machine equipped with an Intel Core i9-9900 processor
and 128 GB of main memory. The average analysis runtimes
measured for REQ-AN are overall similar to those of DM.
The runtimes of REQ-AN are slightly longer at the utilization

levels at which the schedulability curve in Figure 6(e) declines,
i.e., where determining schedulability is more challenging.
Furthermore, Figures 7(c)–(d) report the average and max-
imum runtimes observed when running the experiment in
Figure 6(h), where the number of tasks n is increased to 50.
We observe that in all evaluated configurations of Figure 7, the
observed runtime for REQ-AN remains quite low. That is, our
schedulability test for one task set runs less than 0.1 seconds
to complete on average and less than 1 second to complete in
the worst case.

Overall: Our experiments demonstrate that the proposed
requirements-based schedulability test REQ-AN outperforms
existing analyses for EDF scheduling by a significant margin
in many cases, and performs only slightly worse than RTA-
A and RTA-G for specific configurations. Furthermore, while
the previous analyses for EDF consistently perform worse
than DM, REQ-AN often reaches or even surpasses the
performance of DM. Our analysis achieves all that with a
runtime comparable to that of DM.

VII. CONCLUSION

We introduce a novel requirement-based schedulability anal-
ysis for dynamic self-suspending tasks under preemptive EDF.
Our approach formalizes execution-exceedance requirements
and iteratively tests and substitutes requirements by enlarging
the analysis interval until a schedulability decision is reached.
In particular, this method is the first to achieve a dynamic
interval extension procedure, surpassing the limitations of
existing fixed-interval analyses. Our evaluation demonstrates
that requirement-based analysis outperforms state-of-the-art
analysis by an often times large margin. Furthermore, it is
the first EDF analysis that surpasses the results for DM found
in the literature, marking a milestone in the analysis of EDF
scheduling for self-suspending tasks.

Future work will extend our schedulability test further
by exploring more sophisticated approaches to choose the
threshold parameters Θ and by considering multiprocessor
scheduling algorithms. Moreover, while our work focuses on
discrete time to simplify the technical arguments for the proof
of Lemma 7, we will investigate how to extend the results to
the continuous time domain.

APPENDIX A
PROOF OF LEMMA 7

Given a task set T such that Equation (11) does not hold,
we define W =

{
τi(j)

∣∣ rωi,j < a−Θi and rωi,j pending at a
}
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Figure 8. Illustration of the constructive proof for Lemma 7 using four tasks with implicit deadlines and Θi = 3 for all i. Priority of jobs is indicated by
small numbers (1 = highest priority). We have W = {τ1(1), τ3(1), τ4(1)} and τ1(1) (marked blue) has lowest priority in W , i.e., τ1(1) = τicr (jcr ). A
schedule with critical task τicr = τ1 is constructed.

as the jobs with carry-in that are executed work-conservingly.
First, we prove a helper lemma to show that W ̸= ∅.
Afterwards, we construct a system evolution ω and schedule
S ∈ σω that satisfy conditions 1)–3) from Lemma 7 by
choosing a task of W and making it periodic without reducing
the workload from carry-in jobs.

Lemma 12. Given ω, S and I = [a, b] such that C1*–C3* and
EC are satisfied, if Equation (11) does not hold, then W ̸= ∅.

Proof: We prove W ̸= ∅ by contradiction. To that end,
we assume that W = ∅. If C1*–C3* and EC are satisfied, we
know that the amount of execution after a of jobs with deadline
≤ b exceeds E. Since W = ∅, no jobs τi(j) with deadline ≤ b
and released before a−Θi are pending at a. Therefore, the total
amount of execution time after a by jobs with deadline ≤ b is
upper bounded by

∑n
i=1

⌊
L+Ti−Di

Ti

⌋
Ci +

∑
i∈I∗(L,Θ) Ci and

exceeds E. However, since Equation (11) does not hold, we
reach a contradiction.

Since T ∗
Θ(L,E) = True by assumption of Lemma 7, we

know that there exists ω, S and I = [a, b] of length L such
that C1*–C3* and EC are satisfied. Then, W ̸= ∅ because
of Lemma 12. We choose τicr (jcr ) to be the lowest-priority
job in W . An exemplary setting is depicted in Figure 8a with
τicr (jcr ) = τ1(1) marked blue. Here, task thresholds are all
set to Θi = 3 for convenience in presentation. Please note that
due to C1*, the job prioritization does not have to follow EDF.
We transform the schedule in three steps:

Step 1: Exploit work-conserving properties. For all jobs
which can be executed non-work-conservingly (i.e., jobs of
τi with release ≥ a − Θi) we move the execution time fully
after b or the end of the carry-in workload by jobs of W .
Further, we remove any suspension at or after a and we remove
all jobs with deadline ≤ a which have lower priority than
τicr (jcr )

5. This step is depicted in Figure 8b. Please note
that the jobs in W cannot be executed non-work-conservingly.
After this conversion, conditions C1*–C3* are still satisfied.
Furthermore, since the schedule of carry-in jobs in W before
a remains unchanged, they still provide the same amount of
carry-in and EC is satisfied.

Step 2: Move job releases after a. For each task τi, all jobs
with release and deadline in I = [a, b] are moved backwards
such that the latest job releases at b − Di, the second-latest

5This might affect the interference on even lower priority carry-in jobs
which are not in W . However, since their execution after a is executed non-
work-conservingly, their interference after a cannot decrease.

job releases at b − Di − Ti and the x-th latest at b − Di −
(x−1)Ti. This transformation is depicted in Figure 8c. In the
illustrated example, only the job τ1(2) is released and has
deadline during I . Its release is moved such that its deadline
aligns with b. Please note that this step does not change the
schedule S because all execution of the moved jobs is already
moved to the right by step 1. Rather, it only modifies the
release times specified in ω. In particular, C1*–C3* and EC
remain satisfied.

Step 3: Move job release of τicr (jcr ). We postpone the
release time rωicr ,jcr of τicr (jcr ) incrementally—one time unit
at a time. That is, we remove any execution or suspension
that has occured for τicr (jcr ) at rωicr ,jcr and replace rωicr ,jcr
by rωicr ,jcr + 1. This modification is depicted in Figure 8d,
where the release of τ1(1) is moved from 0 to 1, and one
execution unit is removed from the execution-suspension-
pattern of τ1(1). This transformation has the following impact:

• The transformation has no impact on all jobs with
higher priority than τicr (jcr ). This includes all jobs in
W \ {τicr (jcr )} since τicr (jcr ) has the lowest priority of
W by definition.

• The transformation might change the schedule of lower-
priority jobs. However, lower-priority jobs are not part of
W since τicr (jcr ) has the lowest priority of W . Hence, if
lower-priority jobs are executed after a, they are executed
non-work-conservingly (with execution moved after b or
after the carry-in by Step 1). Therefore, the execution of
such jobs which occurs after a remains after a.

Due to these properties, the accumulated execution time after
a remains > E, i.e., EC remains satisfied. Furthermore,
C1* and C2* are unaffected by this step. Since there are
no jobs with lower priority than τicr (jcr ) and deadline ≤ a
in the system (due to Step 1), also C3* is satisfied. We
iteratively move forward the release of τicr (jcr ), safely pre-
serving conditions C1*–C3* and EC, until either (A) rωicr ,jcr =

b−
⌈
L+Ticr −Dicr

Ticr

⌉
·Ticr +Ticr −Dicr or (B) rωicr ,jcr ≥ a−Θi. In

the former case (A), the proof is completed. In the latter case
(B), τicr (jcr ) is not in the set W anymore, i.e., the number of
jobs in W is reduced by 1. We can continue choosing the new
lowest-priority job as τicr (jcr ) and starting the transformation
again from Step 1. This process will terminate with case (A)
at some point because we have shown in Lemma 12 that W
cannot become empty.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:



ACKNOWLEDGMENT

This result is part of a project (PropRT) that has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 865170). This work was
partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by
the European Union - NextGenerationEU.

REFERENCES

[1] F. Aromolo, A. Biondi, and G. Nelissen. Response-time analysis for self-
suspending tasks under EDF scheduling. In 34th Euromicro Conference
on Real-Time Systems, ECRTS, pages 13:1–13:18, 2022.

[2] F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo. Event-driven
delay-induced tasks: Model, analysis, and applications. In 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 53–65. IEEE, 2021.

[3] N. C. Audsley and K. Bletsas. Fixed priority timing analysis of real-
time systems with limited parallelism. In 16th Euromicro Conference
on Real-Time Systems (ECRTS), pages 231–238, 2004.

[4] S. Baruah. Techniques for multiprocessor global schedulability analysis.
In Proceedings of the 28th IEEE International Real-Time Systems
Symposium, pages 119–128, 2007.

[5] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In proceedings Real-
Time Systems Symposium (RTSS), pages 182–190, Dec 1990.

[6] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[7] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo. A framework for supporting real-time applications on dynamic
reconfigurable fpgas. In 2016 IEEE Real-Time Systems Symposium
(RTSS), pages 1–12. IEEE, 2016.

[8] B. B. Brandenburg. Multiprocessor real-time locking protocols. In
Handbook of Real-Time Computing, pages 347–446. Springer, 2022.

[9] J.-J. Chen, G. Nelissen, and W.-H. Huang. A unifying response time
analysis framework for dynamic self-suspending tasks. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 61–71, 2016.

[10] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. C. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen. Many suspensions, many problems:
a review of self-suspending tasks in real-time systems. Real Time Syst.,
55(1):144–207, 2019.

[11] U. C. Devi. An improved schedulability test for uniprocessor periodic
task systems. In 15th Euromicro Conference on Real-Time Systems
(ECRTS), pages 23–32, 2003.

[12] Z. Dong and C. Liu. Closing the loop for the selective conversion
approach: A utilization-based test for hard real-time suspending task
systems. In RTSS, pages 339–350. IEEE Computer Society, 2016.

[13] M. Guenzel, M. Sudvarg, M. Deppert, A. Li, N. Zhang, and J.-J.
Chen. Optimal priority assignment for synchronous harmonic tasks
with dynamic self-suspension. In 31st IEEE Real-Time and Embedded
Technology and Applications Symposium, 2025.

[14] M. Günzel, F. Aromolo, A. Biondi, and J.-J. Chen. Requirement-based
analysis of self-suspending tasks under EDF (artifact), 2025. https://doi.
org/10.5281/zenodo.17203679. Zenodo.

[15] M. Günzel and J. Chen. Correspondence article: Counterexample for
suspension-aware schedulability analysis of EDF scheduling. Real Time
Syst., 56(4):490–493, 2020.

[16] M. Günzel, G. von der Brüggen, and J.-J. Chen. Suspension-aware
earliest-deadline-first scheduling analysis. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 39(11):4205–4216, 2020.

[17] M. Günzel, G. von der Brüggen, and J.-J. Chen. Tighter worst-case
response time bounds for jitter-based self-suspension analysis. In 36th
Euromicro Conference on Real-Time Systems, ECRTS, volume 298,
pages 4:1–4:24, 2024.

[18] M. Günzel, G. von der Brüggen, K.-H. Chen, and J.-J. Chen. EDF-
like scheduling for self-suspending real-time tasks. In IEEE Real-Time
Systems Symposium, (RTSS), pages 172–184, 2022.

[19] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority
assignment of real-time tasks with dynamic suspending behavior under
fixed-priority scheduling. In Proceedings of the 52nd Annual Design
Automation Conference (DAC), pages 154:1–154:6, 2015.

[20] J. Lee. Improved schedulability analysis using carry-in limitation for
non-preemptive fixed-priority multiprocessor scheduling. IEEE Trans.
Computers, 66(10):1816–1823, 2017.

[21] C. Liu and J. H. Anderson. Suspension-aware analysis for hard real-time
multiprocessor scheduling. In 25th Euromicro Conference on Real-Time
Systems, ECRTS, pages 271–281, 2013.

[22] C. Liu and J.-J. Chen. Bursty-interference analysis techniques for ana-
lyzing complex real-time task models. In Real-Time Systems Symposium
(RTSS), pages 173–183, 2014.

[23] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[24] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proceedings of the 9th IEEE Real-
Time Systems Symposium (RTSS ’88), pages 259–269, 1988.

[25] M. Spuri. Analysis of deadline scheduled real-time systems. Research
Report RR-2772, INRIA, France, 1996.

[26] Y. Wang, B. Lv, Q. Zhou, J. Li, and T. Tan. Schedulability analysis for
self-suspending tasks under edf-like scheduling. IEEE Transactions on
Computers, 2025.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:


