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Abstract—In the context of automotive systems, the end-to-
end latency of a sequence of tasks (a so-called cause-effect
chain) is a common metric to ensure correct timing behavior.
To control the end-to-end latency, proper task configuration is
crucial. While the literature considers the configuration of task
periods, optimization of task phases to minimize the end-to-end
latency is only sparsely discussed.

In this work, we examine the configuration of task phases to
optimize the end-to-end latency of a cause-effect chain that com-
municates under the Logical Execution Time (LET) paradigm.
To that end, we develop a strategy for cause-effect chains with
harmonic or semi-harmonic periods, which are very common in
industrial applications. We prove that our strategy is optimal in
the sense that it minimizes the end-to-end latency. Furthermore,
our evaluation based on a real-world use-case and on synthetic
automotive benchmarks shows that optimizing task phases can
reduce end-to-end latencies significantly. Our approach takes at
most 49 µs to find the optimal phasing and compute the end-to-
end latency for cause-effect chains with 50 tasks, reducing the
end-to-end latency by 28% in median.

I. INTRODUCTION

To address the growing complexity of embedded systems,
different functions are divided across several communicating
tasks. Each sequence of tasks that is involved in performing a
functionality is called a cause-effect chain. Cause-effect chains
typically start at sensor tasks, followed by processing tasks and
finally terminate at actuator tasks. For a correct functionality,
data must be propagated through the cause-effect chain.

The timing behavior of a cause-effect chain is described by
its end-to-end latency. That is, the maximum time from a cause
to its corresponding effect must be guaranteed to be below
a specific bound. In the literature, two metrics are usually
distinguished when analyzing the end-to-end latency: Maxi-
mum Reaction Time (MRT) and Maximum Data Age (MDA).
Multiple analysis approaches exist in the literature [3]–[5], [7],
[8], [12]–[15], [17], [24], [25], [32], [34]. Recently, it has been
shown that both MRT and MDA are equivalent [18].

End-to-end timing requirements on cause-effect chains are
the primary type of timing requirement for a majority of
industrial applications [2]. During the design, it must be
ensured that the final system results in an end-to-end latency of
each cause-effect chain that does not exceed its latency bound.
In contrast to the scheduler decision and general architecture,
the task configuration (i.e., the period and phase) can often be
modified more easily. Therefore, the task configuration is the
typical target for system optimization.

In the literature two communication mechanisms are pre-
dominantly studied: implicit communication mechanism and
communication under the Logical Execution Time (LET)
paradigm. LET has become increasingly interesting for in-
dustrial domains, such as the automotive domain [1], [19].
The reason is that LET, proposed as part of the GIOTTO
language [20], [22] to abstract the communication from the
timing behavior of tasks, leads to deterministic time and data
flow through cause-effect chains that consist of LET tasks, and
therefore simplifies the integration phase and provides robust-
ness to changes of application functionality and extensions.

For cause-effect chains under the LET model, Paladino
et al. [29] recently proposed an approach to optimize task
priorities to minimize end-to-end latency. While often the as-
sumption is that all tasks are released synchronously, the con-
figuration of task phases represents a target for optimization.
So far, only Martinez et al [28] investigate the selection of task
phases. Their proposed heuristic identifies all non-indentical
combinations of task phases which are subsequently analyzed
to find the setting that leads to the minimal end-to-end latency.
While their optimization approaches allow task periods to be
chosen freely, in many industrial applications, periods are
chosen to be semi-harmonic, i.e., most periods are integer
multiples of each other. For instance, in the automotive do-
main, task periods are often assigned from a fixed set of semi-
harmonic periods, such as {1, 2, 5, 10, 20, 50, 100, 200, 1000},
as described by Kramer et al. [26].

In this work, we develop a strategy to select task phases
for semi-harmonic systems, which is optimal in the sense that
it minimizes the end-to-end latency of a cause-effect chain.
To that end, we identify and examine two types of semi-
harmonic systems which cover systems described in [26]: (i)
In max-harmonic systems, the largest period is divisible by all
other periods.1 (ii) In (2, k)-max-harmonic systems, all periods
divide one of the two largest periods, and the hyperperiod is 2
times the largest period and k times the second largest period.
To find the optimal phasing, this work is the first that exploits
partitioned job chains analytically after their initial exploration
in [18]. Specifically, we provide the following contributions:

• In Section VI, we propose an optimal phasing, to mini-
mize the end-to-end latency of max-harmonic systems.

1This also covers fully harmonic systems, where all periods are divisible
by all smaller periods.
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• In Section VII, we extend our results to (2, k)-max-
harmonic systems, to make them applicable to cause-
effect chains with semi-harmonic automotive periods
such as those presented in [26].

• Section VIII, demonstrates the benefits of the proposed
phasing using an automotive case study. Furthermore,
quantitative evaluations are preformed using synthetic
cause-effect chains with automotive periods as well
as (2, k)-max-harmonic periods. For cause-effect chains
with automotive periods and a length of 50, the optimal
phasing is compute din 49 µs and reduces the median
latency by 28% compared to a synchronous release.

II. RELATED WORK

Several communication paradigms are considered for cause-
effect chains [36]. Depending on the assumed communication
paradigm, different solutions have been proposed. For chains
under implicit communication, Davare et al. [12] optimize
the period configuration of tasks while ensuring that latency
constraints are met. Schlatow et al. [34] consider a mix of
periodic and sporadic tasks. Their approach optimizes the task
phase, while the original deadlines remain unchanged. Klaus
et al. [23] address the execution of multiple, interconnected
cause-effect chains on multicore platforms. They leverage job-
level dependencies [4] to meet the chains’ latency constraints,
while minimizing the resulting synchronization overheads. The
approach by Sinha et al. [35] admits new cause-effect chains
to a system by tuning task periods and the number of input
samples that are consumed by each task instance such that
latency constraints are met. The configuration of synchronous
programs under end-to-end latency constraints is described by
Bourke et al. [11]. Their approach is based on a language
to express execution rates and rate transitions. An ILP then
assigns tasks to scheduling slots and sorts them within each
slot, taking different rate transition operators into account. This
is done such that all chains’ latency constraints are met.

For LET, implementations of the paradigm has been demon-
strated for Real-Time Operating Systems [9] and POSIX-
based systems [6]. And several works address optimizations
for an efficient LET implementation [10], [30], [31]. Resmerita
et al. [33] discuss how to convert legacy applications to
the LET model. And Gemlau et al. [16] extend the LET
paradigm to distributed systems with System-Level LET (SL-
LET). Both, LET and SL-LET are also part of the AUTOSAR
standard [1]. The configuration of cause-effect chains under
LET has been addressed in several works. Wang et al. [37]
address the flexible LET (fLET) model. In contrast to the
LET model, under fLET the LET interval can be shrunk,
which is then used to improving the end-to-end latency. Maia
et al. [27] consider scheduling information which is used
to shorten LET intervals to reduce the end-to-end latency.
Different communication paradigms for cause-effect chains,
including LET, are compared in [36] and the authors propose
a priority assignment that reduces end-to-end latency. Xu et
al. [38] optimize the mapping of AUTOSAR runnables to
LET tasks and tasks to cores to meet the chains’ latency

Table I
NOTATION.

Symbol Description
τ = (Cτ , Tτ , ϕτ ) ∈ T Tasks

H(T′) Hyperperiod of a set T′ of tasks
re(τ(m)), we(τ(m)) Read-event and write-event of job τ(m)

E A cause-effect chain with tasks TE ⊆ T
Wi Warm-up of task τi

Lat(E) End-to-end latency of cause-effect chain E
c⃗m(E), ⃗cm(E) immediate forward and backward job chains of E

pcpm = ( ⃗c p
m, c⃗ p

m+1) m-th p-partitioned job chain

constraints, using reinforcement learning. Bini et al. [8] present
an analysis for chains of LET tasks that is based on algebraic
rings. They show how two communicating LET tasks can
be modelled as a single LET task and optimize cause-effect
chains by inserting additional copy tasks. Paladigno et al. [29]
consider a generalized LET model where output data may be
published at or after the tasks response time. For this setting
constant latency chains are build which enables the exploration
of the design space to assign task periods such that end-to-
end latency is minimized. Most related to the problem we
address in this paper is the work by Martinez et al. [28]. They
develop an approach to compute the end-to-end latency of a
cause-effect chain and propose a heuristic for the assignment
of task phases. The heuristic is applicable to chains with
arbitrary periods and determines the set of non-equivalent
phase assignments which are then individually analyzed to
determine the assignment that results in the minimal end-to-
end latency. In contrast, our work presents a suggested task
phasing for cause-effect chains with max-harmonic and (2, k)-
max-harmonic periods, that is proven to be optimal. Hence
no exploration of different configurations is required. For this
configuration we further show how to efficiently compute the
end-to-end latency.

III. SYSTEM MODEL

In embedded systems, several tasks are deployed that each
fulfills a different dedicated purpose. The set of all tasks is
denoted as T. To allow the embedded system to fulfill complex
assignments, tasks have to interact with each other. That is
achieved by data exchange between tasks. The notation of this
work is summarized in Table I.

Task Model: Each task τ ∈ T can be described by a tuple
(Cτ , Tτ , ϕτ ) ∈ R3. More specifically, Cτ > 0 is the worst-case
execution time (WCET) of τ , Tτ > 0 is the task period, and ϕτ

is the task phase. The task recurrently releases jobs, denoted
by τ(m), m ∈ N= {0, 1, 2, . . .} according to its description.
That is, τ(0) is released at time ϕτ , and subsequent jobs are
released every Tτ time units, i.e., τ(m) is released at time
ϕτ + m · Tτ . Each job τ(m) executes for at most Cτ time
units. We consider implicit-deadline tasks where the deadline
of each job is at the release of the subsequent job, i.e., the
deadline of τ(m) is at ϕτ + (m + 1) · Tτ . The hyperperiod
of a set T′ ⊆ T of tasks is the least common multiple of the
periods H(T′) = LCM({Tτ | τ ∈ T′}).
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Task sets are harmonic if all task periods are integer
multiples of one another. That is, for all τ, τ ′ ∈ T, we have

Tτ

Tτ ′
∈ N or

Tτ ′

Tτ
∈ N. (1)

Harmonic task sets have the benefit that their release pattern
is highly repetitive. As a result, the data propagation through
these tasks is easier to analyze and to control. For the results
of this work, weaker forms of harmonic are already sufficient.
Specifically, in Section VI, tasks of the cause-effect chain
TE ⊆ T are max-harmonic:

Definition 1 (Max-Harmonic). A task set T′ ⊆ T is called
max-harmonic if all periods divide the largest period, i.e.,

maxτ ′∈T′ Tτ ′

Tτ
∈ N (2)

for all τ ∈ T′.

While max-harmonic tasks are essential ingredients in many
industry systems, they are not sufficient to cover for example
the automotive benchmark from [26]. For instance, the tasks
may have periods 1, 2, and 5 which are not max-harmonic.
Therefore, we extend our results to (2, k)-max-harmonic tasks:

Definition 2 ((2, k)-Max-Harmonic). Given a set T′ ⊆ T with
the two largest periods2:

Tmax,1(T′) := max {Tτ | τ ∈ T′} (3)
Tmax,2(T′) := max {Tτ | τ ∈ T′, Tτ ̸= Tmax,1(T′)} (4)

The set T′ is called (2, k)-max-harmonic if the following
conditions hold:

• The two subsets {τ ∈ T′ |Tτ ̸= Tmax,1(T′)} ⊂ T′ and
{τ ∈ T′ |Tτ ̸= Tmax,2(T′)} ⊂ T′ are max-harmonic.

• The hyperperiod H(T′) of the given task set T′ is
H(T′) = 2 · Tmax,1(T′) = k · Tmax,2(T′).

As an example, tasks with periods {1, 2, 5} or {10, 20, 50}
are (2, 5)-max-harmonic. Furthermore, task sets derived by the
automotive benchmark [26] are always either max-harmonic or
(2, 5)-max-harmonic, and therefore studying these two types
is sufficient to apply our results to such task sets.

Task communication: To transmit data between tasks, they
need to communicate. We assume that the communication can
be modeled via shared resources. That is, a task writes data to a
shared resource (overwriting previous data), and the successor
task reads the data from that shared resource. In this work, we
focus on the communication model of the Logical Execution
Time (LET) [22] mechanism, where each job reads data at its
release and writes data at its deadline. More specifically, the
read-event of τ(m) is at time

re(τ(m)) := ϕτ +m · Tτ , (5)

and the write-event of τ(m) is at time

we(τ(m)) := ϕτ + (m+ 1) · Tτ . (6)

2If there is only one period, the task set is max-harmonic. For a task set
to be (2, k)-max-harmonic at least two different periods are required.

τ1: getSpeed

T1 = 10ms

τ2: sendSpeed

T2 = 50ms

τ3: getRadar

T3 = 10ms

τ4: sendRadar

T4 = 50ms

Figure 1. Example cause-effect chain E = (τ1 → τ2 → τ3 → τ4) of an
Autonomous Emergency Braking System (AEBS), with annotated periods.

We assume that communication overheads are negligible,
which is realized by existing LET implementations [6], [9].

Scheduling Model: The results of this work are versatile in
the sense that we do not rely on a specific scheduling model.
For example, typical Fixed-Priority (FP) schedulers like Rate-
Monotonic (RM) and Deadline-Monotonic (DM), or Dynamic-
Priority (DP) schedulers like Earliest-Deadline-First (EDF) can
be applied. To ensure that task communication via LET can
be realized, schedulability of the task set needs to be verified.
This can be done using appropriate schedulability tests for the
underlying scheduling model.

IV. CAUSE-EFFECT CHAINS AND END-TO-END LATENCIES

To achieve complex functionalities, usually several tasks
have to cooperate. A sequence of cooperating tasks is called
a cause-effect chain

E = (τ1 → · · · → τn) (7)

with n ∈ N≥1. Specifically, data that is written by τi is read
by τi+1, for i = 1, . . . , n− 1. The underlying functionality is
achieved when data has been propagated through all n tasks.
For this work, we denote by

TE := {τ1, . . . , τn} ⊆ T (8)

the tasks of T that are part of the cause-effect chain. Further-
more, we assume that τi ̸= τj for all i ̸= j. Figure 1 shows a
cause-effect chain that is part of the Autonomous Emergency
Braking System (AEBS) described in [21]. Sensor values are
sampled with a period of 10ms. Those values are subsequently
processed by a filter task with a period of 50ms that filters
outliers and smooths the sensor noise, before the filtered values
are written.

In the literature, two metrics for the end-to-end latency are
usually considered:

1) Maximum Reaction Time: How long does it take until an
external activity is processed?

2) Maximum Data Age: How old is data used in an actua-
tion?

Recently, it was shown that both metrics are equivalent [18].
Therefore, we do not distinguish those metrics and use the
term end-to-end latency (Lat(E)) universally. Further, it was
shown in [18] that partitioned job chains can be used to
define the end-to-end latency. Partitioned job chains rely on
immediate forward and immediate backward job chains [13],
which are used to track data propagation and data origin
through the system, respectively.
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Definition 3 (Immediate forward job chain). Let m ∈ N and
E = (τ1 → · · · → τn) be a cause-effect chain. The m-th
immediate forward job chain of E is a sequence of jobs

c⃗m(E) = (τ1(j1) → · · · → τn(jn)) (9)

such that j1 = m, and for all i = 1, . . . , n−1
the job τi+1(ji+1) is the earliest job of task τi+1

that reads data after it is written by τi(ji), i.e., we
have ji+1 = min {ξ ∈ N |we(τi(ji)) ≤ re(τi+1(ξ))} =
min

{
ξ ∈ N

∣∣ϕτi + (ji + 1) · Tτi ≤ ϕτi+1
+ ξ · Tτi+1

}
.

Definition 4 (Immediate backward job chain). Let m ∈ N
and E = (τ1 → · · · → τn) be a cause-effect chain. The m-th
immediate backward job chain of E is a sequence of jobs

⃗cm(E) = (τ1(j1) → · · · → τn(jn)) (10)

such that jn = m, and for all i = 2, . . . , n the job τi−1(ji−1)
is the latest job of τi−1 that writes data before it is read by
τi(ji), i.e., ji−1 = max {ξ ∈ N |we(τi−1(ξ)) ≤ re(τi(ji))} =
max

{
ξ ∈ N

∣∣ϕτi−1
+ (ξ + 1) · Tτi−1

≤ ϕτi + ji · Tτi

}
.

We note that for some small m the immediate
backward job chain may not always exist in case
{ξ ∈ N |we(τi−1(ξ)) ≤ re(τi(ji))} = ∅. Intuitively, this
means that the job τi(ji) has no data to process because task
τi−1 has not been executed yet. Such a scenario can only
occur during the initial startup of the system. However, typical
analyses are more interested in the system behavior during
runtime when the system is already properly warmed up. We
follow [18] to determine the warm-up phase of each job.

Definition 5 (Warm-up). Consider the cause-effect chain E =
(τ1 → · · · → τn). Let W ∈ N be the smallest integer such
that ⃗cW (E) = (τ1(W1) → · · · → τn(Wn)) exists, i.e., ⃗cW (E)
is the first immediate backward job chain. We say that task τi
is warmed up with respect to E at job τi(Wi).

Intuitively, a task is warmed up with the first job that
generates data that propagates to the end of the cause-effect
chain without being overwritten. As shown in [18], to defined
the end-to-end latency we can choose any task τp and track
both data origin and data progess starting from τp. This is
formalized using partitioned job chains.

Definition 6 (Partitioned job chain.). Let m ∈ N, E = (τ1 →
· · · → τn), and p ∈ {1, . . . , n}. The m-th p-partitioned job
chain of E is a tuple

pcpm = ( ⃗c p
m, c⃗ p

m+1) (11)

of an immediate backward and an immediate forward job
chain. More specifically, ⃗c p

m is the m-th immediate backward
job chain of (τ1 → · · · → τp), i.e.,

⃗c p
m := ⃗cm((τ1 → · · · → τp)) (12)

and c⃗ p
m+1 is the (m + 1)-th immediate forward job chain of

(τp → · · · → τn), i.e.,

c⃗ p
m+1 := c⃗m+1((τp → · · · → τn)). (13)

Figure 2. A cause-effect chain E = (τ1 → τ2 → τ3 → τ4) with LET
communication semantics. Job releases are marked with black upward arrows.
The partitioned job chain pc23 = ( ⃗c 2

3 , c⃗
2
4 ) is marked in red. Red backward

arrows mark ⃗c 2
3 and red forward arrows mark c⃗ 2

4 . The first immediate
backward job chain that exists, ⃗cW (E), is shown in green, and the warm-up
phase is indicated by jobs with hatched filling.

We note that the pcpm = ( ⃗c p
m, c⃗ p

m+1) exists if and only if its
first entry ⃗c p

m exists. Hence, the pcpm exists for all m ≥ Wp.
The length of pcpm = ( ⃗c p

m, c⃗ p
m+1) with ⃗c p

m = (τ1(j1) → · · · →
τp(jp)) and c⃗ p

m+1 = (τp(j
′
p) → · · · → τn(j

′
n)) is defined as

ℓ(pcpm) := we(τn(j
′
n))− re(τ1(j1)) (14)

= (j′n + 1) · Tτn + ϕτn − (j1 · Tτ1 + ϕτ1). (15)

An example of a partitioned job chain of tasks with periods
Tτ1 = Tτ3 = 6 and Tτ2 = Tτ4 = 4 is shown in Figure 2.

Definition 7 (End-to-end latency). The end-to-end latency of
a cause-effect chain E = (τ1 → · · · → τn) is the maximal
length of p-partitioned job chains after the warm-up for any
p ∈ {1, . . . , n}. That is,

Lat(E) = sup
m≥Wp

ℓ(pcpm). (16)

It is shown in [18] that the end-to-end latency is independent
of the choice of p, i.e., any p ∈ {1, . . . , n} can be chosen.

Furthermore, for periodic tasks under LET, the read- and
write-events repeat every hyperperiod of TE , i.e., every
H(TE) = LCM({Tτ1 , . . . , Tτn}). Therefore, the partitioned
job chains repeat every hyperperiod and only finitely many
partitioned job chains need to be considered for the computa-
tion of the end-to-end latency.

Lemma 8. Let µ(p) := H(TE)
Tτp

be the number of periods of
τp that fit into one hyperperiod of TE . We have

ℓ(pcpm) ≥ ℓ
(
pcpm+µ(p)

)
(17)

for all m ≥ Wp. In particular,

Lat(E) = max
(
ℓ
(
pcpWp

)
, . . . , ℓ

(
pcpWp+µ(p)−1

))
(18)

holds.

Proof. We first prove (17) and then derive (18) from that.
Proof of (17): We consider partitioned job chains pcpm =

( ⃗c p
m, c⃗ p

m+1) and pcpm+µ(p) = ( ⃗c p
m+µ(p), c⃗

p
m+µ(p)+1) with m ≥

Wp. Furthermore, we denote the jobs of ⃗c p
m and c⃗ p

m+1 as:

⃗c p
m = (τ1(j1) → · · · → τp(jp)) (19)

c⃗ p
m+1 = (τp(j

′
p) → · · · → τn(j

′
n)) (20)
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We observe that by shifting ⃗c p
m by H(TE) time units, we

obtain another job chain jc = (τ1(j1+µ(1)) → · · · → τp(jp+
µ(p))). Since jc has the same last job as ⃗c p

m+µ(p), and ⃗c p
m+µ(p)

is immediate backward, we obtain

ℓ( ⃗c p
m+µ(p)) ≤ ℓ(jc) = ℓ( ⃗c p

m). (21)

Similarly, by shifting c⃗ p
m+1 by H(TE) time units, we obtain

another job chain jc′ = (τp(j
′
p + µ(p)) → · · · → τn(j

′
n +

µ(n))). Since jc′ has the same first job as c⃗ p
m+µ(p)+1, and

c⃗ p
m+µ(p)+1 is immediate forward, we obtain

ℓ(c⃗ p
m+µ(p)+1) ≤ ℓ(jc′) = ℓ(c⃗ p

m+1). (22)

Since ℓ(pcpm) = we(τn(j
′
n))− re(τ1(j1)), we have ℓ(pcpm) =

ℓ( ⃗c p
m) + ℓ(c⃗ p

m+1). Combining (21) and (22), we obtain
ℓ(pcpm) = ℓ( ⃗c p

m) + ℓ(c⃗ p
m+1) ≥ ℓ( ⃗c p

m+µ(p)) + ℓ(c⃗ p
m+µ(p)+1) =

ℓ(pcpm+µ(p)) This proves Equation (17).
Proof of (18): This is a monotonicity argument. Especially,

rewriting Equation (16) gives that Lat(E) equals

sup
k∈Z≥0

max
(
ℓ(pcpWp+k·µ(p)), . . . , ℓ(pc

p
Wp+µ(p)−1+k·µ(p))

)
.

(23)
Due to the result formulated in Equation (17), the value of
max

(
ℓ(pcpWp+k·µ(p)), . . . , ℓ(pc

p
Wp+µ(p)−1+k·µ(p))

)
is mono-

tonically decreasing with respect to k. Therefore, the maximal
value is achieved with k = 0, i.e., Equation (18) holds.

V. MOTIVATING EXAMPLE

In this section, we demonstrate the impact of task phasing
on the end-to-end latency. To that end, we consider the
cause-effect chain of the AEBS use-case [21] introduced in
Section IV by Figure 1, i.e., E = (τ1 → τ2 → τ3 → τ4)
with Tτ1 = 10, Tτ2 = 50, Tτ3 = 10, Tτ4 = 50. The
typical approach of making the task set synchronous, i.e.,
ϕτ1 = ϕτ2 = ϕτ3 = ϕτ4 = 0 leads to the schedule depicted in
Figure 3a.

The longest 1-partitioned job chain after the warm-up is pc14,
marked red. Therefore, the end-to-end latency is ℓ(pc14) = 210
for the synchronous case.

We observe in Figure 3a, that after the write-event of the
first job of τ1, the next read-event of task τ2 is 50 time units
later. Therefore, by moving the phase of τ2 from 0 to 10,
we ensure that the data is read by task τ2 immediately after
it was written by τ1. Similarly, between task τ3 and τ4 a
relative phasing of additional 10 time units is required that
τ4 reads the data immediately after it is written. Specifically,
Figure 3b depicts the case with modified phases: ϕτ1 =
0, ϕτ2 = 10, ϕτ3 = 0, ϕτ4 = 20. The longest 1-partitioned
job chain after the warm-up has a length of ℓ(pc10) = 170.
Therefore, the end-to-end latency for the case with modified
phases is Lat(E) = 170. We conclude that a modification of
the phases improves the end-to-end latency by 19%.

(a) Synchronous: Lat(E) = 210.

(b) Optimized phasing: Lat(E) = 170.

Figure 3. Motivating example of the AEBS use-case. Marked in red is the
longest 1-partitioned job chain. Changing the phase of τ2 from 0 to 10 and
the phase of τ4 from 0 to 20, improves the end-to-end latency by 19%.

VI. OPTIMAL TASK PHASING FOR HARMONIC AND
MAX-HARMONIC SYSTEMS

As the motivating example demonstrates, there is a high
potential of reducing the end-to-end latency by modifying
the task phases. In this section, we consider a cause-effect
chain E = (τ1 → · · · → τn), and explore optimal task
phasing that minimizes Lat(E) if the periods of tasks in
the chain are harmonic. Actually, the results of this section
work even for a larger class of task sets, in which the tasks
TE = {τ1, . . . , τn} of the cause-effect chain E are max-
harmonic (cf. Definition 1). Naturally, if T is harmonic, then
T and all its subsets T′ ⊆ T, including TE , are max-harmonic.

Lemma 9. Let τp be the task with the largest period of E,
i.e., Tτp = maxi=1,...,n Tτi . If TE is max-harmonic, then

Lat(E) = ℓ(pcpWp
) (24)

holds.

Proof. Since TE is max-harmonic, we have a hyperperiod of
H(TE) = Tτp . Applying Lemma 8 proves the lemma.

The previous lemma indicates that, to minimize the end-to-
end latency, it is sufficient to choose phases which minimize
the first partitioned job chain. We achieve that, by ensuring that
there is no slack between write- and read-events of subsequent
jobs of pcpWp

. In particular, we consider the following phasing.

Definition 10 (Suggested Phasing for Max-Harmonic). For
E = (τ1 → · · · → τn), we define a task phasing

ϕMH
τi =

i−1∑
ξ=1

Tτξ , (25)

for all τi ∈ TE .

The phasing is illustrated in Figure 4. Indeed, we observe
that the read- and write-event of subsequent jobs coincide for
the first p-partitioned job chain, which minimizes the length of
that partitioned job chain. Specifically, the end-to-end latency
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Figure 4. Phase enforcement. The first 3-partitioned job chain for E = (τ1 →
τ2 → · · · → τ5) is marked in red.

under the suggested task phasing for max-harmonic task sets
is as follows.

Theorem 11 (End-to-end latency with suggested phasing). If
TE is max-harmonic and the task offsets are chosen as ϕτi =
ϕMH
τi , then

Lat(E) =
n∑

i=1

Tτi + max
i=1,...,n

Tτi . (26)

Proof. Let p ∈ {1, . . . , n} such that τp is the task with the
maximal period, i.e., Tτp = maxi=1,...,n Tτi . We observe
that by the chosen offsets, we(τi(0)) = re(τi+1(0)) for all
i = 1, . . . , n − 1. As a result, the immediate backward
job chain ⃗c0(E) = (τ1(0) → · · · → τn(0)) exists, and
W1= . . .=Wn=0. By Lemma 9, the end-to-end latency is

Lat(E) = ℓ(pcpWp
) = ℓ(pcp0). (27)

In the following we investigate pcp0 = ( ⃗c p
0 , c⃗

p
1 ), where the

backward chain is denoted by ⃗c p
0 = (τ1(j1) → · · · → τp(jp))

and the forward chain is c⃗ p
1 = (τp(j

′
p) → · · · → τn(j

′
n)).

Since ⃗c p
0 is an immediate backward job chain with last

job τp(0) and (τ1(W1) → · · · → τp(Wp)) is an immediate
backward job chain with last job τp(Wp) = τp(0) as well,
they both coincide. Hence, for all i = 1, . . . , p, the index ji
must be the same as Wi which is 0.

Next we investigate the immediate forward job chain c⃗ p
1 =

(τp(j
′
p) → · · · → τn(j

′
n)). We show by induction that

j′i =
Tτp

Tτi

(28)

for all i = p, p+1, . . . , n.

Proof of Equation (28):
Base case (i = p): By definition, j′i = 1 =

Tτp

Tτi
. Hence,

Equation (28) holds for i = p.
Induction step (i 7→ i + 1): By the induction hypothesis,
j′i =

Tτp

Tτi
. Therefore, we(τi(j′i)) = ϕτi +

(
Tτp

Tτi
+ 1
)
· Tτi =

ϕτi + Tτp + Tτi . Since ϕτi = ϕMH
τi =

∑i−1
ξ=1 Tτξ , we obtain

we(τi(j
′
i)) =

∑i−1
ξ=1 Tτξ + Tτp + Tτi =

∑i
ξ=1 Tτξ + Tτp =∑i

ξ=1 Tτξ +
Tτp

Tτi+1
· Tτi+1

= ϕτi+1
+

Tτp

Tτi+1
· Tτi+1

This is,

by definition, the same as re
(
τi+1

(
Tτp

Tτi+1

))
, i.e., we obtain

we(τi(j
′
i)) = re

(
τi+1

(
Tτp

Tτi+1

))
. Since c⃗ p

1 is an immediate
forward job chain, we know that j′i+1 is the minimal number
in N with we(τi(j

′
i)) ≤ re(τi+1(j

′
i+1)). Hence, j′i+1 =

Tτp

Tτi+1
.

Please note that
Tτp

Tτi+1
∈ N since the task periods are max-

harmonic. Equation (28)

We conclude that ℓ(pcp0) = we(τn(j
′
n)) − re(τ1(j1)) =

we
(
τn

(
Tτp

Tτn

))
− re(τ1(0)) = ϕτn +

(
Tτp

Tτn
+ 1
)
·Tτn −ϕτ1 =∑n−1

ξ=1 Tτξ + Tτp + Tτn − 0 =
∑n

ξ=1 Tτξ + Tτp . Hence, the
latency is Lat(E) = ℓ(pcp0) =

∑n
i=1 Tτi + Tτp =

∑n
i=1 Tτi +

maxi=1,...,n Tτi .

In the following, we show that the suggested phasing is
optimal. To that end, we formulate a general lower bound on
the end-to-end latency.

Lemma 12 (Lower Bound). If TE is max-harmonic, then
the end-to-end latency of E under any task phasing is lower
bounded by

Lat(E) ≥
n∑

i=1

Tτi + max
i=1,...,n

Tτi . (29)

Proof. Let p ∈ {1, . . . , n} such that τp is the task with
the maximal period, i.e., Tτp = maxi=1,...,n Tτi . Consider
any p-partitioned job chain pcpm = ( ⃗c p

m, c⃗ p
m+1). We denote

the immediate backward job chain by ⃗c p
m = (τ1(j1) →

· · · → τp(jp)) and the immediate forward job chain by
c⃗ p
m+1 = (τp(j

′
p) → · · · → τn(j

′
n)). The length of pcpm can

be expressed by:

ℓ(pcpm) = we(τn(j
′
n))− re(τ1(j1)) (30)

= we(τn(j
′
n))− we(τp(j

′
p)) (31)

+we(τp(j
′
p))− re(τp(jp)) (32)

+ re(τp(jp))− re(τ1(j1)) (33)

In the following we investigate each summand (Equa-
tions (31), (32), (33)) individually.

Summand of Equation (31): This summand can be written
as the sum (31) =

∑n
i=p+1(we(τi(j

′
i)) − we(τi−1(j

′
i−1))).

We use the property we(τi−1(j
′
i−1)) ≤ re(τi(j

′
i)) of im-

mediate forward job chains to bound (31) from below by
(31) ≥

∑n
i=p+1(we(τi(j

′
i)) − re(τi(j

′
i))). Since we(τi(j

′
i)) −

re(τi(j
′
i)) = Tτi , we obtain (31) ≥

∑n
i=p+1 Tτi .

Summand of Equation (32): By definition, jp = m and
j′p = m + 1. Therefore, (32) = (ϕτp + (m + 1 + 1) · Tτp) −
(ϕτp +m · Tτp) = 2 · Tτp .

Summand of Equation (33): This summand is (33) =∑p−1
i=1 (re(τi+1(ji+1)) − re(τi(ji))). We use the property

re(τi+1(ji+1)) ≥ we(τi(ji)) of immediate backward job
chains to achieve (33) ≥

∑p−1
i=1 (we(τi(ji)) − re(τi(ji))) =∑p−1

i=1 Tτi .

We conclude ℓ(pcpm) = (31) + (32) + (33) ≥
∑n

i=1 Tτi +
Tτp =

∑n
i=1 Tτi + maxi=1,...,n Tτi . Hence, Lat(E) =

supm≥Wp
ℓ(pcpm) ≥

∑n
i=1 Tτi + maxi=1,...,n Tτi under any

task phasing.

Since the lower bound coincides with the end-to-end latency
for max-harmonic task sets with our suggested phasing, our
phasing is optimal.
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Theorem 13 (Optimality). If TE is max-harmonic, then the
task phasing presented in Equation (25) minimizes the end-
to-end latency. In particular, the suggested phasing minimizes
the end-to-end latency in harmonic task sets.

Proof. Since the end-to-end latency under our proposed phas-
ing (Theorem 11) coincides with the lower bound under any
phasing (Lemma 12), our task phasing is optimal.

VII. OPTIMAL TASK PHASING FOR
(2, k)-MAX-HARMONIC SYSTEMS

In industrial applications, task periods are chosen such that
the systems are almost harmonic (also called semi-harmonic).
Especially in the automotive domain, it is common to select
task periods such that

Tτ ∈ TAut := {1, 2, 5, 10, 20, 50, 100, 200, 1000} (34)

for all τ ∈ T, as specified by real-world automotive bench-
marks [26]. While for cause-effect chains E = (τ1 → · · · →
τn) with Tτi ∈ TAut for all i = 1, . . . , n, the tasks TE are
often max-harmonic, for which optimal phasing is determined
in Section VI, the following two cases are not covered:

(i) The two largest periods of TE are 2 and 5.
(ii) The two largest periods of TE are 20 and 50.

In this section, we extend our results to (2, k)-max-harmonic
task sets (cf. Definition 2) to cover (i) and (ii), and therefore
allow the application of our results to more realistic cases.
For the sake of readability, in this section we refer to the two
largest periods of TE as

TE
max ,1 := Tmax,1(TE) and TE

max ,2 := Tmax,2(TE). (35)

While it is sufficient to only consider one partitioned job
chain pcpWp

to calculate the end-to-end latency if TE is
max-harmonic, as proven in Lemma 9, if TE is (2, k)-max-
harmonic, we need to consider two partitioned job chains
instead, namely pcpWp

and pcpWp+1.

Lemma 14. Let τp be a task with the largest period of E,
i.e., Tτp = TE

max ,1. If TE is (2, k)-max-harmonic, then

Lat(E) = max
(
ℓ(pcpWp

), ℓ(pcpWp+1)
)

(36)

is the end-to-end latency.

Proof. By definition, if TE is (2, k)-max-harmonic, then the
hyperperiod H(TE) = LCM({Tτ1 , . . . , Tτn}) of tasks of TE

is two times the largest period, i.e., H(TE) = 2 · TE
max ,1.

Applying Lemma 8 proves the result of this lemma.

Building upon the results of the previous lemma, to mini-
mize the end-to-end latency, we need to minimize the max-
imal length of both pcpWp

and pcpWp+1. However, while it
is possible to achieve either pcpWp

=
∑n

i=1 Tτi + TE
max ,1

or pcpWp+1 =
∑n

i=1 Tτi + TE
max ,1, it is not possible to

achieve both simultaneously, as demonstrated by the following
example, depicted in Figure 5.
Example 15. We consider a cause-effect chain E = (τ1 →
τ2 → τ3 → τ4) with four tasks. The tasks have periods Tτ1 =

Gap

(a) Minimize ℓ(pc10).

Gap

(b) Minimize ℓ(pc11).

Figure 5. Example of four tasks demonstrating that not both ℓ(pc10) and
ℓ(pc11) can be minimized simultaneously. The partitioned job chain pc10 is
marked in red and pc11 is marked in blue. The jobs belonging to both are half
red and half blue. The resulting gaps are marked in the figure.

5, Tτ2 = 1, Tτ3 = 2 and Tτ4 = 1. Therefore, TE is (2, k)-max-
harmonic. The task τ1 has the largest period. Therefore, we
can choose p = 1 in Lemma 14. The first immediate backward
job chain is ⃗c0(E) = (τ1(0) → τ2(1) → τ3(0) → τ4(0)) in
Figure 5a and ⃗c0(E) = (τ1(0) → τ2(2) → τ3(1) → τ4(0))
in Figure 5b. Therefore, in both cases Wp = W1 = 0
(cf. Definition 5). By Lemma 14 the end-to-end latency is
determined by the 1-partitioned job chains pc10 and pc11 marked
in red and blue, respectively, in Figure 5. If we minimize
ℓ(pc10) by aligning write-events and read-events of subsequent
jobs, we obtain a gap of one time unit in pc11, as depicted in
Figure 5a. Specifically, for pc11, the write-event of task τ2 at
16 and the read-event of τ3 at 17 do not align. Conversely, if
we minimize ℓ(pc11), there is a gap of one time unit in pc10, as
depicted in Figure 5b.

The preceding example shows that gaps must be introduced
either for pcpWp

or pcpWp+1. Before discussing the reason for
those gaps, we first formalize the definition of gaps and their
impact on the length on pcpWp

and pcpWp+1.

Definition 16 (Gaps). Let p be the lowest index with Tτp =
TE
max ,1. Given the first p-partitioned job chain after the warm-

up pcpWp
= ( ⃗c p

Wp
, c⃗ p

Wp+1) with

⃗c p
Wp

= (τ1(j
′
1) → · · · → τp(j

′
p)) (37)

c⃗ p
Wp+1 = (τp(jp) → · · · → τn(jn)), (38)

then we denote the gaps between write-events and read-events
for pcpWp

as γ1, . . . , γn−1 with:

γi :=

{
re(τi+1(j

′
i+1))− we(τi(j

′
i)) , if i < p

re(τi+1(ji+1))− we(τi(ji)) , if i ≥ p
(39)

Furthermore, given the second p-partitioned job chain after the
warm-up pcpWp+1 = ( ⃗c p

Wp+1, c⃗
p
Wp+2) with

⃗c p
Wp+1 = (τ1(j̃

′
1) → · · · → τp(j̃

′
p)) (40)

c⃗ p
Wp+2 = (τp(j̃p) → · · · → τn(j̃n)), (41)
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then we denote the gaps for pcpWp+1 as γ̃1, . . . , γ̃n−1 with:

γ̃i :=

{
re(τi+1(j̃

′
i+1))− we(τi(j̃

′
i)) , if i < p

re(τi+1(j̃i+1))− we(τi(j̃i)) , if i ≥ p
(42)

In Example 15, the gaps are γ1 = γ2 = γ3 = γ̃1 = γ̃3 = 0
and γ̃2 = 1 for Figure 5a, and γ1 = γ3 = γ̃1 = γ̃2 = γ̃3 = 0
and γ2 = 1 for Figure 5b. Given the gaps of pcpWp

and pcpWp+1,
then their lengths can be derived as follows.

Lemma 17. The length of a p-partitioned job chain is the sum
of
∑n

i=1 Tτi +Tτp and its gaps. Specifically, with p, pcpWp
and

pcpWp+1 as in Definition 16,

ℓ(pcpWp
) =

n∑
i=1

Tτi + Tτp +
n−1∑
i=1

γi (43)

ℓ(pcpWp+1) =
n∑

i=1

Tτi + Tτp +
n−1∑
i=1

γ̃i (44)

holds.

Proof. This is achieved by distributing the whole interval from
read-event of the first job to write-event of the last job of the
partitioned job chain into the parts where data is processed by
the chain, i.e., read by a task but not written yet, and where it
is waiting to be processed, i.e., written by a task but not read
by the subsequent task yet. Formally,

ℓ(pcpWp
) = we(τn(jn))− re(τ1(j

′
1)) (45)

= A+B (46)

where A is defined as
∑p

i=1(we(τi(j
′
i)) − re(τi(j

′
i))) +∑n

i=p(we(τi(ji)) − re(τi(ji))) and B is defined as∑p−1
i=1 (re(τi+1(j

′
i+1))−we(τi(j

′
i)))+

∑n−1
i=p (re(τi+1(ji+1))−

we(τi(ji))). By definition, A =
∑n

i=1 Tτi + Tτp and B =∑n−1
i=1 γi. This proves Equation (43). The proof of Equa-

tion (44) is analogous.

In the following, we identify the reason for gaps. To that
end, we reconsider the example from Figure 5. We observe
that the jobs of τ2 which are part of pc10 and pc11 (marked in
red and blue) are released 5 time units apart. However, the
release of jobs of τ3 can only be multiples of 2 time units
apart. Therefore, a gap must be introduced either for pc11 or
for pc12. We generalize this observation in two steps. First, we
show that a gap must be introduced whenever the distance
between the relevant jobs changes (Lemma 19), and second,
we derive bounds on the sum of gaps by determining how often
the distance between the relevant jobs changes (Lemmas 20
and 21). For a proper formalization, we introduce the notion
of distance between partitioned job chains.

Definition 18 (Distance). Let p, pcpWp
and pcpWp+1 be as in

Definition 16. We define ∆1, . . . ,∆n by:

∆i :=

{
re(τi(j̃

′
i))− re(τi(j

′
i)) , if i < p

re(τi(j̃i))− re(τi(ji)) , if i ≥ p
(47)

Furthermore, we say that ∆i is the distance between pcpWp
and

pcpWp+1 at task τi.

Referring to Example 15, the distance between pcpWp
and

pcpWp+1 is ∆1 = ∆2 = 5 and ∆3 = ∆4 = 6 for Figure 5a and
∆1 = ∆2 = 5 and ∆3 = ∆4 = 4 for Figure 5b. A gap γi is
introduced, whenever the distance changes, i.e., ∆i ̸= ∆i+1.

Lemma 19. If TE is (2, k)-max-harmonic, and ∆i ̸= ∆i+1

for some i ∈ {1, . . . , n}, then γi ≥ ΓE or γ̃i ≥ ΓE with

ΓE := TE
max ,1 mod TE

max ,2. (48)

Proof. The proof is divided in two parts: first, we prove that
for all i ∈ {1, . . . , n}, the distance ∆i is an integer multiple
of TE

max ,1 or TE
max ,2, i.e.,

TE
max ,1 | ∆i or TE

max ,2 | ∆i, (49)

and second, we utilize Equation (49) to prove Equation (48).
Proof of Equation (49): Let I ⊆ {1, . . . , n} be the set

of indices i such that Equation (49) does not hold. We want
to show that I = ∅. First, we observe that p /∈ I because
∆p = TE

max ,1 by definition. Second, we show that all i < p
are not in I by contradiction. To that end, we assume I ∩
{1, . . . , p− 1} ̸= ∅, and let i be the largest element of I ∩
{1, . . . , p− 1}. We will lead different cases to contradiction.

(i) Tτi | ∆i+1. First, we observe that we have ∆i+1 =
re(τi+1(j̃

′
i+1)) − re(τi+1(j

′
i+1)), which follows directly

from Definition 18 if i ≤ p − 2, or is because of
∆i+1 = re(τp(j̃p))−re(τp(jp)) = re(τp(j̃

′
p))−re(τp(j

′
p))

if i = p − 1. Since τi(j
′
i) is (by definition) the latest

job of τi with write-event no later than re(τi+1(j
′
i+1)),

the job τi(j
′
i +

∆i+1

Tτi
) is the latest job of τi with write-

event no later than re(τi+1(j̃
′
i+1)), i.e., j̃′i = j′i +

∆i+1

Tτi
.

Therefore, we obtain ∆i = re(τi(j̃
′
i)) − re(τi(j

′
i)) =

τi(j
′
i+

∆i+1

Tτi
)− re(τi(j

′
i)) = ∆i+1. Hence, also i+1 ∈ I

which contradicts the maximality of i.
(ii) Tτi ∤ ∆i+1 and TE

max ,1 | ∆i+1. We know that TE

is (2, k)-max-harmonic. Therefore, Tτi | TE
max ,1 for all

Tτi ̸= TE
max ,2. If Tτi | TE

max ,1, then Tτi | TE
max ,1 | ∆i+1

which contradicts Tτi ∤ ∆i+1. Therefore, Tτi = TE
max ,2

must hold. Since ∆i is by definition an integer multiple
of Tτi , we have TE

max ,2 | ∆i and Equation (49) holds for
i which contradicts i ∈ I .

(iii) Tτi ∤ ∆i+1 and TE
max ,2 | ∆i+1. The proof is analogous

to (ii). That is, either Tτi | TE
max ,2 or Tτi = TE

max ,1 must
hold, because TE is (2, k)-max-harmonic. However, Tτi |
TE
max ,2 contradicts Tτi ∤ ∆i+1 because TE

max ,2 | ∆i+1.
Furthermore, Tτi = TE

max ,1 contradicts i ∈ I .
Analogously, we show that I ∩ {p+ 1, . . . , n} = ∅ by
contradiction. To that end, we let i be the smallest element
of I ∩{p+ 1, . . . , n} and distinguish the cases (i) Tτi | ∆i−1,
(ii) Tτi ∤ ∆i−1 and TE

max ,1 | ∆i−1, and (iii) Tτi ∤ ∆i−1 and
TE
max ,2 | ∆i−1. We conclude I = ∅, i.e., Equation (49) holds.
Proof of Equation (48): First, we prove that

γ̃i = γi +∆i+1 −∆i. (50)
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For i < p, we obtain γ̃i
(42)
= re(τi+1(j̃

′
i+1))−Tτi − re(τi(j̃

′
i))

(47)
=

∆i+1+re(τi+1(j
′
i+1))−Tτi−∆i−re(τi(j

′
i))

(39)
= γi+∆i+1−∆i.

The case i ≥ p is analogous.
Due to Equation (50), we know that γ̃i ≥ ∆i+1 −∆i and

γi ≥ ∆i −∆i+1. Therefore, max(γi, γ̃i) ≥ |∆i+1 −∆i|, and
it is left to show that |∆i+1 −∆i| ≥ ΓE . Since Equation (49)
holds, it is sufficient to distinguish the following four cases:

(i) TE
max ,1 | ∆i and TE

max ,1 | ∆i+1. Since ∆i ̸= ∆i+1,
|∆i+1 −∆i| ≥ TE

max ,1, which is ≥ ΓE .
(ii) TE

max ,2 | ∆i and TE
max ,2 | ∆i+1. Since ∆i ̸= ∆i+1,

|∆i+1 −∆i| ≥ TE
max ,2, which is ≥ ΓE .

(iii) TE
max ,1 | ∆i and TE

max ,2 | ∆i+1. Since ∆i+1 ̸= ∆i, there
exist a, b ∈ Z such that |a · TE

max ,1 − b · TE
max ,2| > 0 and

|∆i+1−∆i| = |a·TE
max ,1−b·TE

max ,2|. Since we know that
TE
max ,1 = k

2 ·T
E
max ,2, we obtain |a ·TE

max ,1−b ·TE
max ,2| =

|(a· k2−b)·TE
max ,2|. If 2 | a, then |(a· k2−b)·TE

max ,2| (under
the assumption that |(a· k2−b)·TE

max ,2| > 0) is minimized
with b = a · k

2 + 1, i.e., |(a · k
2 − b) · TE

max ,2| ≥ TE
max ,2.

On the other hand, if 2 ∤ a, then |(a · k
2 − b) · TE

max ,2| is
minimized with b =

⌈
a · k

2

⌉
, i.e., |(a · k

2 − b) · TE
max ,2| ≥

1
2T

E
max ,2 = TE

max ,1 mod TE
max ,2.

(iv) TE
max ,2 | ∆i and TE

max ,1 | ∆i+1. This case is analogous
to the case (iii).

In particular, Equation (48) holds if ∆i ̸= ∆i+1, which proves
Lemma 19.

Using the previous lemma, to quantify the sum of gaps, we
need to check how often gaps are introduced. To that end, we
distinguish two cases: either ∆i mod H(TE) ̸= 0 for all i =
1, . . . , n, or there exists an i ∈ {1, . . . , n} such that ∆i mod
H(TE) = 0. We start by examining the former case.

The case ‘∆i mod H(TE) ̸= 0 ∀i = 1, . . . , n’ is depicted
in Figure 5. We observe that ∆i changes whenever the period
of tasks in the cause-effect chain switches between TE

max ,1 and
TE
max ,2. Specifically, ∆i has to change once between τ1 and

τ3 in Figure 5. Formally, we quantify the number of necessary
changes of ∆i as |νE | with

νE :=

{
τi ∈ TE

∣∣∣∣∃j < i : Tτj ̸= Tτi ∈
{
TE
max ,1, T

E
max ,2

}
,

Tτj+1
, . . . , Tτi−1

/∈
{
TE
max ,1, T

E
max ,2

} }
.

(51)
In Figure 5, only τ1 and τ3 have a period in

{
TE
max ,1, T

E
max ,2

}
.

Therefore, νE = {τ3}, which directly corresponds to the tasks
where a change of the gap is observed. We formalize this
observation in the following lemma.

Lemma 20. Let τp be the task with the lowest index with
Tτp = TE

max ,1. If TE is (2, k)-max-harmonic, and if further
∆i mod H(TE) ̸= 0 for all i = 1, . . . , n, then

max

(
n−1∑
i=1

γi,

n−1∑
i=1

γ̃i

)
≥
⌈
|νE |
2

⌉
· ΓE (52)

with ΓE as defined in Equation (48).

Proof. For each task τi ∈ νE , there exists a j < i with
Tτj ̸= Tτi ∈

{
TE
max ,1, T

E
max ,2

}
and Tτj+1 , . . . , Tτi−1 /∈

{
TE
max ,1, T

E
max ,2

}
. Since Tτj ̸= Tτi ∈

{
TE
max ,1, T

E
max ,2

}
and

∆i mod H(TE) ̸= 0, we know that ∆i ̸= ∆j . Hence, there
exists a ξ(j) ∈ {j, . . . , i− 1} such that ∆ξ(j) ̸= ∆ξ(j)+1. By
Lemma 19, we obtain γξ(j) ≥ ΓE or γ̃ξ(j) ≥ ΓE .

Due to Tτj+1
, . . . , Tτi−1

/∈
{
TE
max ,1, T

E
max ,2

}
, the indices

ξ(j) are different for each τj ∈ νE , i.e., ξ(j) ̸= ξ(j′) for all
τj ̸= τj′ ∈ νE . Consequently, among all gaps, there are at
most |νE | gaps of size ≥ ΓE . Hence,

∑n−1
i=1 γi ≥

⌈
|νE |
2

⌉
·ΓE

or
∑n−1

i=1 γ̃i ≥
⌈
|νE |
2

⌉
· ΓE . This proves Equation (52).

For the case ‘∃i ∈ {1, . . . , n} : ∆i mod H(TE) ̸= 0’, the
sum of gaps must be at least TE

max ,1 for pcpWp
or pcpWp+1, as

formalized by the following lemma.

Lemma 21. Let τp be the task with the lowest index with
Tτp = TE

max ,1. If TE is (2, k)-max-harmonic, and if further
there exists an i ∈ {1, . . . , n} such that ∆i mod H(TE) = 0,
then

max

(
n−1∑
i=1

γi,
n−1∑
i=1

γ̃i

)
≥ TE

max ,1. (53)

Proof. We know that ∆p = TE
max ,1 by construction. Further,

if there exists a ξ ∈ {1, . . . , n} with ∆ξ mod H(TE) = 0,
then ∆ξ = 0 or ∆ξ ≥ H(TE) = 2 · TE

max ,1. In any case,

|∆p −∆ξ| ≥ TE
max ,1. (54)

Furthermore, by definition of gaps, we have

|∆ξ −∆p| =

∣∣∣∣∣∑
i∈I

γi −
∑
i∈I

γ̃i

∣∣∣∣∣ ≤ max

(
n−1∑
i=1

γi,
n−1∑
i=1

γ̃i

)
,

(55)
with indices I = {ξ, . . . , p−1} if ξ < p and I = {p, . . . , ξ−1}
if ξ > p. Combining Equations (54) and (55) proves the
lemma.

We combine Lemmas 20 and 21 to obtain a lower bound
for (2, k)-max-harmonic systems.

Lemma 22 (Lower Bound). If TE is (2, k)-max-harmonic,
then

Lat(E) ≥
n∑

i=1

Tτi + TE
max ,1 +min

(⌈
|νE |
2

⌉
· ΓE , T

E
max ,1

)
(56)

is a lower bound on the end-to-end latency under any task
phasing.

Proof. This is achieved by combining the results of Lem-
mas 20 and 21.

Next, we construct a task phasing that achieves that lower
bound. To that end, we need to adjust the phasing strategy
depending on the lower bound to be achieved. That is, if⌈
|νE |
2

⌉
·ΓE < TE

max ,1, then we distribute the gaps between the
two partitioned chains pcpWp

and pcpWp+1 equally. However, if⌈
|νE |
2

⌉
· ΓE ≥ TE

max ,1, we ensure that all gaps after τp are
allocated to pcp1.
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Definition 23 (Suggested Phasing for (2, k)-Max-Harmonic).
Let E = (τ1 → · · · → τn) be a cause-effect chain and let p
be the lowest index with Tτp := TE

max ,1. For the first task, we
set the phasing to

ϕ(2,k)
τ1

:= 0 (57)

For the remaining tasks, we define the phasing iteratively.
Specifically, for i = 2, . . . , n, we define

ϕ(2,k)
τi

:= ϕ(2,k)
τi−1

+ ΓE + Tτi−1
(58)

if
⌈
|νE |
2

⌉
·ΓE < TE

max ,1 and τi ̸= τp ∈ νE with Tτi = TE
max ,1,

and
ϕ(2,k)
τi

:= ϕ(2,k)
τi−1

+ Tτi−1 (59)

otherwise.

Theorem 24 (End-to-end latency with suggested phasing). If
TE is (2, k)-max-harmonic and the task offsets are chosen as
ϕτi = ϕ

(2,k)
τi , then

Lat(E) =
n∑

i=1

Tτi + TE
max ,1 +min

(⌈
|νE |
2

⌉
· ΓE , T

E
max ,1

)
.

(60)

Proof. By Lemma 22, we already know that Equation (60) is
a lower bound on the end-to-end latency of E. It is left to
show that Equation (60) is also an upper bound. Let τp be a
task with the largest period of E, i.e., Tτp = TE

max ,1.
By definition of the phases, the immediate backward job

chain ⃗c0(E) exists. We show Wp = 0 by contradiction. To
that end, assume Wp ≥ 1, then ℓ( ⃗c0((τp → · · · → τn))) ≤
ϕ
(2,k)
τn − (ϕ

(2,k)
τp + Tτp). However, by definition of the phases,

if
⌈
|νE |
2

⌉
· ΓE < TE

max ,1, then ϕ
(2,k)
τn − ϕ

(2,k)
τp ≤

∑n
ξ=p Tτξ +⌈

|νE |
2

⌉
· ΓE <

∑n
ξ=p Tτξ + TE

max ,1, and ϕ
(2,k)
τn − ϕ

(2,k)
τp ≤∑n

ξ=p Tτξ , otherwise. We conclude ℓ( ⃗c0((τp → · · · → τn))) <∑n
ξ=p Tτξ +TE

max ,1−Tτp =
∑n

ξ=p Tτξ , which contradicts the
fact, that a backward job chain for (τp → · · · → τn) has a
length of at least

∑n
ξ=p Tτξ . Therefore, this proves Wp = 0.

Therefore, we have pcpWp
= pcp0 = ( ⃗c p

0 , c⃗
p
1 ) and pcpWp+1 =

pcp1 = ( ⃗c p
1 , c⃗

p
2 ), and by Lemma 14, the end-to-end latency is

max(ℓ(pcp0), ℓ(pc
p
1)), which is

Lat(E) = max(ℓ( ⃗c p
0 )+ℓ(c⃗ p

1 ), ℓ( ⃗c p
1 )+ℓ(c⃗ p

2 )). (61)

First, we quantify ℓ( ⃗c p
0 ) and ℓ( ⃗c p

1 ). Since p is the lowest
index with Tτp = TE

max ,1, we know that τi /∈ νE for all i < p.
Therefore, τ1, . . . , τp follow the phasing from Equation (59).
Hence, ⃗c p

0 = (τ1(0) → · · · → τp(0)) and ℓ( ⃗c p
0 ) =

∑p
i=1 Tτi .

We determine ℓ( ⃗c p
1 ) by distinguishing two cases:

Case 1 (τp /∈ νE): In that case, Tτi | TE
max ,1 for all i ≤ p.

Therefore, ⃗c p
1 = (τ1(

TE
max,1

Tτ1
) → · · · → τp(

TE
max,1

Tτp
)), i.e., ⃗c p

1 is
just ⃗c p

0 shifted by TE
max ,1 time units, and ℓ( ⃗c p

1 ) =
∑p

i=1 Tτi .
Case 2 (τp ∈ νE): In that case, let j < p be the largest

index such that Tτj = TE
max ,2. Then Tτ1 , . . . , Tτj | TE

max ,2

and Tτj+1 , . . . , Tτp | TE
max ,1. Hence, ⃗c p

1 =
(
τ1
(TE

max,1−ΓE

Tτ1

)
→

· · · → τj
(TE

max,1−ΓE

Tτj

)
→ τj+1

(TE
max,1

Tτj+1

)
→ · · · → τp

(TE
max,1

Tτp

))
.

Therefore, ℓ( ⃗c p
1 ) = ℓ( ⃗c p

0 ) + ΓE =
∑p

i=1 Tτi + ΓE .

Second, we quantify ℓ(c⃗ p
1 ) and ℓ(c⃗ p

2 ). To that end, we again
distinguish two cases:

Case A (
⌈
|νE |
2

⌉
· ΓE ≥ TE

max ,1): In that case, all tasks
follow the phasing from Equation (59), and (τp(0) →
· · · → τn(0)) is an immediate forward job chain. Fur-
thermore, c⃗ p

2 is just the forward chain (τp(0) → · · · →
τn(0)) shifted by 2 · TE

max ,1 = H(TE) time units,
i.e., ℓ(c⃗ p

2 ) = ℓ((τp(H(TE)/Tτp), . . . , τn(H(TE)/Tτn))) =
ℓ((τp(0), . . . , τn(0))) =

∑n
i=p Tτi

For the chain c⃗ p
1 , we know that the write-event of the last

job cannot be later than the write-event of the last job of
c⃗ p
2 . Therefore, we obtain: ℓ(c⃗ p

1 ) ≤ we(τn(H(TE)/Tτn)) −
re(τp(1)) = ℓ(c⃗ p

2 ) + TE
max ,1 =

∑n
i=p Tτi + TE

max ,1

Case B (
⌈
|νE |
2

⌉
·ΓE < TE

max ,1): For every task τi ∈ νE with
i ≥ p and Tτi = TE

max ,1, there is a gap of size ΓE introduced

for c⃗0((τp → · · · → τn)). These are
⌊
|νE\{τp}|

2

⌋
many. Hence,

ℓ(c⃗0((τp → · · · → τn))) =
∑n

i=p Tτi +
⌊
|νE\{τp}|

2

⌋
· ΓE ,

and since c⃗ p
2 is just c⃗0((τp → · · · → τn)) shifted by one

hyperperiod, we obtain ℓ(c⃗ p
2 ) =

∑n
i=p Tτi +

⌊
|νE\{τp}|

2

⌋
·ΓE .

Furthermore, for every task τi ∈ νE with i ≥ p and Tτi =
TE
max ,1 (i.e., Tτi = TE

max ,2), a gap of size ΓE is introduced

for c⃗ p
1 . These are

⌈
|νE\{τp}|

2

⌉
many. This results in ℓ(c⃗ p

1 ) =∑n
i=p Tτi +

⌈
|νE\{τp}|

2

⌉
· ΓE .

All four combinations of cases 1 and 2, and A and B result
in the bound from Equation (60). This proves the theorem.

Finally, we state that our suggested phasing is optimal for
non-max-harmonic tasks, since the end-to-end latency from
Theorem 24 coincides with the lower bound from Lemma 22.

Theorem 25 (Optimality). If TE is (2, k)-max-harmonic, then
the suggested phasing from Definition 23 minimizes the end-
to-end latency.

Proof. Since the end-to-end latency under our proposed phas-
ing (Theorem 24) coincides with the lower bound under any
phasing (Lemma 22), our task phasing is optimal.

VIII. EVALUATION

In this section, we evaluate our approach based on the
Autonomous Emergency Braking System (AEBS) use-case
described in [21], and based on synthetic cause-effect chains3.
For the Autonomous Emergency Braking System (AEBS),
already depicted in Figure 1, we study two configurations:
(i) with the original harmonic periods and (ii) a modified
use-case where sensor sampling frequency is reduced, leading
to semi-harmonic (specifically, (2, 5)-max-harmonic) periods.
For the synthetic evaluation, a first set of experiments is based
on cause-effect chains with semi-harmonic automotive periods
to evaluate the proposed task phasing quantitatively, followed

3https://github.com/ESRTS/OptimalTaskPhasing
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Table II
RESULTS OF THE USE-CASE IN ITS HARMONIC AND SEMI-HARMONIC

VARIANT. RUNTIME COMPARED TO THE HEURISTIC OF MARTINEZ [28].

Harmonic Semi-Harmonic
Synchronous Lat(E) 210ms 230ms
Optimal Lat(E) 170ms 210ms
Runtime Martinez 179.893ms 669.251ms
Runtime Ours 0.004ms 0.018ms

by experiments that evaluate different (2, k)-max-harmonic
configurations. All experiments are performed on a platform
containing an Intel Xeon Silver 4114 processor with 10 cores
(20 threads) at 2.2 GHz and 32 GB RAM, running Linux.

A. Autonomous Emergency Braking System (AEBS) Use-Case

In this section, we compare the AEBS use-case in two
configurations. For both, the runtime and minimal latency of
the AEBS cause-effect chain is compared with our proposed
approach and with the state-of-the-art (SOTA) approach of
Martinez et al. [28]. All results are shown in Table II.

As discussed in Section V, by optimally configuring the
tasks phases, the latency of the AEBS cause-effect chain under
its original harmonic periods is reduced by 19% from 210ms
(synchronous release) to 170ms. The proposed phasing (Def-
inition 10) and latency bound (Theorem 11), as well as the
SOTA analysis and heuristic correctly identify a phasing that
leads to the minimal latency of the cause-effect chain. Our
approach configures the task phases and analyzes the latency
within 0.004ms, while the heuristic requires significantly more
time, 179.893ms, in which 5000 configurations are explored.

To evaluate the AEBS use-case with our proposed phasing
for semi-harmonic automotive periods, the period of sensor
tasks (i.e. τ1 and τ3) is increased to 20ms. With a synchronous
release, the cause-effect chain has a latency of 230ms, as
depicted in Figure 6a. Applying the suggested phasing for
(2, k)-max-harmonic periods (Definition 23) leads to the phas-
ing ϕτ1 = 0, ϕτ2 = 20, ϕτ3 = 70, ϕτ4 = 100, as depicted in
Figure 6b. We notice that ΓE = 10ms are additionally inserted
at the second occurrence of TE

max ,1. Figure 6 shows the two
2-partitioned job chains under synchronous release, as well
as under the proposed phasing. The gaps between the two 2-
partitioned job chains under synchronous release are 10, 10,
20, for the red, and 0, 0, 30 for the blue 2-partitioned job chain.
With our suggested phasing, the gaps are reduced to 0, 10, 0,
for the red, and 10, 0, 10 for the blue 2-partitioned job chain.
The proposed latency bound (Theorem 24), as well as the
result of the heuristic lead to a latency of 210ms, a reduction
of 8.7%. Configuring task phases and latency calculation with
our approach requires 0.018ms, while the heuristic needs to
explore 10 000 configurations, which takes 669.251ms.

B. Synthetic Chains with Automotive Periods

We evaluate synthetic cause-effect chains, generated based
on the benchmark reported in [26]. For each data point, 1000
cause-effect chains with automotive semi-harmonic periods are
generated. To be able to compare latency values of different

(a) Synchronous: Lat(E) = 230.

(b) Optimized phasing: Lat(E) = 210.

Figure 6. The AEBS use-case with semi-harmonic automotive periods. The
two 2-partitioned job chains relevant for the end-to-end latency are marked
in red and blue.
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Figure 7. End-to-end latency with suggested phasing normalized to the latency
under synchronous release for a varying chain length.

cause-effect chains, the computed latency is normalized to
the hyperperiod of the cause-effect chain. For cause-effect
chains with max-harmonic periods, the results of Section VI
are applied. For cause-effect chains which are (2, k)-max-
harmonic, the results of Section VII are applied.

1) Latency Evaluation: In the following, we compare the
latency achieved with the optimal phasing to the synchronous
release of all tasks. The number of tasks in the task chain is
varied between 2 and 50 in steps of 2. Figure 7 shows the
latency of the cause-effect chain under the proposed phasing
normalized to the latency under synchronous release as box-
plot. While for chains of length two, the synchronous case
already constitutes the optimal phasing, a clear reduction of
the end-to-end latency is observed if the cause-effect chain has
a length of at least 3. The latency gradually decreases with
the length of the cause-effect chain to a median latency of
approximately 0.72 of the latency under synchronous release,
at length 50. At the same chain length, the lowest achieved
latency is 0.88, and the best observed latency is 0.61 of the
latency under synchronous release. From this evaluation, we
can conclude that an optimal configuration of task phases
significantly reduces the end-to-end latency of cause-effect
chains, especially with a large number of tasks in the chain.

2) Runtime Evaluation: In this experiment, we evaluate
the runtime of our approach. To do so, we compare our
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Figure 8. Runtime of the proposed approach (phase configuration and latency
analysis) compared to the SOTA heuristic [28].

proposed phasing and latency bound to the state-of-the-art
heuristic by Martinez et al. [28]. In contrast to our approach,
the heuristic does not have assumptions on the periods and
can be used with any set of periods. To find the optimal
assignment of task phases, the heuristic evaluates all non-
equivalent phase assignments of the cause-effect chain. Since
the time granularity for the optimization is not defined in [28],
we choose the length of the shortest period, i.e., 1ms. The
chain length is varied between 2 and 10 in steps of 1.

Figure 8 shows the runtime of our approach (measured
as the time to assign optimal offsets to chains plus the
computation of the worst-case latency of the cause-effect
chain) compared to the SOTA heuristic on a logarithmic scale.
For cause-effect chains of two to four tasks, the heuristic can
be executed to completion. For a length of four tasks, the
runtime of the heuristic reached up to 3854 s (around 1 h).
During this time, the heuristic evaluates up to 40 000 000
configurations. At a chain length of four, the runtime of our
approach is between 2 µs and 19 µs (avrg. 4 µs.) For chains
longer than five tasks, the runtime of the SOTA heuristic
is to large for comparison. This is due to the number of
non-equivalent phase configurations that are evaluated by the
heuristic, which increases exponentially. For a chain length
of ten, in average, ca. 1010 phase configurations must be
evaluated by the heuristic to guarantee that the optimal phasing
is found. The maximal observed runtime of our approach with
cause-effect chains of length 10 is 30 µs. At a chain length of
50, this value increases to 49 µs.

The results show the benefit of our phasing compared to the
SOTA heuristic, if periods are max-harmonic or (2, k)-max-
harmonic. With its low runtime, our proposed approach can
be used in design space exploration of chains of any length.

C. Synthetic Chains with (2,k)-Max-Harmonic Periods

In this section, we evaluate synthetic cause-effect chains
with (2, k)-max-harmonic periods. Exhaustively, all possible
sets of periods that are (2, k)-max-harmonic are generated,
with the constraints that the maximum allowed period is
500ms (i.e., leading to a maximum hyperperiod of 1 s) and
a valid period set must include at least 5 different periods.
For each individual cause-effect chain, a random (2, k)-max-
harmonic period set is selected and used as the basis for

0 10 20 30 40 50

Cause-Effect Chain Length

0.70

0.75

0.80

0.85

0.90

0.95

1.00

O
p

ti
m

al
/

S
y
n

ch
ro

n
ou

s

(2,3)-max-harmonic

(2,9)-max-harmonic

(2,15)-max-harmonic

(2,21)-max-harmonic

Figure 9. Geometric mean of the optimal end-to-end latency normalized to
the end-to-end latency with synchronous release. Results are shown for task
chains with (2,k)-max-harmonic periods, with different values of k.

the chain generation. If a generated chain has no (2, k)-max-
harmonic periods, it is discarded and a new chain is generated.

The number of tasks in the task chain is varied between
2 and 50 in steps of 2, and results are reported for values
of k between 3 and 21, in steps of 6 (note that only odd
values of k are possible, as otherwise TE

max ,2 would divide
TE
max ,1). For each configuration, 1000 random cause-effect

chains are evaluated using the results of Section VII. With
this experiment, the influence of k on the chain’s latency
is evaluated. Figure 9 shows the geometric mean of the
latency with optimal phasing normalized to the latency with a
synchronous task release. The results show that for each value
of k, the achieved latency reduction is dependent on the chain
length. It can also be seen that results are comparable until a
chain length of 16. For larger chains, larger values of k lead
to a smaller normalized data age, from 0.76 for (2, 3)-max-
harmonic chains up to 0.70 for (2, 21)-max-harmonic chains.

IX. CONCLUSION

The end-to-end latency of cause-effect chains is a crucial
requirement for automotive systems. To increase the deter-
minism, the LET paradigm has received significant attention
in this domain. In this paper, we address the configuration of
task phases to minimize the end-to-end latency of cause-effect
chains. We study the problem in two settings: (i) for cause-
effect chains with max-harmonic periods, and (ii) for cause-
effect chains with (2, k)-max-harmonic periods. In particular,
this allows to apply our results to harmonic task sets, as well
as to semi-harmonic automotive periods described in [26].

For both settings, we present a suggested task phasing that
minimizes the end-to-end latency. We further show how to
compute the end-to-end latency of the cause-effect chain under
the suggested phasing and prove that it is optimal. Evaluations
highlight the approach using an industrial use-case. Synthetic
results compare the approach against the state of the art,
showing that we require only a fraction of the runtime to find
the optimal phasing. Future work will extend the approach
to cause-effect chains with arbitrary periods, and examine the
configuration of task phases to optimize the end-to-end latency
along multiple cause-effect chains with shared tasks.
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