
Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

End-To-End Timing Analysis in ROS2
Harun Teper, Mario Günzel, Niklas Ueter, Georg von der Brüggen, Jian-Jia Chen

TU Dortmund, Department of Computer Science, Dortmund, Germany

Citation:

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

computer
science 12

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

End-To-End Timing Analysis in ROS2
Harun Teper, Mario Günzel, Niklas Ueter, Georg von der Brüggen and Jian-Jia Chen

TU Dortmund University, Germany
{harun.teper, mario.guenzel, niklas.ueter, georg.von-der-brueggen, jian-jia.chen}@tu-dortmund.de

Abstract—Modern autonomous vehicle platforms feature many
interacting components and sensors, which add to the system
complexity and affect their performance. A key aspect for such
platforms are end-to-end timing guarantees, which are required
for safe and predictable behavior in every situation.

One widely used tool to develop such autonomous systems is
the Robot Operating System 2 (ROS2), which allows creating
robot applications composed of several components that com-
municate with each other to form complex systems. Further-
more, it guarantees real-time constraints and provides reliable
timing behavior using a custom scheduler design that manages
the execution of all components. These components and their
data propagation form multiple cause-effect chains that can be
analyzed to determine two key metrics: maximum reaction time
(which is the maximum time for the system to react to an external
input) and maximum data age (which equals the maximum time
between sampling and the output of the system being based on
that sample). However, an end-to-end analysis for cause-effect
chains in ROS2 systems has not been provided yet.

In this paper, we provide a theoretical upper bound for the
end-to-end timing of a ROS2 system on a single electronic control
unit (ECU). Additionally, we show how to simulate a ROS2
system to get a lower bound for the timing analysis and introduce
an online end-to-end timing measurement method for existing
ROS2 systems. We evaluate our methods with a basic autonomous
navigation system and determine the timing behavior for different
components and sensor configurations.

Index Terms—End-to-End Timing, Maximum Reaction Time,
Maximum Data Age, Robot Operating System 2

I. INTRODUCTION

Modern autonomous vehicles include an increasing number
of components, which must comply with timing constraints to
ensure correct functionality and safety of both the vehicle and
its environment. They include components like smart lights,
ACC, and ABS on different electronic control units (ECU) that
interact over an intra-vehicle network. Additionally, there are
many system designs that feature different hardware and soft-
ware solutions. As the complexity of these systems increases,
guaranteeing timing constraints becomes more difficult.

One widely used software framework to develop au-
tonomous systems is the Robot Operating System 2
(ROS2) [13], which is a set of software libraries and tools to
develop robot software. ROS2 allows freely creating arbitrarily
complex robot systems, as it provides tools to create simple
components that can communicate with each other. It also
provides a customizable scheduler abstraction, called an ex-
ecutor, which processes the time-triggered and event-triggered
functions of each system component. The autonomous driving
project Autoware.Auto [11], [19] represents one advanced
open-source solution that is based on ROS2 and features
autonomous valet-parking and cargo delivery.

One promise of ROS2 is the possibility of providing real-
time guarantees, which was not considered in the original
Robot Operating System (ROS) [15]. The ROS2 executor has
been recently analyzed and optimized [2]–[5], [18]. Specifi-
cally, the execution of ROS2 components can be modeled as a
directed acyclic graph (DAG), whose worst-case response time
can be derived by extending existing timing analysis methods
in real-time systems [2], [4]. Moreover, Choi et al. [5] pro-
posed a priority assignment approach for the ROS2 executor
to improve the worst-case response time. Instead of modeling
the ROS2 components as a DAG, Tang et al. [18] proposed
to model them as processing chains to perform worst-case
response time analysis and optimize the component priorities.

If all components actively trigger the components they
are connected to, then the communication between ROS2
components can be described by the worst-case response
time of the DAG [2], [4], [5]. However, ROS2 also features
components where the data propagation and execution order
are independent from other tasks. For example, a chain of tasks
can include multiple intermediate timers that are sporadically
executed according to their period, or include a chain whose
tasks are also triggered by tasks of other chains. Such chains
can in fact be more properly modeled as a cause-effect chain.

A cause-effect chain models a sequence of reactions from
the cause (e.g., sensing) to an effect (e.g., actuation). The
definition of cause-effect chains for a ROS 2 system is inspired
by the event-chains of the AUTOSAR Timing Extensions [1],
as well as the definition of cause-effect chains by Günzel et
al. [10] for periodic and sporadic task systems. Two types
of end-to-end latencies are of most interest in the literature:
the maximum reaction time (which is the maximum time for
an external event to be processed by the system), and the
maximum data age (which is the maximum duration between
sampling and the output being based on that sample).

However, existing timing analyses for cause-effect chains,
e.g., [6], [7], [10], [12], are only valid for periodic and sporadic
task systems and cannot be directly applied to the event-
triggered and time-triggered components of ROS2.

Contributions: We provide, to the best of our knowledge, the
first end-to-end timing analysis for ROS2 cause-effect chains.
We assume that our system has one ECU, whose components
are scheduled by one single-threaded ROS2 executor. We
detail the ROS2 architecture in Section II and introduce the
task model, cause-effect chains, and analyzed timing values
in Section III. Related work and a delimitation and discussion
are presented in Sections IV and V, respectively.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

This paper provides the following contributions:
• Section VI provides an upper bound analysis for the end-

to-end latency of cause-effect chains in ROS2 systems.
• In Section VII, we introduce a simulation method for the

ROS2 scheduler to replicate the timing behavior of ROS2
systems. Additionally, we provide an online end-to-end
measurement method that can be applied to existing
ROS2 systems and our simulation method to measure the
end-to-end timing latencies of the system.

• To compare different system configurations, we evaluate
the end-to-end latencies of different systems in a case
study in Section VIII. Furthermore, in Section IX, we
examine the timing behavior of a basic autonomous
driving system that includes a variable number of sensors.

II. ROS2 SYSTEM MODEL

ROS2 is a set of software libraries for building robot
systems and applications. In this section, we explain its archi-
tecture, including the main components and interconnects in
Section II-A, and the ROS2 scheduler (called ROS2 executor)
in Section II-B, as described by previous works [2], [4].
Section II-C explains how to compose a robot system based
on the components detailed in Section II-A.

A. Main Components and Interconnects

We consider a ROS2 system, composed of two types of
components, nodes and topics.

• A node represents one component of the system that
receives, processes, and forwards data. It consists of
timers and subscriptions, as well as the functions that
are executed by them. Each timer and subscription is
assigned to one specific function of the node, which are
called callback functions or callbacks.

– Timers define time-triggered callbacks, which access
data in the node or receive data from an external
interface to process and publish messages to sub-
scriptions or to the underlying robot platform via an
external interface.

– Subscriptions define event-triggered callbacks that
process received messages. They may store the result
in the node or publish the result to subscriptions of
other nodes or to the underlying robot platform via
an external interface.

We note that a node could also consist of other services,
which are irrelevant to our study.

• A topic is used as a means of communication among
different nodes. It is implemented via data-distribution
services (DDS), which provide a publish-subscribe archi-
tecture for message transfer. In ROS2, a node can publish
a message to a topic, so that all nodes that are subscribed
to that topic receive the message.

B. ROS2 Executor Scheduling

In this paper, we consider the execution of the system on one
ECU with one single-threaded ROS2 executor that schedules
all timer and subscription callbacks of the system nodes.

Polling Point

Collect one activated
job of each callback

Processing Window

Get next timer callback

Get next subscription callback

Execute callback

Fig. 1: ROS2 Executor Model

The ROS2 executor implements a custom scheduling policy.
It stores all timers and subscriptions of all registered nodes and
updates their state during the schedule. Relating this to the
classical real-time scheduling theory, a callback function can
be seen as a recurrent task and each execution of a callback
function is a task instance (or job). A job can reside in one
of the following states: idle, activated, sampled, and running.
There can be several idle jobs of each task being initiated and
then being activated by external events. For timers, one job
is activated each time its period elapses, while a subscription
is activated when it receives a new message. Each timer and
subscription has a buffer with a maximum buffer size that
stores the currently activated jobs of the task. We note that
the jobs of a subscription process the messages in its buffer
in a FIFO order. In case the buffer size is not sufficient,
under-sampling or message loss may happen. We assume that
the buffers are sufficiently large to avoid under-sampling or
message loss in all cases.

The scheduling mechanism of the executor is designed to
sample and execute jobs with a two-phase design that consists
of polling points and processing windows (see Figure 1):

• At each polling point, the executor samples the oldest
activated job of each task, which will be executed in the
next processing window.

• During each processing window, the sampled jobs are ex-
ecuted in the order specified by the executor’s scheduling
policy. We assume that each timer and each subscription
has a unique priority. In ROS2-Foxy (the currently sup-
ported version of ROS2), timers have higher priority than
subscriptions, and the priorities of timers and subscrip-
tions individually follow the registration order.

After all sampled callbacks are executed, the executor runs the
next polling point. If there are no activated jobs at a polling
point, the executor spins until an external event takes place,
such as a timer period elapsing or message being received.

C. System Composition
In this subsection, we distinguish several node classes

depending on the timers and subscriptions and how they com-
municate. In addition, we introduce how data is propagated by
timers and subscriptions in and between nodes.

A ROS2 system contains nodes that include timers and
subscriptions with their corresponding callbacks. Specifically,
we consider six node classes, namely sensor, filter, subscription
actuator, timer actuator, subscription fusion, and timer fusion.
They are classified based on the means of triggering (i.e.,
timer, callbacks, or a mixture of them) and whether they
publish to topics. Table I shows this classification.

2

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

TABLE I: Classification of ROS2 Node Classes

Topic Publication(s)
YES NO

1 Timer Sensor (not used here)
1 Subscription Filter Subscription Actuator
>1 Subscription Subscription Fusion (not used here)

1 Timer + ≥1 Subscription Timer Fusion Timer Actuator

These six classes are general enough to compose complex
systems. Although we focus on these six classes, our timing
analyses can be extended to further classes.

We further classify the communication and the timer and
subscription composition of the node classes:

• Three types of communication through callbacks:
– O: Inter-node communication takes place when a

callback publishes a message to a topic.
– I: Intra-node communication happens if a callback

stores data in the node for other callbacks to access.
– E: For External communication, the callback sends

(or receives) data to (or from) an external interface.
• The number of timers and subscriptions can be arbitrarily

chosen by the user. We assume that nodes can be com-
prised of the following types of components:

– T: One timer.
– S: One or more subscriptions.

We combine the communication types and node component
types. The format represents the components of one node
with one or more names that are separated by dashes. Each
abbreviation XY Z includes three parts: the incoming commu-
nication type X , the node component type Y , and the outgoing
communication type Z. Specifically, we define sensor, filter,
and subscription actuator as follows:

• Sensor (ETO): A sensor receives data from an external
interface, processes it, and publishes a message. It is the
first element of the system that generates data.

• Filter (OSO): A filter receives messages, processes them,
and publishes the result as a message.

• Subscription Actuator (OSE): A subscription actuator
receives messages, processes them, and sends the result
to the robot via an external interface. It is the last element
of the system that processes the data.

Timer fusion, subscription fusion, and timer actuator classes
include two steps with intra-node communication:

• Timer Actuator (OSI-ITE): A timer actuator includes
one subscription that receives messages, processes them,
and saves the result in the node. The timer accesses the
data, processes it, and sends an output signal to the robot
at the end of the execution. The timer is the last element
of the system that processes the data.

• Timer Fusion (OSI-ITO): A timer fusion class features
multiple subscriptions that receive messages, process
them, and save the result in the node. The timer accesses
and combines the data of all callbacks, processes it, and
publishes the result as a message.

• Subscription Fusion (OSI-ISO and OSO): A sub-
scription fusion class includes multiple subscriptions that
receive messages, process them, and either save the
result in the node or publish a message. We differentiate
between two types of subscriptions, passive and trigger
subscriptions. A subscription fusion class includes exactly
one trigger subscription. A passive subscription receives
a message, processes it, and saves the result in the node.
The trigger subscription receives a message, processes it,
and triggers the fusion; that is, combining the data of
all passive subscriptions and its own data and publishing
the result as a message. The fusion is triggered by every
execution of the trigger subscription.

Based on these classes, many existing systems can be
modeled and analyzed. The analysis does not depend on these
specific node classes and instead only analyzes the end-to-end
timing behavior of the timers and subscriptions depending on
their communication type. As a result, the timing analysis
is applicable for any system and the defined node classes
only abstract the timers and subscriptions of the node and the
intra and inter-node communication for the data propagation
between the components in the node and the nodes themselves.

III. TIMING MODEL

We define the task model in Section III-A. In Section III-B,
we introduce the cause-effect chains and job chains in ROS2,
for which we specify the end-to-end latencies in Section III-C.

A. Task Model

The runtime of the system is managed by an executor that
is responsible for dispatching and executing callbacks of a set
of nodes that are registered with that executor. Each node can
include several timers and several subscriptions. We assume
that all nodes are registered to the same executor. This executor
is running on a single ECU and schedules all callbacks. In the
following we define the tasks of a ROS2 system, which are
specified by timers, subscriptions, and their callbacks.

A timer is defined by the tuple tmri = (τi, ki, pubTi, sdi),
where the callback task τi = (Ci, Ti) is specified by its period
Ti > 0 and worst-case execution time (WCET) Ci ≥ 0.1 A
timer has a maximum buffer size ki, and we assume ki > 1 for
all buffers. We define the current number of elements in the
buffer at time t as ki(t) ≤ ki, which is the number of activated
jobs of task τi at time t. For inter-node communication, the
publishing topic pubTi specifies to which topic messages are
published. It can be Null, if the timer does not publish data;
for example, if it sends the data to the robot platform instead.
For intra-node communication, the subscription dependency
sdi, which is a subset of the tasks on the same node as
τi, corresponds to the tasks that save data in the node for
the callback to access. If τj ∈ sdi, then there is intra-node
communication from τj to τi. As an example, sdi can specify
the subscriptions accessed by the timer in a timer fusion class.

1We omit the phase, which determines the first activation time, as we always
assume the worst case pattern for the upper bound analysis and the online
end-to-end measurement method includes the effect of the phase by design.

3

P
re

pr
in

t
Ve

rs
io

n.
C

ita
tio

n
In

fo
:

A subscription is defined by the tuple
subi = (τi, ki, subTi, pubTi, sdi), where the callback task
τi = (Ci) is specified by its WCET Ci. The current number
of messages in the buffer is given by ki(t), which is
limited by the maximum buffer size ki, with ki > 1. The
subscription subscribes to the topic subTi and may publish
to the topic pubTi for inter-node communication. We assume
that ∀i, j : pubTi ̸= pubTj , that is, there can be only one
publisher per subscription. If pubTi is Null, the subscription
can either send the data to the robot platform or save it in the
node for other callbacks. Please note that subTi is required
for the triggering and therefore cannot be Null. Subscriptions
can also include subscription dependencies sdi; for example
if they are part of a subscription fusion class.

We denote the finite set of all callbacks included in nodes
registered to the executor under analysis as T. It includes
the set of all timers and subscriptions registered to the ex-
ecutor. We denote the sum of the WCET of all tasks as
Csum =

∑
τi∈T Ci. Each task has its unique priority that is

given by the function π(·). To compare the priorities between
callbacks, we use the Iverson Bracket [·], which returns 1 or
0 if the condition is true or false, respectively. For example,
we determine whether τi has a higher priority than τj with
[π(τi) > π(τj)]. Each task can be scheduled in each pro-
cessing window and the execution of the task τi in the k-th
processing window is defined by the job ji,k. Note that ji,k
does not necessarily exist for all k, as a callback may not be
included in every processing window. We denote a job’s start
time by si,k and the finish time by fi,k, with fi,k ≤ si,k +Ci

due to the non-preemptive execution of callbacks in ROS2.
The task model in ROS2 is different from standard periodic

and sporadic task models. Specifically, tasks do not have a
deadline parameter and the total utilization of all executor
callbacks is not limited. For example, if the period Ti is less
than the WCET Ci for a timer, the callback is processed in
every processing window and the system is never idle.

B. Cause-Effect Chains

In this subsection, we introduce cause-effect chains that
describe how data propagates through the components of the
ROS2 system. The definition of cause-effect chains is inspired
by the event-chains of the AUTOSAR Timing Extensions [1],
as well as the definition of cause-effect chains by Günzel et
al. [10] for periodic and sporadic task systems.

A cause-effect chain E = (τ1, ..., τn) is a sequence of tasks,
with n tasks in the chain. For the simplicity of presentation, we
only focus on one cause-effect chain. For a system with more
than one cause-effect chain, each chain should be analyzed
and indexed independently. We note that Csum is the sum
of the workload of the whole system independent from the
cause-effect chain under analysis. The chains of the system are
formed by the communication between the callbacks. In ROS2,
inter-node communication takes place if a callback publishes
a message to a subscription of another node, while intra-node
communication happens if callbacks of the same node access
and modify the same data in the node.

The callback τi sends data via inter-node communication
to the subscription callback τj if pubTi = subTj , so that τj
is the successor callback of τi in the cause-effect chain E. In
this case, each message sent by a job of τi triggers exactly one
job of τj , and this job of τj processes the message in a future
processing window after the message has been published.

The callback τj accesses data from the subscription callback
τi via intra-node communication if τi ∈ sdj , so that τj is the
successor callback of τi in the cause-effect chain E. In this
case, the same data can be accessed several times by different
jobs of τj . Additionally, the callback τj can access data that is
modified by τi in the same processing window if their jobs are
executed in the same processing window and [π(τj) < π(τi)].

For each job ji,k, we define the read event rei,k to be at
the start time si,k, while the write event wei,k is at the finish
time fi,k. Then for ROS2 cause-effect chains, the following
properties define the data propagation for the jobs:

Definition 1. (Job Chain) A job chain of E is a sequence
jc = (j1,ρ(1), ..., jn,ρ(n)) of data dependent jobs of tasks in T
with the following properties:

• The entry ji,ρ(i) is a job of τi for all i ∈ {1, ..., n}.
• For each inter-node dependency (pubTi = subTi+1),
ji+1,ρ(i+1) is the (unique) job that processes the message
from ji,ρ(i), i.e., wei,ρ(i) ≤ rei+1,ρ(i+1) holds.

• For each intra-node dependency (τi ∈ sdi+1), ji+1,ρ(i+1)

is a job with wei,ρ(i) ≤ rei+1,ρ(i+1).
Please note that ρ(i) < ρ(i+ 1) for inter-node dependencies,
whereas ρ(i) ≤ ρ(i+ 1) for intra-node dependencies.

Analogous to Günzel et al. [10], we define forward and
backward job chains to determine the end-to-end timing be-
havior of the system. However, since for inter-node commu-
nication there is no choice of the jobs in a job chain, only the
choice of jobs contributing to intra-node communication are
of special interest.

Definition 2. (Immediate Forward Job Chain) An immediate
forward job chain is a job chain jc = (j1,ρ(1), ..., jn,ρ(n))
where ∀i ∈ {1, ..., n−1} the following applies: If τi ∈ sdi+1,
then the job ji+1,ρ(i+1) is the earliest with wei,ρ(i) ≤
rei+1,ρ(i+1), i.e., ρ(i+1) = argmink≥ρ(i) rei+1,k ≥ wei,ρ(i).

Definition 3. (Immediate Backward Job Chain) An immediate
backward job chain is a job chain jc = (j1,ρ(1), ..., jn,ρ(n))
where ∀i ∈ {n, ..., 2} the following applies: If τi−1 ∈ sdi, then
the job ji−1,ρ(i−1) is the latest with wei−1,ρ(i−1) ≤ rei,ρ(i),
i.e., ρ(i− 1) = argmaxk≤ρ(i) wei−1,k ≤ rei,ρ(i).

Next, we augment these chains to include external events, so
that we can capture the duration between an external event and
the sensor sampling, as well as the time between the actuation
and the output of the system.

For an immediate forward job chain we denote by z the time
of the external activity and by z′ the time at which the data
is processed. We utilize the definition by Günzel et al. [10] to
augment the immediate forward job chain and define the job
chain whose length corresponds to the reaction time:

4

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Definition 4. (Immediate Forward Augmented Job Chain) An
immediate forward job chain jc is the unique augmented job
chain (z, j1,ρ(1), ..., jn,ρ(n), z

′), such that:
• The external activity z takes place directly after the

sampling of the previous job of τ1 before j1,ρ(1).
• The sampling happens at the next read-event re1,ρ(1).
• The sequence (j1,ρ(1), ..., jn,ρ(n)) is an immediate for-

ward job chain.
• The data is processed at time z′ = wen,ρ(n).

For an immediate backward job chain we denote by z the
time of the sensor sampling and by z′ the time at which
an system output is based on the actuation. We augment the
immediate backward job chain to determine the chain whose
length corresponds to the data age:

Definition 5. (Immediate Backward Augmented Job Chain)
An immediate backward job chain jc is the unique augmented
job chain (z, j1,ρ(1), ..., jn,ρ(n), z

′), such that:
• The output z′ takes place directly before the write event

of the next job of τk after jn,ρ(n).
• The actuation happens at the previous write-event jn,ρ(n).
• The sequence (j1,ρ(1), ..., jn,ρ(n)) is an immediate back-

ward job chain.
• The sampling occurs at time z = re1,ρ(1).

C. End-To-End Latencies

In this subsection, we define the end-to-end latencies that
are analyzed in this paper, namely maximum reaction time and
maximum data age for a specific cause-effect chain, based on
the job chains introduced in Section III-B.

In ROS2, each cause-effect chain (or, in short, chain) starts
with a sensor node and ends with an actuator node. Hence, the
first task of the chain is a timer callback, while all other tasks
are either timer or subscription callbacks. Job chains represent
specific instances of a cause-effect chain; that is, the timing
of processing one specific external signal.

The maximum reaction time is the maximum latency for an
external signal to be processed by the actuator. For example,
it is the largest interval between a user pressing a button to
lock the car’s doors and them actually being locked. The
maximum data age corresponds to the maximum duration
between a sensor sampling and an output being based on that
sample. For example, it is the maximum length between the
current camera image sampling and the latest time at which
the steering controls are based on that camera sample. The
maximum reaction time and maximum data age of a cause-
effect chain correspond to the supremum over all immediate
forward and backward augmented job chains, respectively.

An example system is shown in Figure 2. It includes two
sensor nodes, which publish data to the corresponding sensor
topics. The fusion node features one subscription per sensor
and a timer that publishes data to the fusion topic. The actuator
includes one subscription that subscribes to the fusion topic.
The system includes two cause-effect chains, each of which
consists of one sensor timer, one fusion subscription, one
fusion timer, and one actuator subscription.

Sensor 1

Sensor 2
Timer Fusion Actuator

Fig. 2: A fusion system that includes two sensors, one timer
fusion and one actuator node. The timer fusion consists of one
subscription per sensor and one timer to publish the fusion
results. The system includes two cause-effects chains.

sensor1

sensor2

fusionsub1

fusionsub2

fusiontimer

actuator

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 3: Example schedule for the system shown in Fig. 2.
Each box represents one node and its callbacks. The schedule
includes polling points (red dashed lines) and processing
windows. The arrows represent the data propagation between
jobs. The reaction time (blue) and data age (green) are shown
for the chain start starts from the first sensor, and includes the
fusion subscription and timer, and the actuator subscription.

Figure 3 shows an example schedule for the fusion system
in Figure 2. Each box specifies one node and the callbacks
that are part of it. The schedule includes the polling points,
which are indicated by the red dashed vertical lines, while
each processing window is given by the interval between
two successive polling points. In addition, the release time
and finish time of each job is indicated by the upwards and
downwards pointing arrows, respectively. In this schedule,
the sensor timers are executed in every processing window,
while the fusion timer is executed in every second processing
window. For ease of presentation, all callbacks execute as long
as their worst-case execution time Ci = 1 in this schedule.

The data propagation between the callbacks is shown by the
black, green, and blue arrows. The inter-node communication
takes place between the sensor and fusion subscriptions, as
well as the fusion timer and actuator subscription, while
the intra-node communication takes place between the fusion
subscriptions and fusion timer. In this schedule, callbacks
always process messages from previous processing windows.

The blue and green paths represent the immediate forward
and backward augmented job chains for the reaction time
and data age, respectively. As introduced in Section III-B,
the blue path is an immediate forward augmented job chain
(z, j1,ρ(1), ..., jn,ρ(n), z

′). The external event z happens right
after time 0 and is sampled at time 3. The reaction time is the
difference between the external event and the actuator process-
ing it at time 28, i.e., it is 28−0 = 28 in this case. Likewise, the
data age corresponds to the green path, which is an immediate
backward augmented job chain (z, j1,ρ(1), ..., jn,ρ(n), z

′). For
this chain, the data is sampled at time 0 and processes new
data at time 28, i.e., the data age is 28− 0 = 28.

5

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

IV. RELATED WORK

The Robot Operating System (ROS) [15], which is a set of
software libraries for building robot applications, was released
in 2007. It provides functionalities to implement basic compo-
nents as nodes that communicate via topics. Additionally, there
are many available packages that provide basic components
of robot systems for a variety of applications, such as ware-
house robots and autonomous driving. However, ROS does
not natively support real-time programming. Although some
extensions, such as RT-ROS [20] and ROSCH [16] extend the
ROS architecture to support some real-time features, they are
not widely adopted as they are not part of the core architecture.

In 2017, the first version of ROS2 was released, which built
upon the core concepts of ROS, such as nodes and topics, but
improved upon many aspects, such as the support for real-time
code and the use of DDS [14] for secure and real-time inter-
node communication. In addition, it includes a new scheduler
designs for the executor that manages the execution of the
time-triggered and event-triggered function of the system.

In the following years, the ROS2 executor was analyzed,
including response time analysis when modeling the ROS2
components as a DAG [2], [4], or as processing chains [18].
For such systems, each component directly triggers the com-
ponents they are connected to. In addition, optimization for the
priority assignment of tasks was proposed by Choi et al. [5].
However, these results do not explicitly consider the data
propagation between the sampling and the actuation when
modeling the tasks as cause-effect chains.

End-to-end timing analysis of cause-effect chains for real-
time systems have been studied over decades. In 2009, Feiertag
et. al. [8] proposed the first end-to-end latency semantics to
define the maximum reaction time and maximum data age.
The subsequent work can be classified into two categories. So-
called active approaches control the release of jobs in the chain
to ensure the correctness of data reading and writing, e.g., [9],
[17]. The upper bound analysis in this work is a passive
approach that analyzes the end-to-end latency based on a
given set of tasks and dependencies. For sporadic and periodic
task systems, multiple end-to-end analysis can be found in
the literature [6], [7], [10], [12]. Since these approaches
are designed for periodic or sporadic task systems, they are
not directly applicable to ROS2 systems, which feature a
combination of time-triggered and event-triggered functions.
Thus, our work is the the first to consider end-to-end timing
analysis for cause-effect chains in ROS2.

V. DELIMITATION AND DISCUSSION OF RELATED WORK

In this section, we emphasize and discuss the differences
between our work and previous research results in the domain
of end-to-end latency analyses for ROS2 systems. A summary
is provided in Table II, that includes the execution model,
timing metric, analyzed chain structure, communication types,
number of executors, and the OS overhead. Note that SBF
refers to supply bound function for the OS overhead. Addi-
tionally, we use regular expressions for the chain structure that
include timers and subscriptions as T and S, respectively.

Casini et al. [4] and Blass et al. [2] both provide a worst-case
response time analysis for processing chains, considering mul-
tiple executors and operating system overheads using supply-
bound functions. They analyze processing chains consisting of
one triggering timer at the start and multiple chained callbacks.
Each callback is directly triggered by the finishing of the pre-
ceding callback, and each callback is allowed to have multiple
predecessors and successors. Notably, their proposed model of
computation implies that the callbacks only communicate via
the publish-subscribe architecture of DDS, which corresponds
to the inter-node communication in our work. The analyzed
timing metric is the maximum response time, which is the
maximum time between release of the timer at the beginning
of the chain and the completion of all chain callbacks.

In contrast, the focus of our work is the temporal behavior
of data propagation through the system, considering different
end-to-end semantics. In particular, we guarantee that each
callback execution processes the data of all chains that it is
part of. In [2], [4] the maximum response time specified is the
maximum time until a callback is executed. However, a sub-
scription job only processes the oldest message in the buffer, so
that a processed message may not originate from the analyzed
chain if the buffer includes multiple messages from different
publishers. As a result, messages may be processed in a later
processing window or may be lost due to buffer overflow. To
circumvent this, we limit the number of predecessors to one
per subscription. We consider a single executor and do not
consider any operating system overheads, as we focus on the
data propagation between callbacks, including inter- and intra-
node communication. On the upside, our work is more general
with respect to the admissible chain structures. That is, only
the first callback is limited to a timer and each subsequent call-
back can be either a timer or a subscription, while we do not
allow consecutive timers in a cause-effect chain. This allows us
to consider chains that include multiple individually triggered
timers and chains with callbacks that propagate data without
triggering the successor callback directly. Furthermore, the
metrics are different, as our analysis does not only specify the
worst-case response time, which corresponds to the maximum
difference between the start time of the first chain callback
and the finish time of the last chain callback. In contrast, we
consider the MRT and MDA, which include the additional
time from the external activity until the data sampling and the
time between an actuation and the output. In comparison, the
maximum response time corresponds to the maximum reduced
reaction time as defined in [10].

In consequence of the different focuses, systems that can
be analyzed by both [2], [4] and our work would consider:
(1) a single executor without operating system overheads,
and (2) a single chain that only includes a timer and mul-
tiple subscriptions with inter-node communication. In such
a system, neither the strengths and focus of our work (i.e.,
different message transmission, system structure, and end-to-
end semantics) nor of [2], [4] (i.e., the supply-bound function
and the multiple executors) are considered. Therefore, a direct
comparison would focus on a degenerate case of both analyses.

6

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

TABLE II: Related Works Contribution Overview

Related Work Exec. Model Timing Metric Chain Structure Communication No. Executors Overhead
Casini et al. [4] ROS2 Max. Response Time T S* Inter-Node Multiple SBF
Blass et al. [2] ROS2 Max. Response Time T S* Inter-Node Multiple SBF
Tang et al. [18] ROS2 Max. Response Time T S* Inter-Node Single SBF

Several [6], [7], [10], [12] Periodic MRT &¸ MDA T* Inter-Task – –
Our ROS2 MRT & MDA T (S |ST)* Inter-/Intra-Node Single –

Tang et al. [18] analyze the worst-case response time of
processing chains for a model similar to the once considered
by Casini et al. [4] and Blass et al. [2]. The main difference
is that they consider the impact of the priority assignment
for callbacks to analyze the worst-case response time. As a
result, a comparison would result in the same simplification
and problems as for Casini et al. [4] and Blass et al. [2].

Davare et al. [6], Dürr et al. [7], Günzel et al. [10]
and Kloda et al. [12] provide a maximum reaction time
and/or maximum data age analysis of cause-effect chains
consisting of periodic tasks in a uniprocessor system. Their
system model is incompatible with our work. In particular,
only a set of periodic tasks that is scheduled in a preemptive
fixed-priority manner is considered. Event-triggered execution,
which is an essential component of the ROS2 architecture,
is not considered in their model. Moreover, Günzel et al.
[10] requires fixing the execution time to the worst case, and
the worst-case response-time analysis, that is required for the
maximum reaction time and maximum data age analysis in [6],
[7], [12], is not applicable to the ROS2 executor/scheduler.

VI. CAUSE-EFFECT CHAIN UPPER BOUND ANALYSIS

In this section, we present how to calculate an upper
bound on the maximum reaction time and maximum data age
given a chain E = (τ1, ..., τn). The system consists of the
node classes, timers, and subscriptions that are introduced in
Section II-C. We assume a DDS with synchronous message
passing, where the execution time includes the time for pub-
lishing a message. As a result, all messages are guaranteed
to be transferred when a callback finishes. Since we assume
that there is only one publisher per subscription, there is at
most one message published to each topic per processing
window. This message is directly processed (and removed) in
the subsequent processing window. Please note that because
of ki > 1 no buffer overflow can occur.

We first provide an upper bound on the maximum reaction
time in Theorem 1 and that on the maximum data age in
Corollary 1. Specifically, Table III presents the callbacks that
are added to the corresponding cause-effect chain by the node
types and which upper bound type they contribute to the total
upper bound of the cause-effect chain.

Theorem 1. Under the assumption of a DDS with synchronous
message passing, τ1 is a sensor timer task and τn is an
actuation task, the maximum reaction time of a cause effect
chain E = (τ1, ..., τn), is at most

∑n
i=1 ub(τi), where

TABLE III: Classification of ROS2 Callback Classes

Node class Chain Callbacks Upper Bound Types
Sensor tmri ubst(τi)

Filter subi ubas(τi)

Subscription Actuator subi ubas(τi)

Timer Fusion subi + tmrj ubps(τi) + ubtt(τj)

Subscription Fusion subk or
subi + subj

ubts(τk) or
ubps(τi) + ubts(τj)

Timer Actuator subi + tmrj ubps(τi) + ubtt(τj)

ub(τi) =

ubst(τi) if τi a sensor timer
ubtt(τi) if τi an trigger timer
ubas(τi) if τi an active subscription
ubps(τi) if τi a passive subscription
ubts(τi) if τi a trigger subscription

, (1)

and ubst(τi), ubtt(τi), ubas(τi), ubps(τi), and ubts(τi) are
defined in Eqs. (4), (5), (6), (7), and (8), respectively.

Proof. As defined in Section III-B, let ji,ρ(i) be the job of task
τi that is executed in the ρ(i)-th processing window. Recall
that rei,ρ(i) is the moment of its read event and also its start
time, whereas rei,ρ(i)+Ci is the upper bound on the moment
of its write event. We know that rei,ρ(i) + Ci is no more
than the finishing time of the ρ(i)-th processing window of
the executor. There are two cases due to the non-preemptive
schedule of the ROS2 executor:

• If the data of ji,ρ(i) is sent to the next task τi+1 via inter-
node communication, then the next job in the immediate
forward augmented job chain is processed in the (ρ(i) +
1)-th processing window. That is, ρ(i+ 1) is ρ(i) + 1.

• If the data of ji,ρ(i) is sent to the next task τi+1 via intra-
node communication, then the next job in the immediate
forward augmented job chain is processed in the ρ(i+1)-
th processing window, with ρ(i+ 1) ≥ ρ(i).

Suppose θi is the finishing time the ρ(i)-th processing window
for job ji,ρ(i). By definition, the length of an immediate
forward augmented job chain jc is

z′ − z = θ1 − z +

(
n∑

i=2

θi − θi−1

)
+ z′ − θn (2)

In the followings, we provide bounds on each of these terms:
Bound on z′ − θn : Since τn is an actuator by assumption, we
know that z′ is equal to wen,ρ(n) ≤ θn. Therefore, z′−θn ≤ 0.
Bound on θ1 − z : Due to the assumption that there is always
a timer at the beginning, E starts with a sensor timer task τ1.

7

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

θi−1 θiji,ρ(i)︷ ︸︸ ︷
ji−1,ρ(i−1)

θi−1 − wei−1,ρ(i−1)︸ ︷︷ ︸ Ti

Csum − Ci︸ ︷︷ ︸ Csum

Fig. 4: Example schedule for Lemma 1. The blue arrow marks
release of job ji,ρ(i), dotted red lines represent polling points.

For the upper bound of θ1 − z, the external event z happens
right after the last sensor timer job j1,k before j1,ρ(1) finishes.
After that, the timer callback is sampled after its period T1
elapses. In the worst case, its period elapses right after a
processing window starts that includes every callback except
τ1, resulting in an additional delay of Csum−C1. Afterwards,
the timer is executed together with every callback, resulting
in a delay of Csum. As a result, θ1 − z is upper bounded by:

θ1 − z ≤ T1 − C1 + 2 · Csum (3)

We denote this as the Sensor Timer upper bound for task τi:

ubst(τi) = Ti − Ci + 2 · Csum (4)

Bound on θi − θi−1 : To improve readability, we show in
Lemmas 1 to 4, that θi − θi−1 is upper bounded by ubtt(τi),
ubas(τi), ubps(τi), and ubts(τi) when τi is a trigger timer,
an active subscription, a passive subscription, and a trigger
subscription, respectively. Combining these results with the
argumentation so far proves the theorem.

Lemma 1 (Trigger Timer). If τi is a trigger timer task, then
θi − θi−1 in Eq. (2) is at most

ubtt(τi) = Ti − Ci + 2 · Csum (5)

Proof. Due to the ROS2 executor design, timers are executed
before subscriptions in a processing window. As specified in
Table III, the job ji−1,ρ(i−1) is a subscription job. Therefore,
the trigger timer job ji,ρ(i) can not be executed before θi−1.
Additionally, the job ji−1,ρ(i−1) is guaranteed to finish before
θi−1, so that wei−1,ρ(i−1) ≤ θi−1. At the earliest, the job
ji,ρ(i) is sampled at θi−1, so that it is guaranteed to finish no
later than θi−1+Csum. At the latest, as illustrated in Figure 4,
the timer elapses after θi−1 + Ti right after a processing
window starts that includes every callback except τi, resulting
in an additional delay of Csum−Ci. Therefore, the job ji,ρ(i)
is sampled no later than θi−1+Ti+Csum−Ci. The processing
window ρ(i) of job ji,ρ(i) has a maximum length of Csum.
As a result, θi − θi−1 ≤ Ti − Ci + 2 · Csum.

Active subscriptions receive messages, process them, and
send the result to the robot platform or publish a message. This
case only covers the subscription of the subscription actuator
class and filter classes, but not fusion or timer actuator classes.

Lemma 2 (Active Subscription). If τi is an active subscrip-
tion task, then θi − θi−1 in Eq. (2) is at most

ubas(τi) = Csum (6)

Proof. Since the subscription always processes a message in
the following processing window in the ROS2 system model,
ρ(i) is equal to ρ(i − 1) + 1 in this case. Therefore, by
definition, each processing window takes at most Csum of
time and θi − θi−1 ≤ Csum for this case.

For timer fusion, subscription fusion, and timer actuators,
such passive subscriptions only receive, process, and save the
result in the node, so that it can be accessed by the timers and
the trigger subscription of these classes.

Lemma 3 (Passive Subscription). If τi is a passive subscrip-
tion task, then θi − θi−1 in Eq. (2) is at most

ubps(τi) = Csum (7)

Proof. The proof is identical to the proof of Lemma 2.

Trigger subscriptions combine the data of all subscriptions
in the node and send the result as a message. A subscription
fusion node consists of multiple subscriptions, including one
trigger subscription. The fusion is triggered every time the
trigger subscription is executed, which happens every time it
processes a received message of its predecessor task, which
may be part of the chain E or a different chain in the system.

Lemma 4 (Trigger Subscription). If τi is a trigger subscrip-
tion task, then θi − θi−1 in Eq. (2) is at most

ubts(τi) =

{
Csum if τi−1 ̸∈ sdi∑

τk∈E ub(τk) + Csum if τi−1 ∈ sdi
(8)

where the chain E = (τ1, ..., τm) 23 triggers task τi i.e., task τ1
is a timer, (τ2, ..., τm) are subscriptions, and pubTm = subTi.

Proof. We consider two cases, depending on whether the task
τi−1 is in sdi: the task τi accesses data of τi−1 via intra-node
communication if τi−1 ∈ sdi, or τi receives data via inter-node
communication if τi−1 /∈ sdi.
Case 1: Inter-node: If τi−1 /∈ sdi, τi−1 and τi commu-
nicate via inter-node communication and the subscription is
processed in the next processing window, i.e., ρ(i) is equal to
ρ(i− 1) + 1, leading to θi − θi−1 ≤ Csum.
Case 2: Intra-node: If τi−1 ∈ sdi, then there is intra-node
communication between τi−1 and τi, and ji,ρ(i) is not directly
triggered by ji−1,ρ(i−1) but by a job of τm.

To find such a job that triggers ji,ρ(i) (if it was not triggered
before), let t ∈ N such that j1,t is the first job of τ1 executed
after θi−1. Then the following holds:

• re1,t−1 ≤ θi−1

• The immediate forward chain starting at j1,t ends at a
job jm,q of τm, with q ∈ N, that triggers ji,ρ(i) (if it was
not triggered before).

Hence, ji,ρ(i) is executed in the (q+1)-th processing window.

2Please note that the indices of this chain E are unrelated to the chain E
under analysis and that they do not share callbacks.

3Each callback in E is triggered by inter-node communication. Starting
from τi, E can be constructed by adding the preceding publisher callback to
the head of the chain until a timer has been added.

8

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

The maximum reaction time of the chain E covers the
time from θi−1 until wem,q . The upper bound

∑
τk∈E ub(τk)

covers also the time from θi−1 until the end of the processing
window of job jm,q . Moreover, the length of the (q + 1)-th
processing window is upper bounded by Csum. Therefore,
θi − θi−1 ≤∑τk∈E ub(τk) + Csum.

Corollary 1. Under the same assumption of Theorem 1, the
maximum data age is upper bounded by

∑n
i=1 ub(τi), where

ub(τi) is defined in Eq. (1).

Proof. Let τk be the last timer task in the cause-effect chain.
By definition, such a task τk exists, as the first task τ1 is a
sensor timer task. Therefore, 1 ≤ k ≤ n. By the definition
of an immediate backward augmented job chain, z′ happens
directly before the next write event of the next job of τn after
jn,ρ(n). By definition, the length of an immediate backward
augmented job chain jc is

z′ − z = ψ1 − z +

(
k∑

i=2

ψi − ψi−1

)
+ (z′ − ψk)

with ψi being the beginning of the ρ(i)-th processing window.
A similar proof as for Theorem 1 can be done to shows that
ψ1 − z +

(∑k
i=2 ψi − ψi−1

)
≤∑k−1

i=1 ub(τi).
Here, we only sketch the proof of z′−ψk. Since τk is the lat-

est timer of the cause-effect chain, the time between the write
event wek,ρ(k) and the next write event of τk is upper bounded
by Tk−Ck+2·Csum. Furthermore, τk+1, τk+2, . . . , τn are only
subscription tasks. Therefore, the jobs of τk+1, τk+2, . . . , τn in
a backward augmented job chain are executed in consecutive
processing windows. Hence, z′ − ψk ≤ (n− k)Csum + Tk −
Ck + 2 · Csum = ubtt(τk) +

∑n
i=k+1 ub(τi), where ub(τi) is

either ubas(τi) or ubts(τi) for i = k + 1, k + 2, . . . , n.
Thus, we reach the conclusion.

VII. ONLINE END-TO-END ANALYSIS

The upper bound analysis in Section VI is pessimistic
compared to the real end-to-end latencies of the system, as
it assumes the worst-case execution pattern in all cases. In
Section VII-A, we introduce a method to simulate ROS2
systems with a single executor to determine a lower bound
on the timing values.4 Additionally, we introduce an online
end-to-end timing measurement method in Section VII-B to
determine the maximum reaction time and the maximum data
age of all cause-effect chains. This method can be applied
to existing ROS2 systems and our simulation approach to
compare our lower bound and the real observed values.

A. Executor Simulation

This subsection introduces how to simulate the executor and
callback execution of a ROS2 system on a single ECU.

4We only consider the execution scenario by fixing the execution time of
each task to its worst-case execution time. For this scenario we observe the
exact maximum reaction time and maximum data age. However, since this
does not cover all possible execution scenarios, the measured values are just
lower bounds for the general case.

Algorithm 1 Executor Simulation
1: procedure SIMULATEEXECUTORPROCESSINGWINDOW
2: updateTimerBuffers()
3: readyTimers = getReadyTimers()
4: readySubscriptions = getReadySubscriptions()
5: pastPollingPoints.append(now)
6: executeTimers(readyTimers)
7: executeSubscriptions(readySubscriptions)
8: if length(getReadyCallbacks()) == 0 then
9: skipToNextPollingPoint()

For the simulation, we define a system state that consists
of the global time, the past polling points, and the nodes
that consist of multiple callbacks. During the simulation, we
simulate the execution of callbacks by elapsing the global time
by the execution time of each callback, and updating the buffer
states of all timer and subscription callbacks.

The simulation of the system is detailed in Algorithm 1.
We simulate the schedule considering the global time and
past polling point times. Line 2 updates the activation buffer
ki(t) for each timer. The function determines the difference in
activations between the previous and current polling point and
and adds it to the timer buffer. Lines 3-4 collect all callbacks
with a non-empty buffer, after which Line 5 adds the current
time to the past polling points. Lines 6-7 execute all timer
and subscription callbacks, given their priority order. For each
callback, the global time is advanced by its execution time.
Lines 8-9 skip to the next polling point and advance the global
time to the next callback activation if no job is activated.

B. Online Timing Measurement

In this subsection, we introduce an online end-to-end timing
measurement method to determine the end-to-end timing laten-
cies of existing ROS2 systems and of the simulation approach
that is presented in the previous subsection. For the timing
measurement, we introduce a new message header, which
is a message itself, that can be added to existing message
types in ROS2 and stores the timing information to calculate
the reaction time and data age of all job chains. A message
contains a list of entries, each of which represents one job
chain. Each entry contains a unique identifier, the reaction time
origin date, and the data age origin date. The unique identifier
is a list of callbacks that processed the message so far. Each
callback adds its unique identifier, such as a name, to the
history during its execution. The origin dates for the reaction
time and data age are required to determine the maximum
reaction time and maximum data age and are set once by the
sensor timers during their execution. For each sensor timer
execution ji,k, the data age origin date corresponds to the start
time si,k. The reaction time origin date is the start time of the
previous execution si,k−1, as shown in Figure 3.

With this approach, each callback determines the end-to-end
latencies of all chains that end with the callback itself. As a
result, the maximum reaction time and maximum data age of
all sub-chains of the system are measured during execution.
Furthermore, the end-to-end latencies of the complete chains
are stored in the actuator callbacks of the system.

9

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Algorithm 2 Message Creation
1: procedure CREATEMESSAGE
2: if type == Timer then
3: msg = Message()
4: else
5: msg = DDSBuffer.pop()
6: for forwardMessage ∈ forwardBuffer do
7: for entry ∈ forwardMessage do
8: msg.addEntry(entry)
9: forwardBuffer.clear()

10: return msg

Algorithm 3 Subscription Execution
1: procedure EXECUTESUBSCRIPTION
2: now += wcet
3: updateAnalysisDataAge()
4: msg = createMessage()
5: updateLatestMessage(msg)
6: updateMessageRegisters()
7: updateAnalysisRegisters()
8: forwardMessage(msg)
9: sendMessage(msg)

For each callback, we add two register types, namely the
message and analysis registers for each timing value, resulting
in four different registers, as well as a forward buffer that
stores messages of subscription dependencies for subscription
fusion, timer fusion, and timer actuator classes.

The message registers store the entries of processed mes-
sages. Each time a callback is executed and processes a
message, it updates the origin dates of existing entries with
the message entries. The analysis register saves the maximum
reaction time and maximum data age of all entries, which is the
maximum difference between the current execution time and
the origin dates of the processed entries. During each callback
execution, the analysis register values are updated with the
entries that are stored in the message register, including
new entries that are stored in the processed message. The
forward buffer is used for intra-node communication and stores
messages that are forwarded by subscription dependencies. In
general, reaction time is updated before a send operation, while
data age is updated before receive and send operations.

Algorithm 2 details the message creation for all callbacks.
For timers, Lines 2-3 create a new empty message, while sub-
scriptions take the newest message in the buffer in Lines 4-5.
For fusion nodes and timer actuators, Lines 6-9 collect all en-
tries from forwarded messages of subscription dependencies,
after which the forward buffer is cleared.

The next part is the subscription execution, which is detailed
in Algorithm 3. First, Line 2 executes the function of the
subscription. We assume each callback executes according
to its WCET. Line 3 updates the maximum data age of the
analysis registers with the entries that are saved from the
previous executions. Lines 4-5 create and update the latest
message. After that, Line 6 updates the message registers with
the entries of the new message. Then, Line 7 updates the
analysis registers for both the maximum reaction time and
maximum data age with the new message register contents.

Algorithm 4 Timer Execution
1: procedure EXECUTETIMER
2: activationBuffer--
3: msg = createMessage()
4: if sdi == None then
5: if hasLatestMessage() then
6: msg.addEntry(last,now,[id])
7: else
8: msg.addEntry(now,now,[id])
9: now = now+wcet

10: updateAnalysisDataAge(now)
11: updateLatestMessage(msg)
12: updateMessageRegisters()
13: updateAnalysisRegisters(now)
14: sendMessage(msg)

Line 8 forwards the message to all callbacks that include
the subscription as a subscription dependency. Additionally,
it adds the forward callback to the history of all entries of the
forwarded message. Finally, Line 9 sends a message so that
the subscription with subj with subTj = pubTi receives it.

Next is the execution of timers, which are part of sensors,
timer fusion, and timer actuators. Timers cannot directly pro-
cess received messages, but instead create new messages from
sensor data or process data from subscription dependencies.

Algorithm 4 details the timer execution and the updating
process for the timing values. Line 2 decreases the activation
buffer, as the timer is executed. Lines 3-8 create the message.
For fusion and actuator timers, Line 3 collects the messages
from all subscription dependencies that are stored in the
forward buffer. For sensor timers, Lines 4-8 create the first
entry of the message. For the first timer execution, the current
time now is used for both reaction time and data age origin
dates. For all other executions, the data age origin date is the
current time now, while the reaction time origin date is the
start time of the previous execution last. Line 9 represents
the callback execution. We assume each callback executes as
long as its WCET. After that, the timing analysis values are
updated for the analysis and message registers.

The data age analysis register is updated with the previous
message register entries in Line 10. Then, the latest message
is updated in Line 11. The new message is used in Line 12 to
update the entries in the message registers. After that, Line 13
updates the analysis registers, including the maximum reaction
time and maximum data age using the new values in the
message register. Finally, Line 14 publishes the message, so
that subscriptions subj with subTj = pubTi receive it.

With this method, existing ROS2 systems can measure the
end-to-end timing values of all chains. After the execution,
each callback includes an entry for each chain in its analysis
register that ends with the callback itself. The maximum
reaction time and maximum data age of each complete cause-
effect chain is stored in the analysis registers of each actuator
callback. In addition, each entry includes a list of the callbacks
that are part of the chain. This method can be applied to the
executor simulation in Subsection VII-A and to existing ROS2
systems to measure the end-to-end timing latencies.

10

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Sensor 2 Filter 2

Sensor 1 Filter 1

Fusion Filter 3 Actuator

Fig. 5: Fusion system with two chains as case-study.

TABLE IV: Analysis for over-utilized system

System Chain Cchain

[ms]
Upper
bound [ms]

Lower
Bound [ms]

Observed
[ms]

subscription fusion +
subscription actuation

Chain1 110.0 1160.0 1080.0 1090.0
Chain2 160.0 1950.0 1070.0 1080.0

subscription fusion +
timer actuation

Chain1 140.0 1797.5 1320.0 1330.0
Chain2 190.0 2722.5 1310.0 1320.0

timer fusion +
subscription actuation

Chain1 140.0 1797.5 1470.0 1480.0
Chain2 160.0 1787.5 1460.0 1470.0

timer fusion +
timer actuation

Chain1 170.0 2570.0 1770.0 1780.0
Chain2 190.0 2560.0 1760.0 1770.0

VIII. CASE STUDY

We examine the end-to-end latencies of the system in
Figure 5. Specifically, we calculate the upper bounds based on
the analysis in Section VI, and apply the simulation according
to Section VII-A as well as the online measurement method
from Section VII-B to the real system in ROS2.

The system in Figure 5 consists of two sensors, three filters,
one fusion class, and one actuator class. The sensors and filters
are implemented with the sensor timer and filter classes from
Section II-C. For the fusion and actuator node, we compare
the timing behavior between the subscription-based and timer-
based types of each class. As a result, we evaluate four
different system types. For each class, the number of callbacks
per chain changes, which we specify for each chain in the
analysis. For example, a subscription actuator only includes
one callback, while a timer actuator includes two for each
chain that it is part of. We further configure the subscription
fusion class to utilize the subscription of filter1 as the trigger
subscription, while filter2 is a passive subscription.

For each component, we set the execution time of the
callbacks and the period of the timers. We consider two
different cases, specifically an over-utilized system and an
under-utilized system. Let Csum be the sum of all callback
execution times. For an over-utilized system, Csum > Ti for
all timers tmri, while Csum < Ti for an under-utilized system.
For an over-utilized system, the periods of the timers are set
to Ti = Csum

4 for sensor class nodes and to Ti = Csum

2
for the timer fusion and timer actuator. For an under-utilized
system, we set the period to Ti = Csum · 2 for the sensors
and Ti = Csum · 4 for timer fusion and timer actuators. For
each sensor and filter, we set the execution time such that
Csensor1 = Cfilter1 = 10 ms, Csensor2 = Cfilter2 = 20
ms, and Cfilter3 = 30 ms. For the fusion block, we set the
execution time of all timer and subscription callbacks τi to
Ci = 30 ms. We assume each callback executes as long as its
WCET and all callbacks have a buffer size of ki > 1.

TABLE V: Analysis for under-utilized system

System Chain Cchain

[ms]
Upper
bound [ms]

Lower
Bound [ms]

Observed
[ms]

subscription fusion +
subscription actuation

Chain1 110.0 1430.0 540.0 550.0
Chain2 160.0 2490.0 530.0 540.0

subscription fusion +
timer actuation

Chain1 140.0 2900.0 1320.0 1330.0
Chain2 190.0 4140.0 1310.0 1320.0

timer fusion +
subscription actuation

Chain1 140.0 2900.0 1470.0 1480.0
Chain2 160.0 2890.0 1460.0 1470.0

timer fusion +
timer actuation

Chain1 170.0 4730.0 2490.0 2500.0
Chain2 190.0 4720.0 2480.0 2490.0

Table IV and Table V display the timing values of the
system types for the over-utilized and under-utilized case,
respectively. We further denote the sum of the execution times
of the tasks along a chain as Cchain in Tables IV and V.
For each chain, the Cchain column specifies the sum of
its callback execution times. The upper bounds and lower
bounds are derived based on the methods presented in Sec-
tions VI and VII-B, respectively. For the lower bound and
observed values, the last callback of the actuator stores the
timing values of both chains and are read out after the timing
values remain static. In addition, the timing values of the lower
bound and observed columns correspond to the maximum
reaction time and the maximum data age, as we observed these
values to be equal for every system and for all executions.

As shown in Table IV, the system types have different
timing behaviors, with the subscription-based system having
the best and the timer-based systems having the worst perfor-
mance for the lower bound and observed values. The observed
timing values of both chains are very similar and the lower
bound of the simulated system is almost identical to the lower
bound, but includes the overhead of running ROS2. For every
system type, the upper bound exceeds the observed values by
a large margin, as it assumes the worst-case execution pattern
in every case. Additionally, the second chain that includes a
passive subscription of a subscription fusion class has a very
pessimistic upper bound compared to timer fusion classes. We
could not observe a relation between the chain execution time
and the timing behavior, as the chains directly effect each other
when running on the same system.

Table V shows that an under-utilized system has a similar
behavior, with timer-based systems performing worse than
subscription-based ones. In addition, the margin between the
upper bound and lower bound is much larger for each chain
compared to the over-utilized system. This is due to the idle
time of timer callbacks, which could result in large delays
between message transfers. Similar to an over-utilized system,
the observed values of an under-utilized system are close to the
lower bound of the simulated system, and subscription fusion
classes have a high upper bound for the second chain.

IX. EVALUATION

As shown by the case study in Section VIII, the timing
behavior of the under-utilized and over-utilized system is
very different. In this evaluation, we further investigate this
behavior and also determine the timing behavior of ROS2
systems when changing the number of components.

11

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Camera N

Camera 1

Fusion Perception Planning Control Actuator

Fig. 6: Navigation system with variable number of cameras to
evaluate the timing behavior of the chain highlighted in red.

In this section, we consider the basic autonomous driving
system shown in Figure 6. It includes N cameras, a fusion,
a perception, a planning, a control, and an actuator node.
The cameras are sensor nodes, while the fusion node is
implemented with a subscription fusion class. The actuator
is a subscription actuator, while the perception, planning, and
control nodes are implemented as filters. We determine the
end-to-end timing latencies for the chain that is highlighted in
red. It includes a static amount of callbacks, which include the
sensor timer, one passive fusion subscription, one fusion timer,
three filter subscriptions and one actuator subscriptions. We
observe the timing behavior of this chain while changing the
number of cameras of system. Each camera adds one sensor
timer node and one passive fusion subscription to the system.

The system includes N cameras for each case. For the
sensors, we use a timer with a period of 100ms and a WCET
of 5ms. The sensor fusion includes one subscription per
camera, each with a WCET of 5ms. For each camera, the total
WCET of the added callbacks, consisting of the the sensor
node timer callback and fusion node passive subscription, is
10ms. For the perception, the planning, the control, and the
actuator subscriptions, the respective WCET is 10ms. In total,
the WCET of the filters and actuators is 40ms. As a result,
the system is under-utilized if the number of cameras is less
than six, perfectly utilized if six cameras are included, and
over-utilized if there are more than six cameras.

As shown in Figure 7, the timing behavior is very different
for the under-utilized and over-utilized cases when changing
the number of cameras. Over all cases, the upper bound is
linearly increasing with the number of cameras, while the
lower bound has two distinct patterns. If N ≤ 5, the system
is under-utilized and for each added camera an additional
latency of 10ms is added, which corresponds to the added
WCET per camera, including the sensor timer callback and
passive fusion subscription. For N = 6, the system is perfectly
utilized and the observed lower bound is much smaller than
the observed values. This can be explained by the overhead
when running the system, which leads to the system being
over-utilized and performing like an over-utilized system. For
N ≥ 7, the observed values and lower bound perform like
an over-utilized system. In addition, the lower bound and
observed values are very similar to the upper bound values
for this chain. For the over-utilized chain, the timing value
increases by 70ms per added camera, as every callback is
executed in every processing window and the chain consists
of six callbacks and also needs to process the external event
with one additional processing window.

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8
1

Number of Cameras

M
R

T
&

M
D

A
[s

] Lower Bound Upper Bound Observed

Fig. 7: End-to-end latencies of the system in Figure 6 when
varying the number of cameras. The graphs show the values
for both maximum reaction time and maximum data age, as
these are equal for this system.

As shown in the evaluation, the under-utilized system per-
forms much better than the over-utilized system. Therefore,
it is important to consider the periods of all timers and the
execution times of all callbacks that are registered to the
executor. Additionally, we observe that our system does not
leave the over-utilized case once it has reached it; hence, it is
important that this state is never reached. For example, this can
be done by guaranteeing that the sum of all execution times
does not exceed the periods of each timer or by determining
the execution patterns so that it does not transition to this state.

X. CONCLUSION

In this paper, we explored the end-to-end timing analysis of
ROS2 systems that are executed on a single ECU with a single-
threaded executor. We introduce the main components that are
part of the ROS2 architecture and form the systems. Based on
these components, we introduce node classes, which specify
the composition of these components and how they propagate
data through the system. After that, we provide an upper bound
analysis to determine the maximum end-to-end latencies of
these systems. Additionally, we provide a simulation method
to replicate the schedule when executing the system on a single
executor. We introduce a measurement method to determine
the end-to-end timing behavior when running ROS2 systems
and when simulating the systems with our method.

The analysis shows that ROS2 systems perform vastly
different depending on the utilization of the system. An under-
utilized system performs much better than an over-utilized
system and there is large margin between the observed values
and the upper bound for the under-utilized case. In addition,
ROS2 systems need to be guaranteed to never reach an over-
utilized state, as they do not leave that state once is has been
reached. The results demonstrate that the end-to-end analysis
is an important aspect that needs to be considered when
designing systems in ROS2. As the user can freely configure
each system in ROS2, this analysis can provide insights on
the expected end-to-end behavior for each configuration.

We plan to extend our analysis to systems that consist
of multiple ECUs. Furthermore, we want to improve the
scheduler design and provide guidelines for creating ROS2
systems that improve the general timing behavior.

12

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

ACKNOWLEDGMENTS

This work has received funding by the German Federal
Ministry of Education and Research (BMBF) in the course
of the 6GEM research hub under grant number 16KISK038.

REFERENCES

[1] AUTOSAR. Specification of timing extensions, November 2020. release
R20-11.

[2] T. Blass, D. Casini, S. Bozhko, and B. B. Brandenburg. A ros 2 response-
time analysis exploiting starvation freedom and execution-time variance.
In Proceedings of the 42nd Real-Time Systems Symposium (RTSS), 2021.

[3] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg.
Automatic latency management for ros 2: Benefits, challenges, and open
problems. In Proceedings of the 27th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021.

[4] D. Casini, T. Blass, I. Lütkebohle, and B. B. Brandenburg. Response-
time analysis of ros 2 processing chains under reservation-based schedul-
ing. In Proceedings of the 31st Euromicro Conference on Real-Time
Systems (ECRTS), 2019.

[5] H. Choi, Y. Xiang, and H. Kim. Picas: New design of priority-
driven chain-aware scheduling for ROS2. In 27th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2021,
Nashville, TN, USA, May 18-21, 2021, pages 251–263. IEEE, 2021.

[6] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli. Period optimization for hard real-time
distributed automotive systems. In Proceedings of the 44th Annual
Design Automation Conference, page 278–283, 2007.

[7] M. Dürr, G. von der Brüggen, K.-H. Chen, and J.-J. Chen. End-to-end
timing analysis of sporadic cause-effect chains in distributed systems.
ACM Trans. Embed. Comput. Syst., 18(5s), oct 2019.

[8] N. Feiertag, K. Richter, J. E. Nordlander, and J. Å. Jönsson. A compo-
sitional framework for end-to-end path delay calculation of automotive
systems under different path semantics. In RTSS 2009, 2008.

[9] A. Girault, C. Prévot, S. Quinton, R. Henia, and N. Sordon. Improving
and estimating the precision of bounds on the worst-case latency of task
chains. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2578–2589, 2018.

[10] M. Günzel, K. Chen, N. Ueter, G. von der Brüggen, M. Dürr, and
J. Chen. Timing analysis of asynchronized distributed cause-effect
chains. In 27th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2021, Nashville, TN, USA, May 18-21,
2021, pages 40–52. IEEE, 2021.

[11] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kit-
sukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi. Autoware on
board: Enabling autonomous vehicles with embedded systems. In 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pages 287–296, April 2018.

[12] T. Kloda, A. Bertout, and Y. Sorel. Latency analysis for data chains of
real-time periodic tasks. In 2018 IEEE 23rd International Conference
on Emerging Technologies and Factory Automation (ETFA), volume 1,
pages 360–367, 2018.

[13] Open Robotics. Ros2: Foxy, May 2022. https://docs.ros.org/en/foxy.
[14] G. Pardo-Castellote. Omg data-distribution service: architectural

overview. In 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., pages 200–206, 2003.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng. Ros: an open-source robot operating system.
volume 3, 01 2009.

[16] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio. Rosch:real-time
scheduling framework for ros. In 2018 IEEE 24th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 52–58, 2018.

[17] J. Schlatow and R. Ernst. Response-time analysis for task chains
in communicating threads. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–10, 2016.

[18] Y. Tang, Z. Feng, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi.
Response time analysis and priority assignment of processing chains on
ROS2 executors. In 41st IEEE Real-Time Systems Symposium, RTSS
2020, Houston, TX, USA, December 1-4, 2020, pages 231–243. IEEE,
2020.

[19] The Autoware Foundation. Autoware, 2022. https://www.autoware.org/.

[20] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan, and Z. Shao.
Rt-ros: A real-time ros architecture on multi-core processors. Future
Gener. Comput. Syst., 56:171–178, 2016.

13

https://docs.ros.org/en/foxy
https://www.autoware.org/

NS-FTL: Alleviating the Uneven Bit-Level Wearing
of NVRAM-based FTL via NAND-SPIN
Wei-Chun Cheng, Shuo-Han Chen, Yuan-Hao Chang, Kuan-Hsun Chen∗, Jian-Jia Chen∗,

Tseng-Yi Chen†, Ming-Chang Yang‡, Wei-Kuan Shih§
Institute of Information Science, Academia Sinica, Taipei, Taiwan

∗TU Dortmund, Deaprtment of Computer Science, Dortmund, Germany
†Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
‡The Chinese University of Hong Kong, Department of Computer Science and Engineering, Hong Kong

§National Tsing Hua University, Department of Computer Science, Hsinchu, Taiwan
e-mail: {weichun, qoolili, johnson}@iis.sinica.edu.tw, ∗{kuan-hsun.chen,jian-jia.chen}@cs.uni-dortmund.de,

†tychen@g.ncu.edu.tw, ‡mcyang@cse.cuhk.edu.hk, §wshih@cs.nthu.edu.tw

Abstract—Non-Volatile random access memory (NVRAM)
has been regarded as a promising DRAM alternative with
its nonvolatility, near-zero idle power consumption, and byte
addressability. In particular, some NVRAM devices, such as
Spin Torque Transfer (STT) RAM, can provide the same or
better access performance and lower power consumption when
compared with dynamic random access memory (DRAM). These
nice features make NVRAM become an attractive DRAM re-
placement on NAND flash storage for resolving the management
overhead of the flash translation layer (FTL). For instance, when
adopting NVRAM for storing the mapping entries of FTL, the
overheads of loading and storing the mapping entries between
the non-volatile NAND flash and the volatile DRAM can be
eliminated. Nevertheless, due to the limited lifetime constraint
of NVRAM, the bit-level update behavior of FTL may lead to
the issue of uneven bit-level wearing and the lifetime capacity
of those less-worn NVRAM cells could be underutilized. Such
an observation motivates this study to utilize the emerging
NAND-like Spin Torque Transfer memory (NAND-SPIN) for
alleviating the uneven bit-level wearing of NVRAM-based FTL
and making the best of the lifetime capacity of each NAND-SPIN
cell. The experimental results show that the proposed design can
effectively avoid the uneven bit-level wearing, when compared
with page-based FTL on NAND-SPIN.

Index Terms—NAND-SPIN, FTL, NAND Flash, NVRAM

I. INTRODUCTION

Flash translation layer (FTL) has been used extensively to
manage the constraints of NAND flash memory on NAND
flash storage devices. FTL remaps write requests to writable
free space and records the mapping between logical address
space and physical address space as logical-to-physical map-
ping entries. These mapping entries are loaded into dynamic
random access memory (DRAM) for updates and stored back
to NAND flash for persistence. Vulnerabilities of DRAM-
based FTL include load/store overhead and possible data loss
during sudden power outages. To resolve these issues, non-
volatile random access memory (NVRAM) has been investi-
gated to replace DRAM for hosting FTL with its nonvolatility
and similar-to-DRAM access performance [3, 4, 9]. Examples
of NVRAM include Phase Change Memory (PCM) and Spin
Torque Transfer (STT) RAM. The major design consideration
of NVRAM-based FTL is the lifetime constraint of NVRAM.
In particular, the bit-level update pattern during mapping entry
updates could cause uneven bit-level wearing to NVRAM

cells. When part of the cells in a mapping entry wear out
prematurely, the lifetime capacity of other less-worn cells
in the same entry is underutilized. Even though previous
researchers [4] have tried to distribute the updates of mapping
entries evenly across the whole NVRAM for avoiding uneven
inter-entry wearing, the issue of uneven intra-entry bit-level
wearing receives much less attention.

To alleviate the issue of uneven bit-level wearing, this
study proposes to utilize the emerging NAND-like Spin
Torque Transfer memory (NAND-SPIN) [10] as the underly-
ing NVRAM for FTL. NAND-SPIN, which is evolved from
STT-RAM and Spin Orbit Torque (SOT) RAM, has shorter
access latency and provides higher read/write throughput,
when compared with DRAM. In addition, NAND-SPIN has
a higher areal density than both STT-RAM and SOT-RAM
for providing larger capacity with the same die area. NAND-
SPIN allows bit-level programs1 to alter individual cells from
0 to 1. However, unlike previous NVRAMs, changing NAND-
SPIN cells from 1 to 0 needs to be carried out in the unit of
string and is referred to as the string-based erase. Note that
a NAND-SPIN string is composed of multiple NAND-SPIN
cells, each of which stores one bit.

The unique string-based erase of NAND-SPIN provides
the possibility of alleviating the uneven bit-level wearing
issue of NVRAM-based FTL. This is because, according
to our investigation, the uneven bit-level wearing is mainly
attributed to the unpredictability of bit-level patterns during
FTL mapping updates, and string-based erases can partially
resolve the unpredictability by ensuring cells of the same
string receive the same number of erases. Nevertheless, since
changing a cell from 1 to 0 requires whole-string erases,
directly deploying conventional FTL [1] on NAND-SPIN
could lead to excessive erases and cause uneven wearing
between mapping entries. In summary, the technical difficulty
of hosting FTL on NAND-SPIN lies in how to alleviate both
the uneven inter- and intra-entry wearing while minimizing
the number of string-based erases.

To utilize the nice features of NAND-SPIN for NVRAM-
based FTL, this study proposes a NAND-SPIN FTL (NS-

1In this study, the term “program” and “write” are used interchangeably
for referring to the operation of changing the value in an NVRAM cell.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

FTL) to alleviate both the uneven inter-entry and intra-entry
bit-level wearing issue of NVRAM-based FTL and make the
best of the lifetime capacity2 of every NAND-SPIN cell.
NS-FTL alleviates the uneven bit-level wearing by trying to
ensure cells of a NAND-SPIN string can all be programmed
through bit-level programs before string-based erases. Such
an approach makes cells of the same NAND-SPIN string
have similar numbers of programs and erases. In addition, this
approach also allows mapping entries to be updated multiple
times by changing bits from 0 to 1 with bit-level programs and
avoids 0-to-1 updates to minimize the number of string-based
erases. NS-FTL introduces three different components: (1)
the inverted mapping strategy, (2) the zig-zag space allocator,
and (3) the dual rotation wear leveler. The inverted mapping
strategy is firstly used to minimize the number of ‘1’ bits
during updates by flipping the bits of to-be-program mapping
entry, when the number of to-be-program ‘1’ bits is more than
that of ‘0’ bits. Next, the zig-zag space allocator is included
to manipulate the allocation strategy of NAND flash storage
for enhancing the possibility of the 0-to-1 update pattern.
Finally, the dual rotation wear leveler is utilized to alleviate
the condition of uneven inter-entry wearing.

The contributions of this study can be highlight as follows:
• This study is a pioneer design proposed to resolve the

uneven bit-level wearing issue of NVRAM-based FTL.
• The proposed NS-FTL achieves its design goals by

allowing an FTL mapping entry to receive multiple
updates through the bit-level program feature of NAND-
SPIN via maximizing the possibility of the 0-to-1 update
pattern with the proposed components.

• Experimental results show that the proposed NS-FTL can
effectively reduce the standard deviation of the bit-level
program/erases by up to 88.86%, when compared with
naively deploying page-based FTL [1] on NAND-SPIN.

The rest of this study is organized as follows. The back-
ground and motivation are described in Section II. The
design of NS-FTL is then introduced in Section III. Next,
the evaluation results are explained in Section IV. Finally,
Section V presents the concluding remarks of this study.

II. BACKGROUND AND MOTIVATION

A. NVRAM-based FTL

NAND flash memory has become the mainstream storage
medium in computer systems with its high access (read
and write) speed and shock resistance. Nevertheless, NAND
flash has several management constraints, including the erase-
before-write property, asymmetric program/erase (P/E) units,
and limited P/E cycles. For instance, a NAND flash block is
the minimum erase unit and consists of a fixed number of
pages, while a NAND flash page is the smallest read/write
unit. To manage the constraints of NAND flash, FTL is
utilized to redirect write requests to the free (erased) area
and maintains logical-to-physical mapping entries. As shown
in Figure 1, when NAND flash storage revives data updates,

2Lifetime capacity refers to the total number of writes that an NVRAM
cell can endure before worn out.

Fig. 1. Conventional DRAM-based FTL, in which mapping entries
are loaded onto DRAM for updates and stored back to NAND flash for
persistence. Notably, the modules of space controller, wear leveling, and
garbage collection are used to manage the constraints of NAND flash.

mapping entries are loaded from NAND flash pages into
DRAM for mapping entries updates. Then, those updated
entries are stored back to NAND flash pages for persistence.

These load and store operations of mapping entries induce
internal management overhead on NAND flash devices. In
addition, due to the size difference between a mapping entry
and the minimal access unit of NAND flash, storing mapping
entries back to NAND flash also induces the problem of
write amplification. For instance, even when only few bits
are updated for a mapping entry update, a whole flash page
needs to be written for preserving those updated bits. To avoid
the write amplification and lower the management overhead
of FTL, NVRAM has been considered to replace DRAM and
used to store mapping entries of FTL.

As the primary design issue of NVRAM-based FTL is the
lifetime constraint of NVRAM, studies have been proposed to
avoid intensive mapping updates. For instance, Liu et al. [4]
proposed a write-activity-aware PCM-assisted flash memory
management scheme, also known as PCM-FTL, to reduce
the maximum number of bit flips on the PCM. PCM-FTL
employs page-based mapping for random writes, block-based
mapping for sequential writes, and an inter-entry wear leveler.
Nevertheless, the bit-level update behaviors of FTL are not
considered within the design of PCM-FTL. In particular,
uneven bit-level wearing may lead to premature wearing to
some of the NVRAM cells in a mapping entry and leave the
lifetime capacity of the rest NVRAM cells underutilized.

B. NAND-SPIN

NAND-SPIN is regarded as a promising successor to STT-
RAM and SOT-RAM with comparable access latency and

Heavy Metal

Vdd

W
L[
0
]

BL

W
L
[1
]

BL

W
L
[2
]

BL

W
L
[3
]

BL

W
L[
4
]

BL

W
L
[5
]

BL

W
L
[6
]

BL

W
L
[7
]

PSL

PS

BL

GND

NSL

NS

Iprogram Iread

Ierase

BL: bit line

WL: Word line

PSL: PS line

NSL: NS line

Multiple

Tunnel

Junction(MTJ)

Fig. 2. NAND-SPIN Memory, in which 2n MTJs are integrated onto the
same heavy-metal strip and share the same PMOS (PS) transistor. Compared
with STT-RAM and SOT-RAM, NAND-SPIN can achieve higher density, better
energy efficiency and faster access speed.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

better energy efficiency, as summarized in Table I. NAND-
SPIN resolves the source degeneration3 issue of STT-RAM
via unidirectional program/erase current and achieves higher
density than SOT-RAM via sharing the heavy metal between
cells. As shown in Figure 2, NAND-SPIN connects 2n

Magnetic Tunnel Junction (MTJ) onto one heavy-metal strip.
MTJ is the basic storage unit of NAND-SPIN memory and
consists of 2 ferromagnetic layers, which are the reference
layer with fixed magnetization direction and the free layer
with alterable magnetization direction. The value stored in the
MTJ cell is determined by the parallelity between the fixed
and free layers. In this study, we define the parallel state as
the value of 1 and the antiparallel state as the value of 0.

TABLE I
COMPARISON OF STT-RAM, SOT-RAM, AND NAND-SPIN [10].

Parameters STT-RAM SOT-RAM NAND-SPIN

Size (F 2) 40.3 9*2 7.95
Read Latency (ns) 1.62 1.63 1.65

Write Latency (ns)
‘0’ to ‘1’: 6 ‘0’ to ‘1’: 0.7 Erase: 1
‘1’ to ‘0’: 4 ‘1’ to ‘0’: 1 Program: 4

Read Energy (fJ)
‘0’: 15.336 for ‘0’: 15.987 ‘0’: 19.173
‘1’: 16.285 for ‘1’: 16.78 ‘1’: 20.134

Write Energy (fJ)
‘0’ to ‘1’: 627 ‘0’ to ‘1’: 178.6 Erase: 30.91 /bit

‘1’ to ‘0’: 1387 ‘1’ to ‘0’: 127.2 Program: 369.7 /bit

On NAND-SPIN, the parallelity of an MTJ cell is changed
through either erase operation or write operation. For erase
operation, NAND-SPIN cells need to be erased to antiparallel
state in the unit of string. Erase operation is achieved by
activating the selection transistors (PS and NS) of the selected
string and passing a charge current through the heavy-metal
strip to generate the SOT (Ierase in Figure 2). Erased cells
are in the antiparallel state and represent the value of 0.
On the other hand, program operation switches bit-cells to
parallel state with the value of 1 by activating the access
transistors and PS transistors of those bit-cells to be switched
and grounding bit-lines (BLs) for a current, which induces the
STT, to flow from the free layer to reference layer of MTJs
(Iprogram in Figure 2). Meanwhile, read operations require
the access transistors and NS transistors to be activated. Then,
BL is connected to the sensing amplifier for sensing the
resistance level of MTJs for determining the stored data.

Based on NAND-SPIN, previous studies [11, 12] mainly
focus on reducing the number of erases when NAND-SPIN
is utilized as the processor cache. For instance, Wu et al. [11]
propose an adaptive buffer entry (ABE) write policy to adap-
tively extend the write data length under a fixed maximum
supply current. Meanwhile, a non-volatile look-up table is
proposed by Zhang et al. [12] to enable a shared random
access module for fast configuration and readout operations.
The applicability of alleviating the uneven bit-level wearing
on NVRAM via NAND-SPIN receives much less attention.

C. Motivation

Designs of NVRAM-based FTL have been proposed to
store the management data of FTL on NVRAM. However,

3Source degeneration refers to the degraded drivability of the access
transistor in STT-RAM due to the smaller gate-source bias when current
flows from the source line (SL) to bit line (BL) [10].

most of previous NVRAM-based FTL designs [4] focus on
reducing write traffic of FTL to reduce the number of overall
mapping entry updates on NVRAM. The problem of uneven
bit-level wearing is neglected in previous studies. The bit-
level uneven wearing on NVRAM is induced by the fact that
updates to mapping entries are conducted in bit level, and the
number of writes to each NVRAM cell is not balanced.

With the emergency of NAND-SPIN memory, we observe
the opportunity of alleviating the uneven bit-level wearing
condition of NVRAM-based FTL via the string-based erases.
String-based erases can naturally ensure that cells in the
same string receive the same number of erases. In other
words, if a mapping entry is stored on a single NAND-
SPIN string, cells of a mapping entry will have the same
number of erases. Nevertheless, string-based erases can not
solely resolve the uneven bit-level wearing issue because the
content of mapping entry updates is unpredictable. Thus, the
number of programs on each cell can not be guaranteed. On
the other hand, directly deploying conventional FTL [1] on
NAND-SPIN could lead to excessive erases because updating
a cell from 1 to 0 requires the string-based erase. In summary,
the major issue of alleviating the uneven bit-level wearing
via NAND-SPIN lies in how to alleviate uneven intra-entry
wearing and avoid uneven inter-entry wearing by minimizing
the number of string-based erases.

III. NAND-SPIN-BASED FLASH TRANSLATION LAYER

A. Overview

To revolve the uneven bit-level wearing of NVRAM-based
FTL, this section presents a NAND-SPIN-based FTL (NS-
FTL) to ensure bits of a NAND-SPIN string can revive similar
numbers of programs and erases. NS-FTL realizes this design
goal by allowing a mapping entry to receive multiple mapping
updates with bit-level programs to change bits from 0 to
1 before string-based erases are used to change all bits in
a NAND-SPIN string from 1 to 0. Therefore, as most bits
are programmed before erased, the uneven wearing condition
is diminished. To the best of our investigation, few studies
have investigated the applicability of utilizing NAND-SPIN
to revolve the uneven bit-level wearing issue of NVRAM-
based FTL. The system architecture of the proposed NS-FTL
is illustrated in Figure 3.

NAND Flash Memory

NAND SPIN Flash Translation Layer

Controller

NAND SPIN

Mapping Table

Inverted Mapping Strategy

NAND Flash Storage Device

Data Area

C
o
p
y
o
n
W
ri
te

Zig Zag Space Allocator

Dual Rotation Wear Leveler

Fig. 3. System architecture of the proposed NS-FTL, in which mapping
entries of the FTL are stored on NAND-SPIN and a small copy-on-write
buffer is utilized to prevent inconsistency during updating a mapping entry.

The proposed NS-FTL is designed as an FTL to manage
both the mapping entries of FTL and the storage space of

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

NAND flash memory. NS-FTL is a page-based FTL and
records the logical-to-physical mapping for each flash page.
Each mapping entry is stored on a single NAND-SPIN string.
In other words, a mapping entry can be erased independently
without affecting other entries. During updating an existing
entry, a small copy-on-write buffer is used to prevent incon-
sistency if a power failure happens during mapping entry
updates. The core concept of NS-FTL is to allow a mapping
entry to receive multiple updates without erases. To enforce
this concept, NS-FTL first minimizes the number of ‘1’ bits
in mapping entry updates by the inverted mapping strategy
(see Section III-B) to flip the bits of a mapping entry if
the number of to-be-program ‘1’ bits is larger than that of
‘0’ bits. Secondly, to update a mapping entry multiple times
without string-based erases, the zig-zag space allocator (see
Section III-C) is included to maximize the possibility of the
0-to-1 update pattern. With the first two components, NS-
FTL aims to alleviate the uneven intra-entry wearing. Finally,
to avoid uneven inter-entry wearing, the dual-rotation wear
leveler (see Section III-D) is included to periodically rotate
the mapping entries for avoiding excessive updates to a small
region of NAND-SPIN strings.

B. Inverted Mapping Strategy

Due to the unique physical layout of NAND-SPIN, up-
dating a NAND-SPIN cell from 1 to 0 requires the string-
based erase, which consumes the valuable lifetime of NAND-
SPIN cells. To avoid excessive string-based erases, NS-FTL
minimizes the number of ‘1’ bits during updating mapping
entries by flipping the mapping entry when the number of
‘1’ bits is larger than that of ‘0’ bits. Then, future mapping
entry updates can be achieved via altering ‘0’ bits to ‘1’ bits
with the bit-level programs of NAND-SPIN, thus lowering
the number of string-based erases. The mechanism of inverted
mapping strategy can be summarized as Figure 4. Note that an
extra invert bit is included in each mapping entry to record
the flip status and is set to 1 if the entry is inverted when
stored on the NAND-SPIN string.

Fig. 4. The inverted mapping strategy, in which mapping entry updates are
checked for counting the number of to-be-programmed ‘1’ bits and inverted
if the number of to-be-programmed ‘1’ bits is larger than the number of
to-be-programmed ‘0’ bits.

As shown in Figure 4, the inverted mapping strategy cat-
egorizes mapping entry updates into two different scenarios.

The first scenario is writing to erased mapping entries. As
shown in Figure 4(a), mapping entries are inverted if the
number of to-be-programmed ‘1’ bits is larger than that of
to-be-programmed ‘0’ bits. For instance, when writing the
mapping entry (10111, 01110) to an erased NAND-SPIN
string, the mapping will be inverted for inducing less 0-to-
1 programs. Such an approach makes most of the bits to be
‘0’ after initial entry updates and lowers the possibility of the
1-to-0 update pattern during future mapping entry updates for
avoiding string-based erases, as most of the bits are left as 0.

Leaving most of the bits in an entry as 0 also provides the
possibility of updating the entry multiple times via bit-level
programs without string-based erases. For instance, as shown
in Figure 4(b), writing a mapping update (01001, 01111)
into an existing entry (01000, 00100) requires only 0-to-1
programs and induce no erases. On the other hand, when
writing updated mapping to an existing entry, bits of the to-
be-updated entry are flipped if the flipped entry induces less
0-to-1 programs or no erases, which is the most common
condition at runtime of NS-FTL. In Figure 4(b), bits of the
updated mapping (10111, 01110) are flipped when written
to the existing entry (01000, 10001) and thus only induce
one bit-level program. Updating entries via bit-level programs
without string-based erases provides a higher chance for
every bit to be programmed before being erased, thus enabling
NS-FTL to alleviate the uneven bit-level wearing.

C. Zig-Zag Space Allocator

As NS-FTL is designed to store the logical-to-physical
mapping of NAND flash, the bit pattern of each mapping entry
is dependent on the allocation strategy of NAND flash pages.
In other words, inappropriate allocation strategy may induce
frequent string-based erases and aggravate the issue of uneven
bit-level wearing. For instance, if the allocation strategy is
unaware of the string-based erases and forces a mapping to
be erased during updates with the 1-to-0 update pattern, bits
with the value of ‘0’ may get less wearing when compared
with bits with the value of ‘1’. This is because bits with the
value of ‘1’ are programmed after erased, while bits with the
value of ‘0’ are not programmed after erased. As this variance
accumulates during each entry update, the issue of uneven
bit-level wearing becomes significant. To alleviate above
condition, the zig-zag space allocator is included to maximize
the chance of updating a mapping entry without string-based
erases, while complying with the allocation restriction of
NAND flash. The allocation strategy of the included allocator
can be summarized as Figure 5.

As shown in Figure 5(a), the allocation of NAND flash
pages are performed in a zig-zag pattern across multiple
blocks. The zig-zag allocator allows pages with different
block and page numbers to become allocatable at the same
time and provides multiple candidate pages for a logical
page update. Candidate pages with different block and page
numbers also have different bit patterns in their logical-to-
physical mappings. Such an approach increases the possibility
of updating mapping entry via bit-level programs because
there are multiple pages of different bit patterns in their
logical-to-physical mapping to choose from during logical

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Orig. PBA: 00010 0001 0

Blk 0 Blk 1 Blk 2 Blk 3 Blk 30 Blk 31

Allocated InvalidFree

...

...

...

...

...

...

...

C H

F I

A B D G

Candidate Pages for LBA update

(a) Zig Zag Space Allocation

(b) Example of allocating page for a logical page update

Candidate

Pages
00000 0100 00001 0100 00011 0001 ...
00000 0100 00001 0100 00001 0001

1 E + 2 P1 E + 2 P 1 P

Orig. PBA: Blk 2 Page 1 > 00010 0001 0

Blk
Num

Page
Num

Inv.
Bit

11101 1110 > Blk 35 Page 16

i. Check if the
page of inverted
PBA is available

ii. Find a page from
candidate pages list

00010 0001 1 1 PYes

No

E

...

Fig. 5. The zig-zag space allocator, which allocates NAND-flash pages for
logical page updates in a zig-zag pattern to maximize the chance of updating
mapping entry via bit-level programs only and with no string-based erases.

page updates. Notably, because NAND flash only allows
pages to be allocated in ascending order, each block has only
one available candidate page at a time.

The detailed workflow of the zig-zag allocator can be
summarized as Figure 5(b). While updating a mapping entry
for a logical page update, the allocator first checks if the
physical page with inverted mapping is available or not. If
it is available, the updated data content will be stored into
the physical page with inverted logical-to-physical mapping.
Then, the mapping entry update can be achieved by setting
the inverted bit to 1. In contrast, if the physical page with
inverted mapping is not available, NS-FTL will go through
candidate pages for finding a physical page with the mapping
that induces the minimal number of programs or erases. It
is worth noting that the zig-zag pattern also makes most of
the bits in the mapping entries become zero with smaller
block and page numbers. During future updates, these entries
have greater chance of being updated by bit-level programs
to increase block or page numbers without being erased.

D. Dual Rotation Wear Leveler

In addition to alleviating the uneven bit-level wearing by
exploiting the features of NAND-SPIN, the dual rotation
wear leveler is designed to resolve the issue of uneven inter-
entry wearing by referring to previous hardware-based wear
leveler [6]. Uneven inter-entry wearing happens when a few
mapping entries are updated multiple times due to intensive
logical page updates. As shown in Figure 6, to resolve this
issue, NS-FTL divides NAND-SPIN into multiple regions,
each of which is composed of a fixed number of NAND-SPIN
strings, and designates a pivot and an extra string as interval
in each region. For performing inter-entry wear leveling, the
interval will be moved forward after a region revives N entry
updates. After the interval reaches the location of the pivot,
the pivot will be moved backward and the interval will be
reset to the end of the region again. Above operations are
referred to as the in-region rotation and aim to quickly spread

the intensive logical page updates across different NAND-
SPIN strings without inducing high movement overhead.

LBA 0 9 178 16 24

In
te
rv
a
l
0

In
te
rv
a
l
1

In
te
rv
a
l
2

Region 0 & Global Pivot Region 1 Region 2

P
iv
o
t
0

P
iv
o
t
1

P
iv
o
t
2

Global Interval

............

Fig. 6. The dual rotation wear leveler, in which the rotation-based wear
leveling is performed at both the in-region and inter-region levels. After a
fixed number of entry updates are received in one region or on the NAND-
SPIN, the in-region or global interval will be moved forward.

On the other hand, rotation is also performed at the region
level, and it is referred to as inter-region rotation. The goal
of inter-region rotation is to avoid intensive mapping updates
to a region, owing to strong locality in data update patterns.
Similarly, a region is set as the global pivot, and one extra
region is included as the global interval. As the global
rotation induces larger overhead when compared with in-
region rotation, it is performed less frequently than in-region
rotation and is triggered when the NAND-SPIN revived M
entry updates, where M is larger than N . The value of N
and M can be set according to the lifetime of NAND-SPIN.
Based on previous study [7] and assuming NAND-SPIN has
the same MTJ size as STT-RAM, the lifetime is predicted to
be 4× 1012. We then refer to 103 and 106 as the value of N
and M by referring to PCM-based wear leveling study [6].

IV. PERFORMANCE EVALUATION

A. Experiment Setup

In this section, evaluations are conducted by using the
Microsoft Research Cambridge (MSR) [5] traces to evaluate
the proposed NS-FTL in terms of the bit-level wearing,
entry-level wearing, and the throughput of accessing mapping
entries on NAND-SPIN. Meanwhile, a self-collected I/O trace
is also utilized to assess the effectiveness of NS-FTL with the
workload of one-month period personal computer usages. In
the experiments, NS-FTL is implemented based on a flash
simulator [2] and compared with (1) page-based FTL [1] on
NAND-SPIN and (2) page-based FTL with hardware-based
wear leveler [6] on NAND-SPIN. These two configuration
are referred to as FTL and FTL-WL in this section. Notably,
similar to the dual-rotation wear leveler, the hardware-based
wear leveler also includes a pivot and a interval on NVRAM
and performs entry-level rotation when the NVRAM receive a
fixed number of writes, which is set as 103 in this evaluation.
The latency parameters of NAND-SPIN can be found in
Table I and the size of the NAND flash storage is 64 GB
with 16 KB pages [8].
B. Experimental Results

As the main goal of NS-FTL is to mitigate the uneven bit-
level wearing of NVRAM-based FTL, Figures 7 and 10 first
show the reduced amount of standard deviation and arithmetic
mean for bit-level program/erase count. The results show
that NS-FTL can effectively reduce the bit-level standard

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

Fig. 7. Standard deviation comparison of bit-
level program/erase count.

Fig. 8. Standard deviation comparison of
entry-level program/erase count.

Fig. 9. Total Energy Consumption.

Fig. 10. Arithmetic mean comparison of bit-
level program/erase count.

Fig. 11. Arithmetic mean comparison of entry-
level program/erase count.

Fig. 12. Total latency.

deviation and arithmetic mean by up to 88.86% and 15.84%,
when compared with page-based FTL. The average reductions
are 40.11% and 9.86% for bit-level standard deviation and
arithmetic mean. These reductions are achieved by both the
inverted mapping strategy and zig-zag space allocator. In
addition, comparing with FTL-WL, the reductions of bit-level
standard deviation and mean are 9.86% and 11.14%, which
suggests that NS-FTL can outperform FTL-WL in terms of
bit-level wear leveling.

For entry-level comparison, NS-FTL can reduce the stan-
dard deviation by 33.88% on average and up to 2.45%,
comparing with FTL and FTL-WL, as shown in Figure 8.
The reduction of entry-level standard deviation suggests that
NS-FTL can effectively utilize NAND-SPIN to alleviate un-
even bit-level wearing, while avoiding excessive string-based
erases for preventing uneven entry-level wearing. Meanwhile,
to further avoid excessive string erases, the arithmetic mean
of entry-level program/erase count is slightly increased by
1.30%, as shown in Figure 11, due to the inter-region rotation
of the dual rotation wear leveler.

The comparisons of NAND-SPIN energy consumption and
latency are reported. Figures 9 suggests that the energy
consumption can actually be decreased by 5.16% on average,
due to the reduced number of the 0-to-1 update pattern during
mapping entry updates. On the other hand, Figures 12 shows
that the latency of updating and accessing mapping entry is
similar to the page-based FTL, and the difference is only
1.58%, even with the mechanisms of NF-FTL.

V. CONCLUSION

To resolve the uneven bit-level wearing of NVRAM-based
FTL, this study firstly presents the NAND-SPIN FTL (NS-
FTL) to utilize the unique bit-level program and string-based
erase features of NAND-SPIN. NS-FTL firstly introduces the
inverted mapping strategy to minimize the number of ‘1’ bits
during mapping entry updates for avoiding excessive string-
based erases. Then, the zig-zag space allocator is included

to alter the allocation of NAND flash pages for further the
probability of the 0-to-1 update pattern. Finally, to avoid
uneven inter-entry wearing, the dual rotation wear leveler is
utilized to periodically rotate the physical location of each
mapping entry. Experimental results show that the standard
deviation of bit-level program/erase count can be reduced up
to 88.86%, when compared with the page-based FTL.

REFERENCES

[1] A. Ban. Flash file system, U.S. 5404485 A, Apr. 1995.
[2] Y.-H. Chang and T.-W. Kuo. A management strategy for the reliability

and performance improvement of mlc-based flash-memory storage
systems. IEEE Transactions on Computers, Mar 2011.

[3] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng. A pram and nand flash
hybrid architecture for high-performance embedded storage subsystems.
In Proceedings of the 8th ACM International Conference on Embedded
Software, 2008.

[4] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao. Pcm-ftl: A write-
activity-aware nand flash memory management scheme for pcm-based
embedded systems. In IEEE 32nd Real-Time Systems Symposium, 2011.

[5] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Prac-
tical power management for enterprise storage. In ACM Transactions
on Storage (TOS), 2008.

[6] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2009.

[7] K. Rani and H. K. Kapoor. Write variation aware buffer assignment
for improved lifetime of non-volatile buffers in on-chip interconnects.
IEEE Transactions on Very Large Scale Integration Systems, 2019.

[8] Samsung. Samsung v-nand@ONLINE, http://www.samsung.com/
semiconductor/products/flash-storage/v-nand/, 2017.

[9] Y. SONG, S. LEE, D. H. KANG, and Y. I. EOM. Nvram-aware map-
ping table management for flash storage devices. IEICE Transactions
on Information and Systems, 2019.

[10] Z. Wang, L. Zhang, M. Wang, Z. Wang, D. Zhu, Y. Zhang, and W. Zhao.
High-density nand-like spin transfer torque memory with spin orbit
torque erase operation. IEEE Electron Device Letters, 2018.

[11] B. Wu, P. Dai, Z. Wang, C. Wang, Y. Wang, J. Yang, Y. Cheng, D. Liu,
Y. Zhang, W. Zhao, and X. S. Hu. Bulkyflip: A nand-spin-based last-
level cache with bandwidth-oriented write management policy. IEEE
Transactions on Circuits and Systems, 2020.

[12] H. Zhang, W. Kang, Z. Wang, E. Deng, Y. Zhang, and W. Zhao. High-
density and fast-configuration non-volatile look-up table based on nand-
like spintronic memory. In IEEE Asia Pacific Conference on Circuits
and Systems (APCCAS), 2018.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:

	Introduction
	ROS2 System Model
	Main Components and Interconnects
	ROS2 Executor Scheduling
	System Composition

	Timing Model
	Task Model
	Cause-Effect Chains
	End-To-End Latencies

	Related Work
	Delimitation and Discussion of Related Work
	Cause-Effect Chain Upper Bound Analysis
	Online End-To-End Analysis
	Executor Simulation
	Online Timing Measurement

	Case Study
	Evaluation
	Conclusion
	References

