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Abstract— The Robot Operating System 2 (ROS 2) is a widely-
used collection of tools and libraries for building robot applica-
tions. It is designed to be flexible and easy to use when creating
complex robot systems with many interacting components.

Since its alpha version release in 2015, ROS 2 provides two
options in a multi-threading operating system, namely the single-
threaded executor and the multi-threaded executor. The single-
threaded executor is starvation-free by design (i.e., every task
is eventually executed) even in over-utilized systems, since the
set of eligible task instances (called wait set) is only refilled
once all task instances in the wait set are executed. The multi-
threaded executor extends this mechanism to multiple threads
that manage the wait set collaboratively. While intuitively this
extension preserves the starvation-free property, and analyses for
the multi-threaded executor even build upon this assumption, the
multi-threaded executor has not been shown to be starvation-free.

In this work, we examine the mechanism of the multi-threaded
executor in ROS 2 and demonstrate that it is prone to starvation,
i.e., some tasks may never be executed even in under-utilized
systems. This indicates risks for multi-threaded executors in the
current ROS 2 design and further leads to counterexamples to
the state-of-the-art response-time analyses by Jiang et al. (RTSS
2022) and Sobhani et al. (RTAS 2023). We propose a minimal
change in the software architecture of the ROS 2 multi-threaded
executor to enable starvation- and deadlock-free behavior. We
empirically test that we prevent starvation in concrete ROS 2
system configurations, and show that our solution incurs a
negligible overhead using the Autoware reference benchmark.
Moreover, we prove that our solution is starvation- and deadlock-
free using formal proofs and model checking.

I. INTRODUCTION

In recent years, the complexity of robot systems has in-
creased as more functionalities are incorporated. Such systems
must be safe and reliable as well as efficient and scalable,
which is a challenging tradeoff during system design.

The Robot Operating System 2 [7] (ROS 2) was released
in 2017 as the successor of ROS [8]. ROS 2 is a collection
of tools and libraries for creating modular robot systems com-
posed of many components, which are interconnected through
Data Distribution Services (DDS), a middleware standard for
real-time communication in distributed systems. The ease of
deployment is a key property of ROS 2, aiming to provide a
structured solution to create complex robot systems.

In ROS 2, tasks are scheduled by so-called executors. An
executor determines the set of eligible task instances, denoted
as wait set, at a specific time point, called polling point, and
the task instances in the wait set are then executed in the
related processing window. The goal is to utilize the resources
of the system whenever there are eligible tasks.

As the ROS 2 system is hosted by an operating system (OS)
(e.g., Linux) the multitasking and multi-threading features of
the OS can also be adopted. There are two options (and also
a hybrid of them) offered by ROS 2 to utilize multi-threading
of M threads since the release of its alpha version in 2015:

• Single-threaded executor: M executors are created, each
with one thread. The M executors independently manage
their wait sets, polling points, and processing windows.
Each task must be designated to one of the M executors.
That is, tasks do not migrate between executors (threads).

• Multi-threaded executor: One executor with M threads
is created. At run time, the M threads cooperatively
and recurringly determine one wait set at global polling
points to be processed in processing windows. The tasks
assigned to the executor can be executed in any of the M
threads, i.e., they can be executed on different threads.

The default ROS 2 single-threaded executor has been ex-
tensively studied, e.g., in response time analyses for the
ROS 2 executor using DAG-based models [2], [3] and pro-
cessing chains [11] as well as for end-to-end latency seman-
tics [12], [13]. Furthermore, novel executor designs have been
developed, e.g., PiCAS [4], the real-time executor [15], the rclc
executor [10], and a dynamic-priority-based executor [1].

Compared to the default single-threaded executor, the multi-
threaded executor offers the advantages of synchronous polling
points among the tasks and load balancing; yet, response-time
analyses for the multi-threaded executor are rather limited. In
2022, Jiang et al. [6] proposed the first response-time analysis.
They showed that the latencies of some tasks assigned to the
multi-threaded executor may be higher compared to those on
a single-threaded executor. Furthermore, they highlighted that
tasks may be removed from the wait set. In 2023, Sobhani
et al. [9] provided an analysis for constrained and arbitrary
deadline systems with multi-threaded executors and added
priority-driven enhancements to improve response times.
Our Contributions: We examine the mechanism of the multi-
threaded executor in ROS 2, which has not been significantly
changed since the ROS 2 alpha in 2015. Our contributions are:

• We show that the ROS 2 multi-threaded executor is prone
to starvation, i.e., a task is never executed even after
an instance of it has already been put into the wait set.
We provide concrete ROS 2 system configurations that
suffer from starvation. These examples indicate the risks
of multi-threaded executors in current ROS 2 systems.
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• We propose design changes to the multi-threaded ex-
ecutor to solve the starvation problem efficiently with
minimal changes to the mechanism of the multi-threaded
executor. We empirically tested that the proposed design
prevents starvation in all system configurations in which
we previously observed starvation. Moreover, we used
the Autoware Reference System [14] benchmark as a
real-world example to show that our solution incurs
a negligible overhead. Furthermore, we formally prove
starvation freedom and use model checking and formal
proofs to ensure the proposed design is deadlock-free.

• With the possibility of starvation in the existing ROS 2
multi-threaded executor, we provide a counterexample to
the response-time analyses by Jiang et al. [6] and Sobhani
et al. [9] for the multi-threaded executor. We note that we
do not provide any updated response-time analysis in this
paper, as our focus is to ensure that the multi-threading
software architecture is starvation-free.

II. SYSTEM MODEL

This section provides an overview of the ROS 2 system
model considered throughout this paper. We use ROS 2
Humble, the latest LTS release, as the reference version.

A ROS 2 system includes a set of |N | nodes, denoted as
N = {n1, n2, . . . , n|N |}. Each node has a set of tasks, and
each task is uniquely assigned to one node.

Tasks can be grouped into two categories: time-triggered
tasks, called timers, and event-triggered tasks, called subscrip-
tions. Each task is associated with a function, called callback,
which is executed when the task is scheduled. We use the
terms task and callback interchangeably in this paper. A timer
is defined as a tuple tmri = (Ti,Ci), where Ti is the period
and Ci is the worst-case execution time (WCET) of the timer’s
callback. The utilization Utmri of a timer is defined as Ci/Ti.
A subscription is defined as a tuple subi = (Ci), where Ci is
the worst-case execution time of the subscription’s callback.

Each task has an activation status that determines whether
the executor samples a task instance for execution. Tasks with
an active activation status are referred to as activated tasks. For
subscriptions, the activation status is active if and only if the
subscription buffer contains a message. The activation status of
timers is activated at every integer multiple of the timer period
since its start. The activation status for timers is deactivated
whenever the executor selects the timer for execution.

ROS 2 provides a publish-subscribe communication mech-
anism through a Data Distribution Service (DDS) middleware
for task communication. Any task can publish messages to
a topic. These messages are received by and written to the
buffers of the subscriptions subscribing to the topic. In ROS 2,
subscriptions only subscribe to a single topic. We assume
that one system core is exclusively dedicated to managing the
operating system level interrupts and DDS middleware.

Each ROS 2 system has a set of executors that are respon-
sible for the execution of the tasks of the nodes. Each node is
assigned to exactly one executor, and each task is indirectly
assigned to an executor through the assignment of its node.

Each task has a unique priority among the tasks assigned to
an executor. For simplicity of presentation, when two tasks are
assigned to the same executor, we assume that the task with
the smaller index has higher priority. A ROS 2 executor can
have one or multiple threads. All threads share the same set of
nodes and manage the execution of the tasks assigned to the
executor. For the simplicity of presentation, we assume that
each thread is exclusively assigned to one core of the system.

ROS 2 uses callback groups to control the concurrent
execution of callbacks of a node. Each callback in the node
is assigned to one callback group. Moreover, each callback
group has a type, either reentrant or mutually exclusive.

• Reentrant callback groups allow the concurrent execution
of callbacks that are in the group. Moreover, even the
same callback can be executed in parallel by multiple
threads if the schedule allows for it.

• In contrast, mutually-exclusive callback groups guarantee
that at most one callback from the callback group can be
executed at each point in time. Thus, other threads cannot
sample and execute a callback from the same callback
group until the currently executed one is finished.

III. MULTI-THREADED SCHEDULING AND STARVATION

In this section, we introduce the ideas behind the general
executor design in ROS 2, considering the default executor
provided by ROS 2 Humble. While ROS 2 uses the same
implementation for the single-threaded and the multi-threaded
executor, we start by explaining the design ideas and behavior
for the single-threaded scenario and then extend to the multi-
threaded scenario. Afterward, we discuss how the multi-
threaded executor design can cause starvation for systems with
mutually-exclusive callback groups.

A. ROS 2 Executor Design

This section explains the underlying design philosophy
behind the scheduling mechanism in the ROS 2 executor. We
start with the general philosophy, based on the single-threaded
executor, and see which problems arise when the performance
is enhanced with the multi-threaded executor. Technical details
are discussed in Section IV while this section focuses on high-
level explanations and concepts.

In ROS 2, tasks are uniquely assigned to and scheduled
by executors. These executors are conceptually different from
classical real-time schedulers (like earliest-deadline-first and
static-priority scheduling for periodic and sporadic tasks),
where each activated task instance is directly eligible to be
scheduled. In contrast, a ROS 2 executor determines the set
of eligible task instances, denoted as wait set, at a specific
time instance, called polling point, and the task instances
in the wait set are then executed in the related processing
window. Specifically, when a thread idles, the highest-priority
task instance is removed from the wait set and scheduled.
If no task instance in the wait set can be scheduled when a
thread idles, the system continues with another polling point,
followed by the related processing window, and so on.
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τ1

τ3

τ1τ2 τ2 τ1

τ3 τ3

0 1 2 3 4

Executor 1

Executor 2 τ3

Fig. 1. Over-utilized and under-utilized single-threaded executor schedules.
The red dashed lines indicate the polling points. In the schedule for Executor 2,
a polling point is initiated at time 0.5 and the thread keeps polling throughout
the dashed red idle interval until a new instance of τ3 is eligible at time 1.

The schedule in the processing window is work-conserving,
non-preemptive, and based on a given task-related priority
order. At polling points, the executor collects at most one
instance of each eligible task. Timers are eligible if they were
activated since the last time they were selected for execution,
and subscriptions are eligible if their buffer is non-empty.

This scheduling concept has advantages for the system
specification. First, timers can be specified to be executed as
frequently as possible (i.e., by setting the period to 0) without
any knowledge about the system load. Second, this suggests
that tasks are guaranteed to be executed every time they are
eligible regardless of the system configuration (i.e., even when
the system is overloaded, there is no starvation and every task
is executed in the processing window following its activation).
However, it should be noted that the timer period may not
reflect its execution frequency, as the processing window may
be longer than the timer period for overloaded systems.

For the rest of this section, we call an executor overloaded
if
∑

τi
Utmri > M , and underloaded if

∑
τi
Utmri < M , where

M is the number of threads of the executor.

Example 1. For the overloaded single-threaded executor in
the top row of Figure 1 (with two timers τ1 = (1, 1) and
τ2 = (1, 0.5)), both tasks are executed and there is no
starvation (which would occur under static-priority scheduling
if τ1 has higher priority). However, no task is executed as often
as intended (on average every 1 time unit) due to overload.

Multiprocessor systems allow load balancing to avoid such
overloaded scenarios. For instance, if there is an additional un-
derutilized executor with only one assigned timer τ3 = (1, 0.5)
(like Executor 2 in Figure 1), τ2 could be moved to that
executor, and all tasks would be executed as often as intended.
That is, the load balancing is done offline by assigning tasks
to executors based on their WCET and period.

ROS 2 supports online load balancing in multiple processor
scheduling with the multi-threaded executor. After a polling
point, the multi-threaded executor schedules the task instances
in the wait set by assigning the highest-priority task instance
in the wait set to a thread as soon as a thread idles.

The multi-threaded executor also solves another potential
problem that can arise when using multiple single-threaded
executors. For instance, we can observe in Figure 1 that the
polling points of the executors are not synchronous, even if all
timer periods are equal. Yet, synchronicity might be necessary,
for example, to ensure that all tasks in a processing window
use sensor data that is collected at the same point in time.

τ1 τ3 τ1

τ3τ4τ2

τ4

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread 1

Thread 2

Fig. 2. Online load balancing when polling points are as late as possible.

τ1

τ1

τ1

τ3τ4τ2

τ4 τ2

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread 1

Thread 2

τ3

Fig. 3. Online load balancing when polling points are as early as possible.

There are two obvious options for the realization of multi-
threaded executors. One is to start the next polling point as late
as possible, i.e., when the current processing window finishes.
Another is to start the next polling point as soon as possible,
i.e., immediately when one thread idles.

Example 2. Design option 1 - as late as possible: Figure 2
shows two consecutive processing windows for a set of 4 timers
(τ1 = (5, 2), τ2 = (5, 2), τ3 = (5, 6), τ4 = (5, 3)) scheduled
by a multi-threaded executor with two threads. In the first
window, all task instances execute according to their WCET.
In the second window, τ2 finishes its execution early (i.e., after
1 time unit) and τ3 can be scheduled on Thread 2 at time 9,
resulting in a shortened processing window.

The example in Figure 2 shows that idle time can still occur
at the end of the processing window if the next polling point
only starts once all threads idle. Yet, this idle time can also be
utilized if a polling point is started as soon as a thread idles
and there is no eligible task instance left in the wait set (e.g.,
at time 5 or 13 in Figure 2).

Example 3. Design option 2 - as soon as possible: Figure 3
shows the updated schedule from Figure 2 when the polling
points start as early as possible. At the polling point at time 5,
only instances of τ1, τ2, and τ4 are added to the wait set, since
an instance of τ3 is executing at time 5. (Similarly, τ4 is not
added to the wait set at time 9.) Note that the threads never
idle as long as task instances are eligible at each polling point.

Although it seems that the as-late-as-possible design option
is pessimistic, it ensures that all task instances in the wait set
collected at a polling point are executed in the subsequent
processing window. The as-soon-as-possible design option
however starts to collect a new wait set even when some task
instances in the old wait set have not been fully executed yet.
As a result, processing windows may overlap with each other.
For instance, in Figure 3, the instance of τ3 executed from 2
to 8 is part of the first processing window (starting at time 0)
while the parallel executed instance of τ1 is part of the second
processing window (starting at time 5).

Note that we presented these two options as if ROS 2 users
would be able to choose between them. However, ROS 2 only
provides the as-soon-as-possible option for multi-threaded
executors since its alpha version in 2015.
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B. Starvation in the Multi-Threaded Executor

The previously described design of the ROS 2 multi-
threaded executor maximizes the throughput and is, at first
glance, starvation-free. The main reason is that polling is only
initiated when there are no more task instances in the wait set
that can be scheduled. Therefore, intuitively, all task instances
have started executing (and may be finished) when a new
polling point is initiated. However, the ROS 2 multi-threaded
executor design can result in starvation for mutually-exclusive
callback groups. In the following, we detail this problem based
on examples, while a detailed analysis of the ROS 2 executor
is discussed in Section IV and a fix is provided in Section VI.

Assigning callbacks to a mutually-exclusive callback group
ensures task instances of these callbacks cannot be exe-
cuted concurrently. This feature, for instance, guarantees data
consistency for shared variables. If the highest-priority task
instance in the wait set is part of the same mutually-exclusive
callback group as a task instance that is currently executing,
it is blocked by the executing task instance and ignored
during the scheduling process; the instance with the second-
highest priority is scheduled instead (if it is not part of the
same mutually-exclusive callback group as a task instance
that is currently executing, etc.). Meanwhile, scheduling the
highest-priority callback (and all other callbacks that cannot
be executed due to the mutually-exclusive callback groups) is
postponed until the blocking task instance finishes executing.

To ensure high throughput, the ROS 2 multi-threaded ex-
ecutor initiates a polling point once a thread idles and no
task instance can be scheduled. In this situation, some task
instances may still be part of the wait set (i.e., not yet
scheduled), since they are blocked from executing due to a
mutually-exclusive callback group. However, at the start of a
polling point, ROS 2 clears the wait set (that is, ROS 2 removes
all task instances from the wait set). Afterward, it fills the wait
set with all task instances from groups that are not blocked.
This process potentially adds additional task instances from
unblocked groups to the wait set that have a higher priority
than the instances currently blocked due to mutual exclusion,
which itself can postpone executing these blocked instances.
Even more, at each polling point, instances of tasks that are
currently executing or blocked by an executing callback (due
to a mutually-exclusive callback group) are not added to the
wait set. They may be added to the wait set at a later polling
point; yet, since the callbacks are executed according to the
same static-priority order in each processing window, these
task instances may again not be executed due to higher-priority
task instances in the same mutually-exclusive callback group
that were added at the polling point. This process may continue
indefinitely, and the task instance is never executed.

Throughout this paper, we refer to a callback group as
over-utilized if

∑
τi
Utmri > 1, fully-utilized if

∑
τi
Utmri = 1,

and under-utilized if
∑

τi
Utmri < 1. Since the callbacks in a

callback group must be sequentially executed, it is impossible
to execute the callbacks as often as expected according to their
periods when the callback group is over-utilized.

Thread 1

Thread 2

τ1

τ3

τ2 τ1 τ2 τ1 τ2

τ3 τ3

0 1 2 3 4

Fig. 4. Polling as late as possible guarantees starvation freedom even for
over-utilized callback groups.

Thread 1

Thread 2

τ1 τ1

τ3

τ1

τ3

τ1 τ1

τ3 τ3 τ3

0 1 2 3 4

Fig. 5. Starvation for τ2 in the multi-threaded executor when the mutually-
exclusive group g = {τ1, τ2} is over-utilized.

We now provide examples showing that the multi-threaded
executor in ROS 2 is indeed not starvation-free. These exam-
ples cover different scenarios to show that starvation does not
only happen in corner cases but in a wide range of scenarios.
We first consider the most intuitive scenario when the callback
group is over-utilized. Second, we show that starvation also
can happen when the callback group is under-utilized. Third,
we show that recurrent activation of only one callback in a
mutually-exclusive callback group is sufficient to lead to the
starvation of other callbacks in the group; even if the overall
system utilization is very low. We implemented1 and tested all
example systems, and the described behavior corresponds to
the actual behavior of the multi-threaded executor.
Starvation with over-utilized callback groups. We show a
starvation example, where we configure the system such that
a callback group is over-utilized while the whole system can
be either under-utilized or over-utilized.

Example 4. Consider a multi-threaded executor with two
threads and three timers τ1 = (1, 1), τ2 = (1, 0.5), and
τ3 = (1, 0.5), where g = {τ1, τ2} is a mutually-exclusive call-
back group. If the polling point is initiated after all instances
finish executing, this system can be scheduled without starva-
tion, as shown in Figure 4. Specifically, τ1 is scheduled at time
0 since it has the highest priority and, due to the mutually-
exclusive callback group with τ1, τ2 cannot be scheduled,
and τ3 takes priority. In the ROS 2 multi-threaded executor,
a polling point is initiated as soon as Thread 2 idles (i.e.,
at time 0.5), and at the related polling point, the wait set is
cleared. However, τ2 is not added back to the wait set since τ1
is executing. At time 1, τ1 and τ3 release a new task instance,
the executor collects these two instances as well as an instance
of τ2 and adds them to the wait set. The same schedule as
before repeats indefinitely, as shown in Figure 5.

The above example works for any WCET of τ2, so we
have an example for under-utilized (C2 < 0.5), fully utilized
(C2 = 0.5), and over-utilized systems (C2 > 0.5). However,
the callback group g = {τ1, τ2} is over-utilized if C2 > 0.

1https://github.com/tu-dortmund-ls12-rt/ROS2-MT-Starvation-Examples
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Thread 1

Thread 2

τ3τ1

τ2

τ3τ1

τ2

τ3τ1

τ2

τ3τ1

τ2

0 1 2 3 4

Fig. 6. Starvation for τ4 in the multi-threaded executor when the mutually-
exclusive group g = {τ3, τ4} is under-utilized.

Thread 1

Thread 2

τ3 τ3τ1

τ2

τ3 τ3τ1

τ2

0 1/3 2/3 3/3 4/3 5/3 6/3

Fig. 7. Starvation for τ4 in the multi-threaded executor for the mutually-
exclusive callback group g = {τ3, τ4} due to the frequent activation of τ3.

Starvation with under-utilized callback groups. While it is
rather intuitive that starvation can happen when the system or
a callback group is over-utilized, starvation also occurs when
both the system and the callback groups are under-utilized.

Example 5. Consider four timers τ1 = (1, 0.5), τ2 = (1, 0.5),
τ3 = (1, 0.5), and τ4 = (1, 0.01), where g = {τ3, τ4} is a
mutually-exclusive callback group. Since τ1 and τ2 occupy
both threads in parallel, τ4 is removed from the wait set once
τ3 starts executing, as shown in Figure 6.

Activation-induced starvation. Even if the overall system
load is very low, starvation can occur due to the frequent
activation of one task in the group.

Example 6. Consider a system with four timers τ1 = (1, 1
3 ),

τ2 = (1, 1
3 ), τ3 = ( 12 ,

1
3 ), and τ4 = (5, 0.01), where

g = {τ3, τ4} is a mutually-exclusive callback group. Since τ1
and τ2 occupy both processors in parallel, τ3 is only started
at time 1

3 . Multiple polling points are initiated between time 1
3

and time 2
3 since Thread 2 idles (with the first of these polling

points removing the instance of τ4). At time 2
3 , the polling

point adds an instance of τ3 (which was activated at time 1
2

but not yet added to the wait set as another task instance is
executing) and an instance of τ4 to the wait set. The instance
of τ3 is assigned to Thread 1 since it has higher priority than
the instance of τ4. Thus, τ4 is starved, as shown in Figure 7.

Example 6 can easily be extended to show starvation in a
system with utilization close to 1, even if M → ∞. Specifi-
cally, assume M tasks τ1 = τ2 = . . . = τM = (X, ε) where X
is arbitrarily large and ε > 0 is arbitrarily small. In addition,
assume two tasks τM+1 = (X,X − ε) and τM+2 = (X, ε) in
a mutually-exclusive callback group g = {τM+1, τM+2}. As
a result, τM+2 will never be executed.
Summary: Starvation can occur in the ROS 2 multi-threaded
executor in a variety of situations; even if the system load
is small and when the mutually-exclusive callback groups
are under-utilized. All provided examples also work when
replacing the starved timer with a subscription.

IV. STRUCTURE OF THE ROS 2 EXECUTOR

In this section, we discuss details of the ROS 2 executor
mechanism, while the underlying concepts have been intro-
duced in Section III-A. The same implementation is utilized
for both the single-threaded and multi-threaded executors;
thus; part of the functionality is not necessary in the single-
threaded executor. We provide an overview of the mechanism
in the flow chart in Figure 8. Instead of providing details on
every state, we elaborate on the progress of the executor and
its threads for processing windows and polling points.

The flow chart in Figure 8 consists of nine abstract states,
marked by gray boxes. Each rounded rectangle represents
an operation that the executor performs. Blocks in the same
color access or modify the same resource, such as a mutex, a
variable, or a data structure (excluding the wait set). Uncolored
boxes indicate the operation is not resource-specific. The
parallelograms represent if-else blocks, where the non-filled
circles indicate the path taken if the condition is true and the
filled circle the path if the condition is false. One main aspect
of the ROS 2 executor design is that the wait set is shared
among all threads of an executor. Hence, ROS 2 uses multiple
shared resources to ensure data consistency in the wait set.

A. Processing Windows

We first explain how the task instances are executed when
starting from State (1-Idle). The sequence of states (or path)
<(1-Idle),(2-Init),(3-Sample),(7-Take),(8-Run),(9-Finish)>
corresponds to a thread executing a task instance during a
processing window. If there is no task instance in the wait set
that can be executed, a polling point is initiated in (3-Sample)
(which we discuss later when detailing polling points).

The general sequence of operations for the single-threaded
executor is: Starting from (1-Idle), the thread determines which
task instance to execute (3-Sample), removes it from the wait
set (7-Take), executes this task instance (8-Run), and returns
to (1-Idle). (2-Init), (4-Status), (6-Return), and (9-Finish) are
only relevant in the multi-threaded executor.

For the multi-threaded executor, the general process is
similar, but it must be ensured that (i) there are no consistency
issues in the wait set, and (ii) task instances of callbacks in a
mutually-exclusive group are not executed at the same time.

(i) To ensure consistency, the wait set mutex (orange)
prevents concurrent access to the wait set. If the mutex is
locked and owned by a thread, other threads that try to acquire
the lock are blocked until the current thread releases the lock.
Consequently, the wait set mutex is locked in (2-Init) (i.e.,
before the wait set is accessed to determine which task instance
to execute in (3-Sample)). Thus, only one thread initiates
a polling point (<(3-Sample),(4-Status),(5-Poll),(3-Sample)>)
or removes a task instance from the wait set to schedule it
(<(3-Sample),(7-Take)>) at each point in time. All threads can
execute task instances (i.e., be in (8-Run)) simultaneously.

(ii) To ensure that task instances in a mutually-exclusive
callback group are not executing in parallel, each callback
group has a can be taken from flag (green), indicating if a
task instance of a callback in the group is being executed.
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Fig. 8. ROS 2 Executor. A thread goes through <(1-Idle),(2-Init),(3-Sample),(7-Take),(8-Run),(9-Finish)> when executing a task instance during the processing
window. If no task instance can be taken from the wait set in (3-Sample), the thread initiates a polling point via <(3-Sample),(4-Status),(5-Poll),(3-Sample)>,
followed either by executing a task instance (i.e., continuing to (7-Take)) or returning to idle via (6-Return) (i.e., if no task instance is added to the wait set).

Specifically, in (3-Sample), if a task instance has the highest
priority in the wait set and can be taken from of its group
is false, the task instance is ignored, and the thread checks
for the task instance with the next lower priority. Otherwise,
if the task instance has the highest priority in the wait set and
can be taken from is true, the task instance is chosen for
execution in (3-Sample). After it is removed from the wait set,
can be taken from is set to false in (7-Take). Note that in
(7-Take) the flag is set before the wait set mutex is unlocked
to ensure that only one callback of the group can be executed
at any time. After the task instance is executed in (8-Run),
can be taken from is set to true in (9-Finish), which allows
polling and scheduling callbacks from the group again.

B. Polling Points

So far, we discussed how task instances are scheduled
during processing windows in the single-threaded and in the
multi-threaded executor. If a thread finds no task instance to
schedule in (3-Sample), the thread initiates a polling point via
<(4-Status),(5-Poll),(3-Sample)>. This situation can occur if
(i) the wait set is empty (the only situation possible in the
single-threaded executor), or (ii) all task instances in the wait
set are part of callback groups and one callback in each of
these groups is currently executing. In this case, the thread may
check multiple task instances in the inner loop of (3-Sample),
each in a mutually-exclusive group with a currently executing
task instance, before progressing to (4-Status). Hence, at the
time of reaching (5-Poll), the wait set may contain multiple
blocked task instances due to mutual exclusion.

At each polling point, to update the wait set, a thread loops
through <(3-Sample),(4-Status),(5-Poll),(3-Sample)>. The ex-
ecutor.updated flag (red) tracks whether the wait set was
updated since the wait set mutex was set and ensures the
wait set mutex is unlocked either in (6-Return) or (7-Take).

We specify the purpose of executor.updated later and, for
now, assume executor.updated is false. In this situation, a
thread entered (3-Sample) from (2-Init), could not find any task
instance to schedule, and continued to (4-Status) and (5-Poll).

State 5: Poll. Since the main problems arise here, we take
a closer look at the polling operation in (5-Poll).
(A) The wait set is cleared. If the polling point was initiated

because the wait set was empty, nothing changes. Other-
wise, task instances blocked due to mutually-exclusive
callback groups are removed from the wait set.

(B) The wait set is filled with instances of all eligible
callbacks, i.e., instances of callbacks whose group flag
can be taken from is set to true when polling. If a
running callback is part of a mutually-exclusive callback
group, no instance of any callback in this group is added
to the wait set. In particular, a callback can block itself
from being added to the wait set.

(C) The thread waits for work. Specifically, it waits until one
of the three following conditions becomes true:
(i) A callback in the wait set is activated. This condition

can be true directly when the wait set is filled — if at
least one timer or subscription is already activated.

(ii) A callback executing in another thread finishes and
triggers the guard condition in (9-Finish).
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(iii) The executor-specific timeout value elapses (which
is by default infinite in ROS 2 Humble).

Afterward, the executor removes all non-activated task
instances from the wait set.

(D) The executor.updated flag is set to true.
While (A), (B), and (D) are rather straightforward, we now

take a closer look at the three conditions in (C) wait for work.
If condition (i) is triggered in wait for work, the wait set is

not empty after all non-activated task instances are removed.
Since not all task instances in the wait set are in mutually-
exclusive groups with a task instance currently running (and
therefore not blocked by their group), at least one task instance
can be scheduled, and the thread continues to (7-Take).

If condition (ii) or condition (iii) are triggered, the wait set
is empty after all non-activated task instances are removed.
Thus, the thread leaves (3-Sample) via (4-Status) and, since
executor.updated is true, continues to (6-Return) and (1-Idle).
Specifically, executor.updated ensures that a thread cannot
enter (5-Poll) twice after acquiring the wait set mutex.

C. Starvation

The starvation issues result from the mutually-exclusive
callback groups in combination with the way polling points are
performed. Specifically, task instances are removed from the
wait set when callbacks of the same group are executing and
(in some cases) only added back together with higher-priority
task instances of the same group — which block them again.

The common property of Examples 4, 5, and 6 is that one
blocked callback from a mutually-exclusive group is removed
from the wait set. Later on, the removed callback is only
added back once the other callback in the group has finished
executing. Hence, the higher-priority callback is added as well
and can starve the lower-priority callback indefinitely.

V. STARVATION AND RESPONSE TIME ANALYSIS

In this section, we present a counterexample to the response-
time analyses of the ROS 2 multi-threaded executor by Jiang
et al. [6] and Sobhani et al. [9]. We demonstrate that these
analyses return a bounded value even when the actual response
time of a task is unbounded.1 We note that Jiang et al. [6]
discuss how the tasks in the wait set are changed by the
executor and observed that a task may be postponed multiple
times due to blocking by higher-priority tasks when the task is
repeatedly removed. They concluded that the multi-threaded
executor may not always result in better performance than
the single-threaded executor due to this behavior. However,
it is not mentioned that this may result in starvation and the
observation is not included in the analysis provided in [6].

We again consider the system in Example 6 and Figure 7,
with three timers τ1 = (1, 1

3 ), τ2 = (1, 1
3 ), τ3 = (12 ,

1
3 ),

and one subscription τ4 = (0.01), where g = {τ3, τ4} is a
mutually-exclusive callback group and tasks τ1 and τ2 are in
individual mutually-exclusive callback groups. The system is
managed by a multi-threaded executor with two threads.

1The authors in [6], [9] have been informed about this bug in July 2024,
and they intend to fix their analyses and make new versions available online.

Figure 7 shows that task τ4 is never executed. However, we
show that the analyses by Jiang et al. [6] and Sobhani et al. [9]
provide a bounded response time for the task τ4.

Both analyses are intended for chains, which are sequences
of tasks. We consider three chains Γ1 = (τ1), Γ2 = (τ2), and
Γ3 = (τ3, τ4) identical to the callback groups, and focus on
Γ3 for the counterexamples.

A. Response-Time Analysis by Jiang et al. [6]

According to Theorem 1 by Jiang et al. [6], given a chain
and its constrained deadline (with respect to the period of the
first task in the chain), the response time is bounded if the
workload L to execute the full chain is less than the deadline.

We directly apply the results by Jiang et al. [6] to the
example system above, with a deadline of 0.5 for the chain Γ3.
Using Theorem 1 in [6], we determine that the workload
corresponds to L = 1

3 plus the workload of task τ4. Fur-
thermore, L + WCET(τ4) ≈ 0.334 + 0.01 = 0.344 is less
than the deadline of 0.5, and the response time of task τ4 is
bounded according to Theorem 1 by Jiang et al. [6]. However,
as starvation occurs for task τ4, the response time of τ4 is
unbounded, contradicting the analysis, as shown in Figure 7.

B. Response-Time Analysis by Sobhani et al. [9]

According to Theorem 5 by Sobhani et al. [9], the response
time of a chain is upper bounded, if the demand bound func-
tion dbf(∆) is less than the supply bound function sbf(∆)
for any time interval ∆ (where dbf(∆) is the total amount of
work that is required to be executed in ∆ and sbf(∆) is the
total amount of work that can be executed in ∆).

We directly apply the result by Sobhani et al. [9] to the
example system above and choose the time interval ∆ = 1.
The supply bound function for this system is sbf(∆) = 2
according to Definition 1 in [9]. The demand bound function
is dbf(∆) = 4

3 according to Theorem 5 in [9]. Therefore,
the dbf(∆) for Γ3 is less than the sbf(∆) of the multi-
threaded executor, and the response time of task τ4 is bounded
according to Theorem 5 by Sobhani et al. [9]. However, as
shown in Figure 7, starvation occurs for task τ4, and the
response time of τ4 is unbounded, contradicting the analysis.

VI. STARVATION-FREE MULTI-THREADED EXECUTOR

In this section, we propose a design for the multi-threaded
executor that is starvation-free, tries to maximize the through-
put, and keeps the general structure of the original design.
We introduce each new part of our solution step-by-step,
highlighting what changes and which issues still need to be
addressed until we reach the final design. Finally, we show
that our design prevents starvation in all system configurations
from Section III-B in which we previously observed starvation.

As mentioned in IV-C, starvation occurs because blocked
callbacks are removed from the wait set and only added back
together with higher-priority callbacks of the same group. This
leads to the situation where a callback is never executed, since
it is blocked indefinitely by these higher-priority callbacks.

7

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
Te

pe
r/

E
M

SO
FT

20
24



trigger guard condition
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cb.callbackgroup
can be taken from = true

lock
wait set mutex

unlock
wait set mutex

Fig. 9. Mutex lock proposal to prevent callback group flag race conditions.

A. Intuitive starvation-free approach
An intuitive approach to avoid starvation may be as follows:
• Preventing Callback Removal: We modify clear wait set

to not remove any blocked callbacks from the wait set.
Hence, no additional polling is required to add them
back later. Preventing removal is not sufficient to avoid
starvation due to a race condition for the callback group
flag. Specifically, another thread in (9-Finish) may set a
callback group’s flag to true, right before the thread in
(5-Poll) clears the wait set, which leads to removing the
callbacks of the group from the wait set.

• Prevent Callback Group Flag Race Condition: To pre-
vent this, we add a critical section to (9-Finish), which
guards the callback group flag. The updated (9-Finish) is
depicted in Figure 9. The existing wait set mutex protects
the callback group flag. We trigger the guard condition
before we lock the mutex. Otherwise, a thread in wait for
work that holds the wait set mutex would be blocked
indefinitely as it is waiting for the guard condition to be
triggered (when the wait set is empty).

This intuitive solution is not deadlock-free. Assume a multi-
threaded executor with two threads that manages a callback
group with two tasks, τ1 and τ2. The following sequence of
events leads to a deadlock:

1) The wait set only includes τ1. Both threads are idle.
2) Thread 1 executes τ1, blocking the callback group.
3) Thread 2 acquires the wait set mutex, starts polling,

and cannot add τ2 to the wait set, as the callback group
is blocked. Thus, the wait set is empty when reaching
wait for work. Thread 2 is blocked and waits for a guard
condition to be triggered.

4) Thread 1 finishes executing τ1 and triggers the guard
condition in (9-Finish), notifying thread 2.

5) Thread 2 continues and returns to the idle state via
<(5-Poll),(3-Sample),(4-Status),(6-Return),(1-Idle)>,
releasing the wait set mutex.

6) Thread 2 moves to (2-Init), acquires the wait set mutex
and moves from (3-Sample) to (4-Status) because the
wait set is empty. As the callback group is blocked, the
wait set remains empty after fill wait set. In wait for
work, it waits for a guard condition to be triggered.

7) Thread 1 tries to lock the wait set mutex in (9-Finish).
Now Thread 2 is blocked, waiting for the guard condition

to be triggered by Thread 1 while holding the wait set mutex.
On the other hand, Thread 1 cannot acquire the wait set mutex
in (9-Finish), as it is held by Thread 2, resulting in a deadlock.

B. Our improved deadlock-free solution

To avoid a deadlock for the critical section in (9-Finish), we
propose to use an additional mutex for the callback group flag.
We depict the new structure of the flow chart in Figure 10.

Compared to the original design, clear wait set in (2-Init) is
replaced with conditional clear wait set, which only removes
non-blocked callbacks from the wait set, as described in
Preventing Task Removal. Furthermore, the states (2-Init),
(5-Poll), (7-Take), and (9-Finish) are modified. They now in-
clude a new mutex, called notify mutex, which is responsible
for protecting multiple threads from accessing operations that
access or modify the callback group flags.

This changes polling points, i.e., a thread looping through
<(3-Sample),(4-Status),(5-Poll),(3-Sample)>, as follows:

• The notify mutex is locked in (2-Init). Other threads are
blocked from entering (9-Finish) until it is unlocked.

• The executor determines the state of the wait set and
callback group flags in (3-Sample).

• If the thread moves to (5-Poll), the state of the callback
group flags is unchanged since being in (3-Sample).
Hence, clear wait set and fill wait set are executed based
on the state of the callback group flags in (3-Sample).

In (7-Take), the notify mutex is either already unlocked if
the thread was in (5-Poll) since the last wait set mutex lock.
If the thread was not in (5-Poll), the notify mutex is locked,
and the notify mutex is unlocked in (7-Take).

Preventing busy waiting. We need to account for one more
technical detail in our solution. Specifically, during polling, if a
blocked callback is in the wait set, the wait for work operation
immediately unblocks, as the blocked callback in the wait set
is already activated. This can lead to busy waiting, as a thread
would constantly initiate and finish a polling point, without
changes in the state of the wait set and the callback groups.

We prevent this by modifying the conditional clear wait set
operation and the fill wait set operation. Instead of waiting for
all callbacks in the wait set during wait for work, we only
wait for the callbacks that are added by the previous fill wait
set operation. These callbacks are not blocked, and only an
activation of one of these callbacks can lead to a change in the
wait set. Likewise, only when the guard condition is triggered,
wait for work unblocks, as this is the earliest point at which
one of the previously blocked callbacks can be executed.

C. Evaluation and Outlook

We implemented and tested our proposed design using all
systems described in Section III-B for which we encountered
starvation with the default executor. We ran each system five
times for ten minutes and did not observe any starvation, i.e.,
all tasks were executed. However, due to the amount of work
per callback group and the resulting blocking time, not all
timers were executed as often as specified by their period.

Furthermore, we ran the Autoware Reference System [14]
benchmark to evaluate the overhead of our proposed design.
We ran the system on Ubuntu 22.04 running ROS 2 Humble,
using an AMD Ryzen 5900x with 32 GB of RAM.
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Fig. 10. Proposed multi-threaded executor fix, using mutex locks for callback group flags and notifications.

Table I shows the combined results of ten 10-minute runs,
including the mean, standard deviation, and 99th percentile.
The overhead of our proposed design is comparable to the
baseline of the original multi-threaded executor of ROS 2.

TABLE I
OVERHEAD COMPARISON WITH THE AUTOWARE REFERENCE SYSTEM.

Type Mean [ms] Std [ms] 99th [ms]
Baseline 0.215 0.063 0.399
Ours 0.216 0.060 0.376

We note that our proposed design is only one possible
solution to provide starvation freedom. There are other feasible
solutions, each with its own behavior. For example, in our
design, the callback group flags are not necessarily guarded
by the notify mutex in (3-Sample), if the mutex has been
unlocked in (5-Poll). Furthermore, different solutions may lead
to different amounts of blocking time for callback group tasks.
In this paper, we do not focus on such design choices, but
rather on what is necessary to ensure starvation freedom.
For the future redesign of the multi-threaded executor, such
design choices need to be evaluated, including the overhead
for polling, as well as the consequences for the overall
performance of the system, e.g., the additional blocking time
for callback groups and the latency of the system.

In summary, we have proposed a new design of the ROS 2
multi-threaded executor, which keeps the general structure of
the original design, and tested it to be starvation-free. We
prove that our design is deadlock-free and starvation-free in
Section VII. Our design is more efficient than the design
option As Late As Possible mentioned in Section III, as threads
immediately update the wait set if no work is available.

VII. PROPERTIES OF THE EXECUTOR EXTENSION

In this section, we prove that our executor model based on
Figure 10 in Section VI-B is deadlock-free and starvation-free.
We first describe how threads interact with the operations:

• At each time, a thread executes an operation, waits, or
progresses to the next operation.

• Execution: Usually, an operation takes a certain time to
be executed by the thread, and afterward the thread is
eligible to progress to the next operation. An exception
is wait for work (discussed below).

• Wait: When the thread is eligible to progress to an
operation that locks a mutex, but the mutex is already
owned by another thread, then the thread waits. Similarly,
the thread waits at wait for work until either a callback in
the wait set is activated, the timeout runs out, or another
thread executes trigger guard condition.

• Progress: When a thread moves from one operation to
the next one, we say that the thread makes progress.

In the following, we prove deadlock freedom and starvation
freedom regardless of the timeout value of the wait for work
operation, i.e., either a callback is activated or trigger guard
condition is executed within a finite amount of time.

Furthermore, we make the following assumptions:
• The execution of any operation takes only finite time > 0.
• The system has finitely many threads (at least one).
• The system has finitely many callbacks (at least one).
First, we prove properties for the design with two mutexes.

Lemma VII.1. For the proposed executor, the following
properties hold:
(i) A thread that owns the wait set mutex must be in states

(2-Init)–(7-Take).
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(ii) A thread that owns the notify mutex must be in states
(2-Init)–(7-Take) or in (9-Finish).

(iii) At any time, at most one thread is in (2-Init)–(7-Take).
(iv) At any time, at most one thread is in (9-Finish). If there

is one, it holds the notify mutex.
(v) A thread in fill wait set owns both mutexes.

Proof. (i) and (iii) hold because a thread has to lock the wait
set mutex when it enters (2-Init), and unlocks the wait set
mutex when it leaves states (6-Return) or (7-Take). Similarly,
(iv) holds because a thread entering (9-Finish) locks the notify
mutex, and unlocks only when leaving (9-Finish).

For (ii), we need to show that a thread that owns the notify
mutex cannot be in (1-Idle), (6-Return), and (8-Run). We
observe that a thread in (4-Status) or (7-Take) that locks the no-
tify mutex must have the parameter executor.updated = true.
Therefore, it can only progress to states (6-Return) or (8-Run)
if the thread does not own the notify mutex. Consequently, it
also reaches (1-Idle) only if it does not own the notify mutex.

For (v), when a thread enters (5-Poll), executor.updated
must be set to true. Therefore, at that time, it must own
the notify mutex. Moreover, the thread must hold the wait
set mutex because when reaching (5-Poll), the thread must
have locked the mutex in (2-Init) without unlocking afterward.
Hence, the thread holds both mutexes.

A. Deadlock Freedom

In this subsection, we show that our proposed executor
design for the multi-threaded executor is deadlock-free. That
is, no deadlock state (specified below) can occur.

Definition VII.2 (Deadlock State). A set of threads is in a
deadlock state if every thread in the set is waiting and can
only be released by another thread in the set.

We observe that a thread ξ can only wait for another
thread ϕ in one of two cases.
(i) Thread ξ waits for a mutex (wait set mutex or notify

mutex) that is held by ϕ.
(ii) Thread ξ is executing wait for work and no callback was

added by ξ during fill wait set. In that case, ξ cannot be
released by a callback activation, but waits for ϕ to enter
trigger guard condition.

We first derive some properties for the notify mutex and
the wait for work operation, before proving deadlock freedom.

Lemma VII.3. A thread ξ holding the notify mutex cannot
wait for another thread.

Proof. We prove this lemma by contradiction. Assume that ξ
waits. Since ξ already holds the notify mutex, it can only wait
for the wait set mutex or be in wait for work.

If it waits for the wait set mutex, then the thread is in
(1-Idle). This contradicts Lemma VII.1. If it is blocked by wait
for work, then it has unlocked the notify mutex previously,
which contradicts that ξ is holding the notify mutex.

Next, we show that wait for work cannot wait indefinitely.

Lemma VII.4. If thread ξ adds no callback during fill wait
set, then there must be another thread ϕ in (8-Run).

Proof. Since ξ runs fill wait set, it owns both mutexes by
Lemma VII.1 (v). Therefore, all other threads must be in either
(1-Idle) or (8-Run), by Lemma VII.1 (iii) and (iv).

If there is no thread in (8-Run), then no callback group can
be blocked. That means that ξ must have reached fill wait set,
as the wait set is empty. As the system has at least one callback
(by assumption) that is not in the wait set, it must be added
by fill wait set. Since ξ adds no callback during fill wait set,
we conclude that there must be another thread in (8-Run).

We can now show that the system is deadlock-free.

Theorem VII.5. The proposed executor is deadlock-free.

Proof. We prove this theorem by contradiction. Assume there
is a set of threads {ξi} waiting for each other that can only be
released by other threads in the set. We consider one of these
threads ξ1 specifically and distinguish different cases.

Case 1: ξ1 waits for the notify mutex. The notify mutex
must be owned by another thread in the set {ξi}, which we
denote by ξ2. By Lemma VII.3, ξ2 does not wait, which
contradicts the assumption that all threads in {ξi} wait.

Case 2: ξ1 waits in wait for work. By Lemma VII.4 there
exists another thread in state (8-Run) that can potentially
release ξ1. We denote that thread by ξ2. Since ξ2 ∈ {ξi} this
thread waits as well. More specifically, ξ2 waits for the notify
mutex. We have already shown in Case 1 that the existence
of such a thread in the thread set leads to a contradiction.

Case 3: ξ1 waits for the wait set mutex. Hence, the wait
set mutex is owned by another thread in {ξi}, say ξ2. ξ2 can
either wait for the notify mutex or it can wait in wait for work.
Cases 1 and 2 show that both scenarios lead to a contradiction.

In conclusion, we have shown that no deadlock state can
occur, i.e., the system is deadlock-free.

We also applied a model checker to verify that the proposed
multi-threaded executor is deadlock-free. We created a model
of the proposed executor design in Promela, the specification
language of the SPIN model checker [5] that checks LTL
properties (linear temporal logic) for models of concurrent
software. Technically, we model every state in the state ma-
chine of the executor and the transitions between the states
with labels and goto statements in a Promela process and
instantiate n of these processes to analyze the behavior for
n concurrent threads. We model the mutexes using atomic
statements and message channels of capacity one (i.e., one
thread can take the token while the others block and are
notified once the token is put back into the channel). Moreover,
we model the wait set state using a global Boolean variable
that tracks if any callback group flag is set to false. When this
is the case, the wait for work operation may block a thread
indefinitely, until another thread triggers the guard condition.
We encoded deadlock freedom as an LTL property and used
SPIN to verify the property for sets of 2 and 3 threads.
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B. Starvation Freedom

In this subsection, we show that our proposed executor
design for the multi-threaded executor is starvation-free.

Definition VII.6 (Starvation Freedom). Every callback that is
activated is eventually executed by a thread.

To achieve this, we need the additional assumption that the
mutexes are fair in the following sense: If a thread ξ is waiting
to lock a mutex, the mutex can only be locked finitely many
times by other threads before ξ locks the mutex.

For the system to be starvation-free, it is fundamental that
any thread makes progress eventually. Otherwise, threads will
wait indefinitely, and task instances may potentially starve.
This is formalized in Lemma VII.9. The following two lemmas
help us reach Lemma VII.9.

Lemma VII.7. Every thread can only make a finite amount
of progressions before returning to (1-Idle).

Proof. There are only finitely many operations in the system.
Therefore, if a thread progresses infinitely often without return
to (1-Idle), then it must execute some operation infinitely
often. However, since the only loops are in states (3-Sample)–
(5-Poll), all other states (and therefore all operations inside
those states) are only visited once. Moreover, the execu-
tor.updated variable ensures that states (3-Sample)–(5-Poll)
are visited at most twice. The number of visits of the oper-
ations in (3-Sample) is bounded by 2 times the number of
callbacks, which is finite.

Lemma VII.8. Whenever there are activated callbacks, even-
tually, one thread makes progress.

Proof. We prove this lemma by contradiction. To that end, we
assume that after time t, no thread makes progress indefinitely.
This can happen only in two cases:

• (i) The system reaches a deadlock.
• (ii) A thread waits in wait for work indefinitely for an

outside activation.

Case (i) cannot occur due to Theorem VII.5. Therefore, we
only consider Case (ii).

To that end, assume that there is a thread ξ in wait for
work. By Lemma VII.1, all other threads can only be in
states (1-Idle), (8-Run), or (9-Finish). If another thread were
in (8-Run) or (9-Finish), that thread could make progress.
Therefore, the possible scenario is that ξ is in wait for work
and all other threads are in (1-Idle).

Since ξ cannot progress, this means that all other states must
have been at state (1-Idle) already when ξ was executing fill
wait set. Otherwise, another thread would have passed trigger
guard condition and ξ could progress.

Since all other threads have been in (1-Idle) when ξ was
running fill wait set, no group was blocked and all callbacks
are added to the wait set. Therefore, at time t a newly added
callback is activated and ξ can progress. This contradicts the
assumption that ξ cannot progress.

Lemma VII.8 differs from deadlock freedom as it considers
the cases in which a thread is not waiting for another thread,
but is stuck in wait for work and can only be released due to
a callback activation. The following lemma further shows that
every thread eventually makes progress, whereas the previous
lemma only shows progress for at least one thread.

Lemma VII.9. Whenever there are active callbacks, every
thread makes progress, eventually.

Proof. We prove this lemma by contradiction. To that end, we
assume that a thread ξ never makes progress after time t.

Case 1: ξ is in states (2-Init)–(7-Take) or (9-Finish). Then ξ
owns a lock. Since another thread always processes, there are
only finitely many threads, and by Lemma VII.7, after finitely
many progressions every other thread is waiting for the lock
held by ξ. At that time, no thread can make any progress,
which contradicts Lemma VII.8.

Case 2: ξ is in (1-Idle) or (8-Run). In both cases, ξ
waits for a mutex lock. We have shown, in Case 1, that the
thread ϕ holding the lock progresses eventually. Therefore, ϕ
unlocks the mutex eventually. By assumption, the mutex is
fair, meaning that only finitely many other threads can lock
and unlock the mutex before ξ eventually progresses.

Since every thread makes progress eventually, we know that
every thread returns to state (1-Idle) eventually.

Proposition VII.10. Eventually, every thread returns to the
idle state.

Proof. Since every thread makes some progress eventually by
Lemma VII.9, and each thread can only make finitely many
progressions before returning to (1-Idle) by Lemma VII.7,
every thread returns to the idle state eventually.

Due to the preceding proposition, each thread runs in cycles,
i.e., follows a path that starts and ends in (1-Idle) and takes
a finite amount of time. We denote such a thread cycle by γ.
In the following lemmas, we examine the impact of a thread
cycle on the wait set.

Lemma VII.11. When the wait set contains callbacks of group
g when thread ξ enters (2-Init) during a thread cycle γ, then
ξ does not add a callback of group g to the wait set during γ.

Proof. If there are callbacks of group g in the wait set when
ξ enters (2-Init) during γ, then those callbacks are still in the
wait set when ξ is in (3-Sample) during γ. From (3-Sample),
ξ can only add callbacks to the wait set if it reaches (5-Poll).
However, since there are callbacks of group g in the wait set,
the wait set is not empty. Therefore, ξ can only reach (5-Poll)
if all callbacks are blocked (can be taken from = false). In
that case, g is blocked as well and no callbacks can be added
during fill wait set by ξ.

Lemma VII.12. If thread ξ does not reach (5-Poll) in thread
cycle γ, it removes one callback from the wait set.

Proof. If thread ξ does not reach (5-Poll) in thread cycle γ,
then it executes remove cb from wait set in (7-Take).
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We prove starvation freedom in two steps. First, we
show that every activated callback is added to the wait set
(Lemma VII.14). Second, we show that every callback in
the wait set is eventually executed (Lemma VII.13). For
convenience in the proof, we first show the second step.

Lemma VII.13. Each group is eventually fully removed from
the wait set for execution.

Proof. We prove this lemma by contradiction. To that end,
we assume that there exists a group g and a time point t0,
such that after t0 there are always callbacks of g in the wait
set. Let t1 < t2 < . . . be the time points after t0 where
threads enter (2-Init). Because of Proposition VII.10, there are
infinitely many such time points. Furthermore, let ξ1, ξ2, . . .
be the corresponding threads. Note that duplicates may be
possible, i.e., ξi = ξj for i ̸= j is allowed.

By Lemma VII.11, no callbacks in g are added after t1. Let
ti be the time point when the minimal number of callbacks of g
is in the wait set. By Proposition VII.10, every thread finishes
the execution of callbacks of g and returns to (1-Idle). Hence,
there is a time tj where the minimal number of callbacks of g
is in the wait set and g is not blocked. After tj , no thread can
reach (5-Poll) as the wait set is not empty and g is not blocked.
By Lemma VII.12, at each time point tj , tj+1, . . . a thread
ξj , ξj+1, . . . removes one callback from the wait set. Thus, as
the number of callbacks is finite, the wait set is emptied. This
contradicts the assumption and proves the lemma.

Lemma VII.14. Eventually, every active callback is added to
the wait set.

Proof. We prove this lemma by contradiction, i.e., a callback
cb of a group g is active but never added to the wait set.

By Lemma VII.13, all active callbacks in g are removed
from the wait set eventually. Moreover, by Proposition VII.10
every execution of callbacks in g finishes, and the group g
gets unblocked, eventually. We call that time point tx.

After tx, if a thread would enter (5-Poll), then cb would
be added to the wait set. Therefore, after tx, no thread enters
(5-Poll). By Lemma VII.12, each thread cycle after tx removes
one callback from the wait set. Eventually, all callbacks are
removed from the wait set, and a callback has to enter
(5-Poll). That thread then adds callback cb to the wait set.
This contradicts our assumption.

We now have all the tools to prove starvation freedom.

Theorem VII.15. The proposed executor is starvation-free.

Proof. When a callback is activated, Lemma VII.14 shows that
it is added to the wait set eventually. After it is added to the
wait set, Lemma VII.13 shows that it is eventually removed for
execution. The executing thread eventually finishes its cycle
due to Proposition VII.10. Then, the callback is executed.

We have shown that any activated callback is eventually
executed. This shows that the system is starvation-free.

We note that we are not able to additionally apply a model
checker to verify starvation freedom.

VIII. CONCLUSION

We explore the general design of the ROS 2 executor and
show that the ROS 2 multi-threaded executor is prone to
starvation by providing concrete ROS 2 system configurations.
We further show that the existing response-time analyses for
the ROS 2 multi-threaded executor are flawed, as they provide
finite response times for at least one of these configurations.

We proposed minimal design changes to the software ar-
chitecture of the ROS 2 multi-threaded executor to solve
the starvation problem. We empirically test that our design
changes prevent starvation in all previously affected system
configurations while incurring a negligible overhead. Further-
more, we prove our design is starvation- and deadlock-free.
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