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Abstract—Spiking Neural Networks (SNNs) are considered the
third generation of NNs and can reach similar accuracy as
conventional deep NNs, but with a considerable improvement
in efficiency. However, to achieve high accuracy, state-of-the-art
SNNs employ stochastic spike coding of the inputs, requiring
multiple cycles of computation. Because of this and due to the
nature of analog computing, it is required to accumulate and hold
the charges of multiple cycles, necessitating a large membrane
capacitor. This results in high energy, long latency, and expensive
area costs, constituting one of the major bottlenecks in analog
SNN implementations. Membrane capacitor size determines the
precision of the firing time. Hence reducing the capacitor size
considerably degrades the inference accuracy. To alleviate this,
we focus on bridging the gap between binarized NNs (BNNs) and
SNNs. BNNs are rapidly emerging as an attractive alternative
for NNs due to their high efficiency and error tolerance. In
this work, we evaluate the impact of deploying error-resilient
BNNs, i.e. BNNs that have been proactively trained in the
presence of errors, on analog implementation of SNNs. We show
that for BNNs, the capacitor size and latency can be reduced
significantly compared to state-of-the-art SNNs, which employ
multi-bit models. Our experiments demonstrate that when error-
resilient BNNs are deployed on analog-based SNN accelerator,
the size of the membrane capacitor is reduced by 50%, the
inference latency is decreased by two orders of magnitude, and
energy is reduced by 57% compared to the baseline 4-bit SNN
implementation, under minimal accuracy cost.

I. INTRODUCTION

The success of deep neural networks (DNNs) has brought
significant benefits to numerous fields while impacting our
daily lives. However, the high inference accuracy comes at
the cost of large resource demand, because NNs require a
huge number of parameters and a massive number of multiply-
accumulate (MAC) operations. This poses an immense chal-
lenge, because high-performing NN models are becoming in-
creasingly larger, while low-power operation for sustainability
is rapidly gaining importance in a wide range of application
domains, especially for embedded systems.

Spiking Neural Networks (SNNs): SNNs is a computing
scheme that is heavily influenced by the dynamics of biologi-
cal neurons and are similar to them. In SNNs, neural activity is
event-driven and described by the integration of voltage spikes
over time. When a neuron receives a certain number of spikes,
a predetermined threshold potential may be passed, causing the
firing of an output spike. The sparse-spike-based operations
use efficient coding and enable low-power operation, because
accelerators built with simple analog or digital components
can be employed for computation [1].

Existing challenges in SNNs: One major challenge in
SNNs is to efficiently processe inputs coded in the time do-
main without influence on inference accuracy. Although recent
studies claim that temporal input coding with one bit can im-
plement multi-bit multiplication through single bit operations,
they are not yet proven to be effective on complex tasks [2],
[3], [4]. If, instead of temporal coding, stochastic encoding
of the inputs is used, the high accuracy from well-trained
models are inherited. However, stochastic coding necessitates
many computation cycles to achieve high accuracy. Due to
this, in analog computing based implementations, a large
membrane capacitor (Cmem) is inevitably required to reliably
accumulate and hold the charges of multiple cycles. Otherwise,
the required inference accuracy cannot be sustained. A large
Cmem size results in a high energy, long latency, and expensive
area cost, constituting one of the major bottlenecks in SNN
hardware accelerators [5], [6], [7]. Although reducing the
size of Cmem has numerous benefits, it, rapidly degrades the
inference accuracy because it impacts the precision of the
firing time, which encodes the inner product result. Hence, if
the SNN is error-prone, reducing Cmem size will aggressively
degrade the inference results. All in all, efficient and error-
resilient SNN models allow the optimization of membrane
capacitors resulting in energy, area, and speed improvements
with minimal accuracy loss. Achieving this goal is concisely
the focus of this work.

Binarized Neural Networks (BNNs): Due to the light-
weight implementation, BNNs have recently received remark-
able attention since their inception [8], [9]. The binarization
has three major benefits on the efficiency of NNs. (1) BNNs
have significantly smaller model size and hence reduce move-
ments of data between memories and computing units. (2)
Binarization of the weights and activations enables replacing
complex MAC circuits with simple XNOR logic gates. (3)
BNNs can be optimized to achieve high error resiliency [10],
[11].

Binarized Spiking Neural Networks (BSNNs): To op-
timize SNN computations by Cmem size reduction while
sustaining high inference accuracy, we investigate the effec-
tiveness of SNNs based on binary representation of model
parameters. SNNs and BNNs synergise outstandingly in their
motivations, and were designed with similar objectives in
mind. For both BNNs and SNNs, energy efficiency, low
latency, and error tolerance are crucial properties. Therefore,
recent studies have focused on deploying BNNs on SNN
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Fig. 1: Deploying binarized and error-resilient models on
neuromorphic memory crossbar increases speed and energy
efficiency with minimal accuracy cost.

hardware [12], [13]. The promise of BNNs for SNNs is
twofold: First, concerning computations, XNOR can be used
instead of multiplications, and at the same time, stochastic
input representation is not anymore necessary leading to
single-sample computation. Secondly, BNNs can be optimized
for high error resiliency, which enables significant reduction of
Cmem size. This leads to a profound increase in the efficiency
of SNNs because Cmem size determines energy, latency, and
chip area. However, the benefit of BNNs for SNNs on reducing
Cmem size and hence obtaining area, latency, power savings,
without scarifying accuracy, has not been researched yet and
this is the first work.

Our novel contributions within this paper are:
• We reveal the impact of deploying error-resilient BNNs

to analog-based SNN accelerator on the reduction of the
membrane capacitor size Cmem.

• We demonstrate how the resiliency of BNNs, especially
when they are trained in the presence of bit errors, leads
to an increase in the robustness of SNN computation
and enables significant Cmem reduction with marginal
inference accuracy loss.

• We show that error resilient BSNNs achieve 50% reduc-
tion in Cmem size, two magnitudes of improvement in
latency, and 57% in energy compared to the baseline (4-
bit) SNN implementation, under minimal accuracy cost
of 3% same as BNN.

II. RELATED WORK

In [14], SNNs are acquired by training BNNs with the
methods proposed by Hubara et al. [8]. After converting
the BNNs to SNNs, simple design and run-time explorations
are employed to achieve inference latency improvements.
In [12], a method for training SNNs with binarized weights is
proposed, without conversion from BNN to SNN.

The role of the membrane capacitor in analog-based imple-
mentations of SNNs has been identified in [7]. The study fo-
cuses on how the non-ideal characteristics of various memory

technologies affect the requirement of the size of membrane
capacitor. In [5], the authors evaluate SNNs on NOR flash
computing array under input noise, relying on the inherent
noise resiliency of NNs to sustain high accuracy. The capacitor
size is set to a constant value for a the LeNET-5 NN model.
The study in [15] surveys the resiliency properties of SNNs
trained with various state-of-the-art algorithms and proposes
an approach to train SNNs for resiliency. Their main focus is
on different types synapse or neuron failures. The two studies
in [16], [17] focus on fault analysis in hardware-implemented
SNNs, assuming similar types of failures.

The above studies focus on the reliability issues that emerge
from process variation, soft errors, and neuron and synapse
faults. Methods for reducing membrane capacitor size have not
been explored, although membrane capacitor size constitutes
one of the major bottlenecks in analog SNNs, i.e. it deter-
mines energy, latency, area, and accuracy. To the best of our
knowledge, we are the first to investigate that. In this work,
we evaluate the impact of deploying error-resilient BNNs on
analog implementation of SNNs, and formally show that for
BNNs the membrane capacitor size and latency can be reduced
significantly compared to multi-bit models. We then conduct
extensive experiments to support this.

III. SYSTEM MODEL

A. Binarized Neural Networks (BNNs)

BNNs training: A common method for NN training applies
stochastic gradient descent (SGD) with mini-batches. The
training data is described with D = {(x1, y1), . . . , (xI , yI)}
with xj ∈ X as the inputs, yj ∈ Y as the labels, and
L : Y×Y → R as the loss function. W = (W 0, . . . ,WL) are
the weight tensors of layer 0, . . . , L and fW (x) is the output
of the NN. The goal is to find a solution for the optimization
problem argminW

1
I

∑
(x,y)∈D L(fW (x), y) by a mini-batch

SGD strategy, computing gradients using backpropagation. To
train BNNs, the weights and activations are binarized in the
forward pass. For backpropagation, the floating point numbers
are used for parameter updates [8].

BNNs inference: In BNNs, the weights and activations are
binarized. Due to his, the MAC-operations of a layer can be
computed as follows:

popcount(XNOR(W`
i ,X

`−1)) > T, (1)

where popcount counts the number of ‘1’s in the XNOR
result, W`

i describes the weights, X`−1 the inputs, ` the layer
number, i the filter, and T is a learnable threshold parameter
(attained by the batch normalization paramters [18]), whose
comparison produces binarized values, which are fed to the
subsequent hidden layer as inputs [8].

Error tolerance of BNNs: It has been shown that BNNs
feature remarkable error resiliency under bit errors in the
weights. Importantly, if errors are induced during training,
the error resiliency can be increased even further [10]. To
optimize BNNs for error resiliency, the state-of-the-art method
for multiclass classification problems applies a modified hinge
loss based on margin-maximization alongside error induction
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Fig. 2: XNOR logic gate realization for binarized multiplica-
tion in SNNs.

during training [11]. The advantage of this method over the
standard cross entropy loss has been evaluated for a variety of
BNN models in [11].

B. Spiking Neural Networks (SNNs)

Stochastic input coding in SNNs: State-of-the-art SNN
implementations use stochastic input coding for multiplication
with multi-bit or binary weights. The stochastic input encoding
is widely used [19], [20], [21], because it exploits the noise
tolerance capability of NNs for computing efficiency. The in-
put to the bit-line is the random variable following a Bernoulli
distribution, with the firing rate Xi

XMAX
, where Xi is the input

and XMAX the maximum range of the input value in binary
representation. The firing rate is interpreted as the probability
for a spike. For the binary input case, the XMAX is 1, and pi
is either 1 or 0.

Crossbar array for general multiplication: The typical
operation of computing-in-memory is to compute logical AND
between input and stored weights. The AND operation be-
comes binary multiplication when both input and weight are
in binary representation. In our case, Xi is always binarized
after stochastic conversion. This simplifies the multiplication
to a certain number of AND operations determined by the
number of binary cells to represent the weights.

XNOR-based crossbar for binarized SNNs: In this work,
the XNOR array is adopted for implementation of BNNs. To
realize XNOR in function, two memory cells (e.g. FeFET
transistors, see [22]) are needed. Our XNOR design is based on
the work in [23], see Fig. 2. The XNOR crossbar needs to be
extended for the first layer, whose inputs are positive multiple
bit. To realize the multiplication in this case, the method of
subtracting NOT(W), inspired from [19] is adopted.

Analog implementation of SNNs: The implementation of
SNNs using a memory crossbar and the input transformation is
shown in Fig. 3. The design of memory crossbar with analog
neuron circuit is based on [24]. The crossbar can implement
both AND and XNOR operation, see Fig. 3. The steps of
operation for SNNs are as follows:
(1) The input spikes are provided to the bit-lines of all memory
cells in parallel. The binary operation results (XNOR or AND)
in all word lines are computed in parallel as well. Finally,
the output currents of all binary gates in a word line are
accumulated by Kirchhoff’s circuit law and passed to the
neuron circuit.
(2) The accumulated output current charges the membrane
capacitor Cmem. Note that, when stochastic input encoding

Fig. 3: The architecture design supporting both AND and
XNOR operation.

is used, the same binary operation and accumulation in step
1 and 2 may need to be repeated for several cycles, with
new input samples in each cycle, until the voltage across the
capacitor surpasses the predetermined threshold voltage Vth.
Once the voltage accross the membrane capacitor reaches Vth,
the neuron generates an output spike. The observed frequency
of the output spike is determined by the reciprocal of the time
to first spike tfire and is converted to an inner product by∑
iWiXi = XMAX

Cmem·Vth

Ion
1

tfire
, where i denotes the index

of different partial inner products and ION = VBLGcell is
the on-state current of the cell in the binary gate (Gcell is the
conductance, VBL the bitline voltage).
(3) The firing time for each neuron may be different. In the
crossbar architecture, bit-line signals held for those neurons
that are not fired yet still contribute current to fired neurons.
To eliminate cell currents flowing to the fired neuron, the fired
neuron will generate a signal to turn off cells on the word-line
that are connected to the fired neuron.
(4) tfire is acquired by a digital counter. Subsequently, the
sampling number is converted to an inner product by a time-
to-digit unit. Because of the limited crossbar size, the entire
inner product computations need to be separated into a series
of smaller inner products. For this reason, adders are needed
for accumulation. After that, the result is ready for subsequent
layer computations. As this follows conventional designs, the
details of these devices are not shown in this work for brevity.

IV. REALIZING BNNS ON SNNS: IMPACTS OF
BINARIZATION ON SNNS

As shown in Fig. 4a, all binary inputs are sampled from
the given probability at each cycle. The expected current,
E[Iary], is equal to Ion

∑
iWiPi, where Pi is the normalized
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input of Xi, Wi the binary weight, and Ion is ON-state
cell current. Due to the stochasticity of the SNN computing
scheme, sampled inner product currents can vary. To reduce
discrepancy, multiple samples is required for averaging.

In analog computing SNNs, the sampled current contributes
charges to membrane capacitor over time. The observed aver-
age current, Ê[Iary] is equal to total charges in the capacitor
divided by the total charging time. When a neuron fires, it
follows that the total charge in the capacitor has reached
CmemVth. The observed average current can be obtained from

Ê[Iary] =
CmemVth
tfire

. (2)

To reduce the discrepancy between observed average currents
Ê[Iary], and system expected current E[Iary], a certain num-
ber of samples is required based on the law of large numbers.
The way to increase the number of samples is by increasing
Cmem size such that more samples of inner product currents
are required to make the neuron fire.

In short, the inner product precision is a function of the
membrane capacitor size, which needs to be configured based
on the number of required samples to achieve a certain
inference accuracy. In the following, we will discuss the
implications of binarization and resiliency, focusing on mem-
brane capacitor size reduction and its effects on analog SNN
accelerators, with respect to energy and latency.

A. Impact of Binarization in SNNs on Membrane Capacitor

When deploying BNNs as SNNs, the inputs of the BNN
are bi-state, which is either 1 or 0. The probability of binary
input is also either 1 or 0. In other words, the inputs are
the deterministic values, and the output current is a constant
value. Taking the advantage of the deterministic output when
deploying BNNs as SNNs, the SNN does not need multiple
cycles to collect multiple output current for achieving high
precision output, unlike multi-bit SNNs. That is, the stochastic
behavior of SNN is eliminated for any size of membrane
capacitor selected. Therefore, in the case of binarized weights
and inputs, it is possible to reduce the size of the mem-
brane capacitor. In the following, we focus on two impacts
of binarization on SNN computation. First, we discuss the
one-cycle computation stemming from binarization and why
this allows reduction of Cmem size. Then, we explain why
the accumulated charges are expected to be smaller with
binarization.

Binarization allows Cmem reduction: The computing
error in stochastic sampling needs to be small enough to
prevent inference accuracy loss [19], and we describe it as
VAR(Ê[Istochary ]) ≤ K, where K > 0 is a certain model-
dependent criterion, which needs to be defined at design
or run time to sustain a certain SNN inference accuracy.
To reduce VAR(Ê[Istochary ]), the sampling number S needs
to be increased, since the variance becomes smaller with a
higher number of samples S due to the law of large numbers,
i.e. VAR(Ê[Istochary ]) ∝ 1

S . The sample number depends on

S =
Cstoch

mem Vth

Ion
· 1∑

iWiPi
· 1τ , and since the on-state current Ion

and the targeted inner product value
∑
i wipi can be replaced

with Ê[Istochary ] = Ion
∑
iWiPi, we can write

Ŝ =
Cstochmem Vth

Ê[Istochary ]
· 1
τ
≥ Q,

where τ > 0 is the pulse width, which limited by circuit
parasitics. For sustaining accuracy, the number of samples S
needs to high enough, i.e. S > Q such that the variance has
an upper bound VAR(Ê[Istochary ]) < K for any inner inner
product value. The number of minimum samples Q must be
found empirically based on the NN model for the stochastic
input case. For BNNs, there is no bound Q, since S = 1. For
BNNs, S can be set to 1 because VAR(Ê[Ibinary]) = 0, since
the input is deterministic. Due to this, in BNNs, no Q needs to
be found, and the variance is independent from the size of the
membrane capacitor. Thus, in BNNs, the membrane capacitor
size can be reduced without accuracy cost stemming from a
low number of samples.

When there is a minimal requirement for precision of the
sampled current, in the stochastic case, more charges (propor-
tional to sample number S) may be needed compared to the
binarized case. We assume there is a constraint, the minimum
charge unit qmin = IONτ , for storing accumulated currents
in the membrane capacitor, where ION is the cell current
and τ is the pulse width determined by circuit parasitics.
In the stochastic case,

∑
s

∑
i q
min will be stored in the

capacitor. In the binarized case, this is
∑
i q
min, since only one

sample is neccassary. Charge needs to be accumulated equal
or more times in the stochastic case than in the binarized
case, i.e.

∑
i q
min ≤∑

s

∑
i q
min. This implies that a larger

membrane capacitor size is needed in the stochastic case, to
hold the charge. When the capacitor size is set to be smaller
in BNNs, the voltage across the capacitor increases faster,
causing earlier spikes. For the stochastic case, the required
charge is larger, and the required spiking time is also increased.
However, the firing times vary based on the distribution of the
inner product. There are still minimum and maximum firing
times, which are model-dependent. Although firing time is
related to latency, it cannot be used as a metric for measuring
and comparing latency between binarized and stochastic case,
since the slowest firing time of neurons determines latency.

B. Impact of Binarization in SNNs on Latency

As described above, the latency of a neuron depends on the
inner product value, determining tfire. However, for different
number of samples S and number of bits used for encoding
weights or inputs, the distribution and the range of the inner
product may differ greatly. This is why it is difficult to
compare tfire among different models and sizes of Cmem.
To fairly compare latency among different cases, we propose
to a metric we call guaranteed response time (GRT).

The guaranteed response time (GRT) log(tG) is an upper
bound for the latency of a neuron, as illustrated in Fig. 5. We
define the GRT as the maximum time that is given to a neuron,
within which it must respond with a spike, i.e. the maximum
allowed latency of a neuron is set to tG. The neurons with
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(a) Iary over time for stochastic input NNs. (b) Iary over time for BNNs.

Fig. 4: (a) Iary over time for stochastic input NNs. For each sample of inputs, the Iary may differ. For precise current estimation,
a certain number of samples is required. As a result, for the stochastic input case, VAR(Ê[Iary]) is inversely proportional
to the sampling number. (b) Iary over time for BNNs. The inputs are deterministic. Thus, the Iary does not differ among
samples. Iary will always be equal to Ê[Iary], since VAR(Ê[Iary])=0.

Fig. 5: Description of information loss metric.

log(tfire) > tG are considered as no-fire and their tfires
are set to infinity (inner product 0). Once the neurons are
considered as no-fire, the information of those neuron is lost.
The information loss metric is the available region ratio of
output value defined by B−K

B . The relation between tfire
and

∑
iWiXi is defined as: tfire = CmemVth

ION
· XMAX∑

iWiXi
.

For convenience, we take the logarithm, which results in:
log(tfire) = log(CmemVthXMAX

ION
)−log(∑iWiXi). For values

with log(
∑
WiXi) > B-K of inner product values is lost.

Thus, we define the information loss metric as:
B −K
B

= 1− K

B
= 1− tG

log(CmemXMAXVth

ION
)

(3)

where B and K are labels in Fig. 5, 1
XMAX

is unit of input x,
and 10tG is provided gaurantee response time.

Our metric describes the information loss for an arbitrary
guaranteed response time of 10tG . It is evident in Eq. (3)
that the metric is indexed by the product of CmemXMAX ,
which implies that a smaller membrane capacitor leads to
higher information loss. To minimize information loss, Cmem
should have a large value. However, when a low value of the
information metric is desired, the guaranteed response time
needs to be set to a large value, affecting the latency.

C. Impact of Binarization in SNNs on Energy

The required energy to make the neuron fire is reduced with
smaller membrane capacitor size. The energy consumption
of analog-based SNNs is mainly determined by the synapse
array, neuron circuit, and analog-to-digital conversion. When
emerging devices with steep sub-threshold slope are employed,
the static energy consumption of an amplifier in a neuron

circuit is eliminated by a single transistor [25]. Furthermore,
the conversion from tfire to a digital representation only
needs to be performed at firing time. This means, the energy
consumption is mainly determined by the current that is
produced by memory arrays performing inner products.

The consumed energy of the crossbar array is proportional
to the charge coming out from the memory array as shown
in Eq. (4). Charge from the memory array is stored in the
memory capacitor and increases the membrane voltage. The
neuron only fires when the required charge reaches CmemVth.
Therefore, with a reduction of the membrane capacitor size,
the energy consumed from array is also reduced.

E = VBLVthCmem (4)

As shown in (4), due to E = VBL
∫ tfire

0
Iarydt and∫ tfire

0
Iarydt = VthCmem, the energy of the systems depends

on bitline voltage VBL, threshold voltage Vth, and membrane
capacitor size Cmem. VBL is set such that reduction of VBL
would cause further reliability issues. The required capacity for
charges corresponds to the factor of CmemVth. The scalability
of the charge capacity depends on the size of Cmem, while
Vth has limited operation margin in an analog circuit. Thus,
in this work, the Vth is set to a constant, and the requirement
of the charge capacity is indexed by the size of Cmem.

D. Errors by Cmem Reduction and Countermeasures

Errors from information loss: With a small capacitor
size, parts of the inner product may not be considered during
computation, because of the same charge, the voltage increases
faster, causing earlier spikes. This error can be described with
tILfire = tfire − εIL due to earlier firing time. Using a small
GRT has the same effect, since it reduces tfire by a constant
value. For controlling the information loss, the capacitor size
needs to be set accordingly.

Errors from limited sampling frequency: With smaller
firing times caused by smaller Cmem size, the sensing fre-
quency of the FF needs to be increased. Consider the case of
one rising edge at time tre and one spiking signal at tfire. The
spiking signal is not latched until the arrival of the subsequent
rising edge. The sensing error is then described by tre− tfire
(see Fig. 6). The error manifests itself as a neuron timing
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Fig. 6: Waveform of SNN circuit. Timing error by FF, since it
cannot latch the spike. The smaller tfire, the larger the ratio
of timing error tre−tfire

tfire
. The max. timing error is bounded by

the sensing period, while tfire is increased over time. Thus,
the increase of tfire will reduce the timing error ratio.

error, i.e. the shifted firing time is t∗fire = tfire + εSF .
To alleviate this, the sampling frequency of the FF needs
to be increased accordingly with smaller capacitor size, to
minimize εSF . However, fSF cannot be set arbitrarily high
due to fundamental limits.

Combined effect of errors and countermeasures: We
denote the error due to reduced capacitor size, with errors from
information loss (IL) and from limited sampling frequency
(SF) as

tIL,SFfire = tfire − εIL + εSF . (5)

These errors may degrade inference accuracy significantly.
To tolerate these errors, we use the method for resiliency
optimization in [11], where bits of the weights Wi are flipped
during training. Due to the property of XNOR, each flipped
weight bit induces an output error (see Fig. 2). These bit
flip induced errors change the popcount-result by εFLIP . For
this weight-flipping scheme, we can describe the errors with∑
iWiXi ± εFLIP > T. Due to the similarity of the weight

errors to IL and SF errors, we expect that the method for
increasing general error resiliency of BNNs in [11], i.e. using
the modified hinge loss in combination with bit flip injection
with a certain flipping probability pFLIP , allows reduction of
capacitor size in SNNs with minimal accuracy cost.

V. EVALUATION

To evaluate the impact of binarization in SNNs, we consider
as a baseline a stochastic input NN with multi-bit weights,
given Cmem size, and a certain inference accuracy. Our goal
is to evaluate to what extent binarization combined with error
resiliency optimization can reduce capacitor size, energy, and
latency, while sustaining inference accuracy.

A. Experiment Setup

For evaluation, we use the FashionMNIST dataset to prove
our primary concept. The model used in this work is a
CNN with three layers (C64-MP2-C64-MP2-FC2048-FC10),
see [11]. In the case of BNNs, the A-functions returns bi-
narized values, while in the 4-bits weights baseline model,
ReLU is used. Both the BNNs and 4-bits NNs have the same

Circuit Parameters per Crossbar (256x256) @ 65nm Technology Node
Component Spec Energy (pJ)
Counter [28] 1.4 pJ/cycle 1.4 GRT/25ns
Adder (8 bits) [29] 0.16 pJ/spike 40
Crossbar+Neuron 2VBLVthCmem pJ/spike 512VBLVthCmem

Time-to-digit [30] 107.5 pJ/spike 27520
RNG (8bits) [31] 135.76 pJ/cycle 135.76 GRT/25ns

TABLE I: Energy configurations of SNN macro.

SNN Model SF=1GHz SF=2GHz
4-bits NN 15.8pF 15.8pF

BNN 12.6pF 10pF
ER-BNN 10pF 7.9pF

TABLE II: Cmem size to sustain inference accuracy of ≥ 0.88

architecture, except for the activation function and weight
precisions.

For the BNNs, we use the modified hinge loss (MHL) with
the hyperparameter b = 128 (see [11]). We use BNNs that
were trained in two separate ways. One BNN was trained
only with the MHL.The other BNN was optimized for error
resiliency by injecting a probability of error pFLIP = 10% per
binary weight. We use batch sizes of 256 and initial learning
rates of 10−3. The learning rate is decreased exponentially ev-
ery 25 epochs by 50 percent. We used the Adam optimizer [26]
for 200 training epochs. For the 4-bit model, which serves
as the baseline to compare the binarized SNNs to, we use
quantization-aware training. The number of training epochs is
33, as it reaches full convergence earlier. The initial learning
rate is 0.01, which we decay by 0.1 every tenth epoch. We
use the the Adam optimizer here as well.

The stochastic model of SNNs for the binarized and 4-bit
case is built from samples of circuit simulation. Samples are
pairs of fire time and inner product generated from randomly-
generated input and weight vectors. The stochastic model is
provided to the SNN evaluation tool. The crossbar size is set
to be 256× 256 which can operate 128 inputs in parallel.

The memory technology used for evaluation is FeFET [27].
The cell architecture is simulated based on the measured data.
The design scenario of high polarization (PR) and coercive
field (EC) is adapted because of its high ON-OFF ratio. In this
design scenario, the ON-state cell current is 10uA, operating
at Vg = 0.6V with the ON-OFF ratio over 1000.

The circuit energy configurations are listed in Table I. The
role of each component is described in Subsec. III-B.

B. Experiment Results

In the following, we first reduce the membrane capacitor
in BNNs and 4-bits NNs, without employing any counter-
measures, and show that the errors (from information loss
and small sensing frequency) become large and drastically
impact inference accuracy. As the first countermeasure, we
increase the sensing frequency to reduce the sensing errors.
We then evaluate to which extent the membrane capacitor can
be reduced when we fully exploit the error resiliency of ER-
BNNs. Finally, we compare latency and energy consumption
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Fig. 7: Normalized error from information loss over inner
product for different membrane capacitor sizes. (a) shows
errors for BNN, while (b) - (e) shows errors for 4-bits model.
The sampling frequency is set to infinity to avoid interference.

of the 4-bits model, BNN and ER-BNN with maximum
capacitor size reduction under an accuracy goal.

Information loss: To ideally have no error interference by
limited sampling frequency, in Fig. 7, we set the sampling
frequency to infinity. In the figure, we show the errors from
information loss (see Sec. IV-D) for the BNNs in subplot (a)
and for the 4-bit case in subplots (b) - (e). We observe that
in BNNs, the errors from information loss are always zero
in the tested cases. This is due to the small charge in the
capacitor when BNNs are run. We do not show the errors
for all capacitor sizes for BNNs, since the errors are always
zero. In the 4-bits case ((b) - (e)), the errors from information
loss get larger when the capacitor size is reduced. There are
larger charges in the 4-bits case than in BNNs, since in the
4-bits case, multiple samples are needed to estimate the inner
product. Combined with a small membrane capacitor, early
firings will be induced, leading to information loss.

Capacitor optimization under sensing frequency: Here,
we focus on errors caused by limited sampling frequency for
the case of BNNs, since BNNs do not experience errors from
information loss from small capacitor and therefore provide a
better initial point for optimization. In Fig. 8a we show how
increasing the sensing frequency in BNNs from 1 GHz to 2
GHz allows capacitor size reduction while sustaining accuracy
at a high level. In Fig. 8b, we show that the normalized
computing error in BNNs can be reduced by increasing sensing
frequency. The reason is the increase of sensing frequency,
which reduces the upper bound of timing error, as described
in Fig. 6.

Capacitor optimization under ER-BNNs: Although de-
ploying BNNs on SNNs can reduce the size of membrane
capacitor with high sensing frequency, there are fundamental
limits, which we consider here to be 2 GHz. To enable fur-
ther reduction of membrane capacitor size without increasing
sensing frequency, we aim to exploit the error resiliency of
BNNs to tolerate the sensing errors. We show the benefit of
ER-BNNs in Fig. 9a. In the ER-BNN, the capacitor size can
be reduced by 20% compared to the BNN model without ER.
In Fig. 9b, we plot the sensing frequency error for the case
in which a capacitor of size 7.9 pF is selected such that the
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Fig. 8: Effect of sensing frequency (SF). (a) Cmem for BNN
can be reduced by increasing SF. It is not possible for 4-bits
model (information loss) (b) The SFs are varied for analyzing
effects of sensing errors in BNN. Increasing SF reduces the
normalized error tre−tfire

tfire
. Capacitor size is 10 pF.

accuracy is above 0.88. Although the sensing errors in the
case with 7.9 pF are larger than with 10pF, the ER-BNN can
tolerate the them. As a result, the classification accuracy is
sustained for smaller capacitor sizes, where the size of Cmem
for ER-BNN is 50% smaller than that for the 4-bits model.

Latency improvement: The guaranteed response time
(GRT) over accuracy is shown in Fig. 10a. The BNN can
sustain accuracy with smaller GRT than the 4-bits model,
while the ER-BNN can sustain high accuracy with smaller
GRT than the BNN with no ER. In Fig. 10b, the GRT for
the 4-bits model is higher. The reason is that a lower GRT
causes more information loss than BNNs. In some cases, the
expected firing time may exceed GRT, which is assumed to be
a no-fire. The 4-bits model cannot sustain accuracy in these
cases due to high information loss. As a summary, the GRT of
the different models are shown in Fig. 11a. The BNN has two
orders of magnitude in GRT improvement compared to the 4-
bits model, while the ER-BNN shows 20% GRT improvement
compared to the BNN without ER.

Energy saving: The energy configuration of our considered
system is shown in Tab. I. The energy used in each model is
as shown in Fig. 11b. The result indicates that the required
energy to generate a spike in BNNs without ER is 36.7% less
than 4-bits model, while the ER-BNN can reduce by 57% of
energy compared to the 4-bits model.

VI. CONCLUSION

We studied the impact of deploying error-resilient BNNs
(ER-BNNs) on analog implementations of SNNs. We focused
on the reduction of the membrane capacitor size, since it
constitutes one of the major bottlenecks in analog SNNs,
determining inference accuracy, energy usage, latency, and
area. Through analyzing the properties of analog SNN circuits,
we showed that binarization allows capacitor size reduction
with less accuracy cost than in multi-bit SNNs, since bina-
rization leads to deterministic inputs and less capacitor charge.
We also established the connection between the latency and
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than 4-bits model. (b) The GRT is selected from (a) satisfying accuracy ≥ 0.88. The ER-BNN can sustain accuracy despite
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Fig. 11: Summary of computing efficiency for each models. The minimal size of membrane capacitor for each case is selected
to sustain the classification accuracy. The ER-BNN can hold the classification of ≥ 0.88 with the smallest GRT.

the membrane capacitor size, from which we deduced that
binarization allows higher latency reduction than in multi-bit
cases. We also showed that the energy consumption depends
on the membrane capacitor size. However, the membrane
capacitor size reduction comes at the cost of timing errors,
for which we developed a model for evaluating the trade-off
between membrane capacitor size and the SNN inference ac-
curacy. As a countermeasure to the errors, we optimize BNNs
for ER to tolerate the errors while sustaining high accuracy.
In our experiments, we evaluated the trade-off between the
capacitor size reduction and the errors. Our results indicate
that, compared to 4-bits SNNs, deploying ER-BNNs as SNNs
leads to 50% and 57% reduction of capacitor size and energy

respectively, and two orders of magnitude in improvement in
latency, while high inference accuracy is sustained.
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