
1

Unlocking Efficiency in BNNs: Global by Local Thresholding
for Analog-based HW Accelerators

Mikail Yayla, Fabio Frustaci Senior Member, IEEE, Fanny Spagnolo Member, IEEE,
Jian-Jia Chen Senior Member, IEEE, and Hussam Amrouch Member, IEEE

For accelerating Binarized Neural Networks (BNNs), analog
computing-based crossbar accelerators, utilizing XNOR gates
and additional interface circuits, have been proposed. Such
accelerators demand a large amount of analog-to-digital con-
verters (ADCs) and registers, resulting in expensive designs. To
increase the inference efficiency, the state of the art divides
the interface circuit into an Analog Path (AP), utilizing (cheap)
analog comparators, and a Digital Path (DP), utilizing (expensive)
ADCs and registers. During BNN execution, a certain path
is selectively triggered. Ideally, as inference via AP is more
efficient, it should be triggered as often as possible. However,
we reveal that, unless the number of weights is very small, the
AP is rarely triggered. To overcome this, we propose a novel
BNN inference scheme, called Local Thresholding Approximation
(LTA). It approximates the global thresholdings in BNNs by local
thresholdings. This enables the use of the AP through most of
the execution, which significantly increases the interface circuit
efficiency. In our evaluations with two BNN architectures, using
LTA reduces the area by 42x and 54x, the energy by 2.7x and
4.2x, and the latency by 3.8x and 1.15x, compared to the state-
of-the-art crossbar-based BNN accelerators.

Index Terms—Neural networks, error tolerance, approximate
computing, hardware design.

I. INTRODUCTION

Numerous fields have benefited from the application of
neural networks (NNs). However, NNs are highly resource
demanding. To achieve high accuracy, they require a massive
number of parameters and with them need to perform a large
number multiply-accumulate (MAC) operations. While NN
models become increasingly larger, low-power operation for
sustainability is rapidly gaining importance, especially for
resource-constrained systems, posing immense challenges in
the system design.

To overcome this challenge, binarized neural networks
(BNNs) have been proposed, which have binarized weights
and activations. Due to this, multiplications are computed by
bitwise XNOR and accumulations by popcount. The result
of the popcounts are then thresholded, i.e. compared with
thresholds to produce binary outputs. This reduces the memory
usage, energy, and latency by a large factor, while providing
high accuracy [1]. Furthermore, BNNs are also highly error

Corresponding authors: Mikail Yayla and Hussam Amrouch
M. Yayla and J.-J. Chen are with the Design Automation for Embedded

Systems Group, TU Dortmund University, Germany, and Lamarr Institute for
Machine Learning and Artificial Intelligence, Germany. Email: {mikail.yayla,
jian-jia.chen,}@udo.edu

F. Frustaci and F. Spagnolo are with the DIMES Department, University
of Calabria, Italy. Email: {f.frustaci, f.spagnolo}@dimes.unical.it

H. Amrouch is with the Chair of AI Processor Design, Technical University
of Munich (TUM) and with the Munich Institute of Robotics and Machine
Intelligence (MIRMI). Email: amrouch@tum.de.

tolerant, which has been studied and exploited for efficiency
in several works, i.e. concerning memory usage, latency, area,
and energy [2], [3], [4].

For accelerating the BNN workload, crossbar accelerators
have been proposed [5], [6]. They are organized in columns,
where each column consist of XNOR gates, circuits to perform
the popcount (e.g. through Kirchhoff’s circuit law in analog
computing), and interface circuits. The interface circuits em-
ploy analog-to-digital conversion and accumulate intermediate
results for further processing. This necessitates the use of
analog-to-digital converters (ADCs), registers connected to
adders for accumulation, and digital comparators. Specifically,
ADCs are one of the most critical building blocks in crossbar
accelerators. It has been reported that in crossbar accelerators,
the ADCs use the most on-chip area and energy. For example,
in the ISAAC accelerator, ADCs use a large portion of the tile
power and tile area [7].

To avoid using the ADCs and digital components, the state-
of-the-art study in [5] employs an “analog path” (AP) in
the interface circuit, which only uses an analog comparator.
In contrast, the “digital path” (DP) uses ADCs and other
digital components. The AP and DP are shown in Fig. 1.
However, the AP of the interface circuit is and can only be
used for a very small number of weights due to technological
limitations and due to inherent variations of the analog signals,
e.g. nonidealities or process variation, IR-drop, sneak paths,
finite wire resistance, and other sources of noise [8], [9], [10].
Specifically, in [5], the AP is only used up to case in which
64 analog signal states need to be distinguished. This means
that the AP is not used in common BNN architectures, which
generally require a large number of weights β per neuron
(see e.g. Tab. V). Therefore, the DP, with the ADCs and
digital components, is used in every crossbar invocation in
BNN inference, causing high energy usage and high latency.
Furthermore, each column in the crossbar needs one interface
circuit, causing high area usage. For example, with 64 crossbar
columns, 64 interface circuits with both APs and DPs are
needed.

Without the DP of the interface circuits, only analog
comparators would be needed for the BNN operations. The
elimination of the DP would lead to breakthroughs in small
area usage, low energy consumption, and low latency inference
in BNN accelerators.

However, without the DP, the thresholdings in BNNs cannot
be performed with the full result of the popcount, referred to
as “global thresholding”. Instead, when using only the AP, the
global thresholdings have to be approximated by “local thresh-
oldings” using the local popcounts in each crossbar column.

−
+

Vref

+ Reg Bin

ADC

Analog path (AP)

Digital path (DP)

Fig. 1: Analog path (AP) and digital path (DP) of one interface
circuit in [5]. Reg: Registers, Bin: Digital comparator.

To enable this, thresholds for the local thresholdings have to be
derived, while the results of the local thresholdings have to be
combined to reach an approximate global solution. Despite the
high error tolerance of BNNs, this way of approximation may
cause high accuracy drop, which necessitates the evaluation
of the trade-offs between interface circuit efficiency and BNN
inference accuracy. To the best of our knowledge, using local
thresholdings for approximating the global thresholdings has
not been explored yet, and no method or evaluations exist.

Concisely, our key focus is to propose methods for ap-
proximating the global thresholdings by local thresholdings,
with the goal of designing highly efficient interface circuits in
crossbar accelerators for BNNs.
Our contributions are as follows:
• We present a novel computing scheme for BNNs in

Sec. IV, which approximates the global thresholdings
by combining the results of local thresholdings, called
local thresholding approximation (LTA). To tolerate the
approximations of LTA, we propose to train the BNNs
with approximations.

• We propose an efficient interface circuit design for the
LTA and show that it needs less resources than the state
of the art. Since LTA is a novel computing scheme, we
propose tailored BNN workload mapping strategies. Both
contributions are in Sec. V.

• In the experiments in Sec. VI, we reveal the impact
of using the LTA in BNNs and show that using the
LTA may lead to significant accuracy degradation if no
countermeasures are employed. We then demonstrate that
when training with the approximations from the LTA, we
consistently achieve high accuracy even under noise. We
further show that for two BNN architectures using the
LTA with the efficient interface circuit reduces the area
by 42× and 54×, the energy by 2.7× and 4.2×, and
the latency by 3.8× and 1.15×, compared to state-of-
the-art analog computing based BNN accelerators. The
tools for simulating our LTA approach are available in
https://github.com/myay/LTA-BNN.

II. RELATED WORK

For computing the BNN workload in the digital domain,
typically CMOS-based XNOR gates, popcount units, and other
digital components are used. Especially the popcount unit uses
a large amount of resources (e.g. in [11], the performance

of BNN acceleration HW is measured by XNOR–popcount
operations per second). This popcount unit is completely
removed in analog computing based accelerators.

In the analog domain, currents that come out of the XNOR
gates are summed by employing Kirchhoff’s current law. For
accelerating BNN workloads in the analog domain, crossbars
from different memory technologies have been evaluated.
In [5], Ferroelectric Field Effect Transistor (FeFET) tech-
nology is used to build a BNN accelerator from crossbar
arrays. They use standard circuit designs and show that drastic
efficiency benefits due to the use of FeFET can be achieved.
The study in [6] also works on FeFET-based BNN accelerators
and focus on different architecture configurations to maximize
efficiency.

However, to enable computing in the analog domain, analog
signals need to be converted into the digital domain, for which
ADCs are typically used in the interface circuit. Depending
on the used technology and implementation of the ADC and
popcount unit, an ADC may even require more resources com-
pared to a popcount unit. To alleviate the resource demand by
ADCs, in [12], the ADCs are replaced by 1-bit sense amplifiers
and perform retraining for the loss of representation ability for
general NNs. By doing this, they reduce the partial results of
each crossbar column to 1 bit. The study in [13] proposes
ADC-free execution at the cost of approximations. However,
their study does not account for the fact that ADCs may still
be required when dealing with large workload dimensions.

In this work we focus on BNNs and exploit their error
tolerance to avoid ADC usage. For BNNs, the tolerance to
approximations or errors has been studied in several works.
In [2], the capability of BNNs to tolerate errors is demon-
strated. The work in [14] proposes a margin-based method
to achieve high tolerance of BNNs for errors in approximate
memories, while other studies exploit the tolerance for efficient
BNN inference (e.g. in [4], [3]).

In summary, the tolerance of BNNs to approximations or
errors has been widely studied. However, efficient interface
circuit designs tailored for BNNs, avoiding ADC usage have
not received much attention yet. In order to design highly
efficient interface circuits, we propose the LTA, a novel
computation scheme for BNNs based on local and global
thresholdings, which enables the use of highly efficient in-
terface circuit with the goal of ADC-less computations at the
cost of small accuracy degradation.

III. BACKGROUND

We present the basics of BNNs in Sec. III-A, the descrip-
tion of crossbar accelerators in Sec. III-B, and the problem
definition in Sec. III-C.

A. Binarized Neural Networks

We assume for a certain layer a weight matrix W with
dimensions (α × β), where α is the number neurons and β
the number of weights of a neuron. The input matrix has
dimensions (γ × δ), where β = γ and δ is the number of
convolution windows in the input. We leave out any layer
indices for brevity. Every convolution of a conventional NN
can be mapped to this matrix notation.

2

https://github.com/myay/LTA-BNN

X
N
O
R

X
N
O
R

X
N
O
R

X
N
O
RV 1

L V mL

Interface circuits

. . .

. . .

. .
.

. .
.

Input 1

Input n

B B

M-Line Output

(a) (b)

Fig. 2: (a): Crossbar with interface circuit. A possible realiza-
tion of an interface circuit is shown in Fig. 1. The voltages
V 1
L , . . . , V

m
L or the currents are passed to the interface circuits.

(b): Realization of an XNOR gate from FeFET transistors.

In BNNs, the weights and activations are binarized. The
output of a BNN layer can be computed with

2 ∗ popcount(XNOR(W,X))−#bits > T, (1)

where XNOR(W,X) computes the XNOR of the rows in
W with the columns in X (analogue to matrix multiplication),
popcount counts the number of set bits in the XNOR result,
#bits is the number of bits in the XNOR operands, and T
is a vector of learnable threshold parameters, with one entry
for each neuron. The thresholds are computed with the batch
normalization parameters, i.e. T = µ− σ

ψη, where each neuron
has a mean µ and a standard deviation σ over the result of
the left side of Eq. (1), and ψ and η are learnable paramaters
(details about the batch normalization paramters can be found
in [1], [15]). Finally, the comparisons against the thresholds
produce binary values. In this work, we focus on convolution
and fully connected layers of BNNs with binary inputs and
binary activation in the outputs, which use the majority of the
energy and execution time.

B. BNN Crossbar Accelerators

Crossbar accelerators for BNNs use XNOR gates, which
store binary weights and process binary inputs. The crossbars
are organized with m columns and n XNOR gates per column,
i.e. they have size (m × n), which determines the workload
they can process. For mapping the workloads in matrix no-
tation of the weights α × β and inputs β × δ (as described
in Sec. III-A) to one crossbar, multiple strategies exist with
different trade-offs regarding energy, area, and latency [5], [6].

A high-level overview of an analog computing based cross-
bar for BNNs is shown in Fig. 2(a). The input bits (1 to n)
are applied to the input lines (in green) to the XNOR gates.
The XNOR gates are programmed to store the binary weights
(the circuits for programming are omitted).

The XNOR gates can be built from standard CMOS or
other emerging technologies, such as FeFET, which promise
highly efficient inference [5], [6]. FeFET-based XNOR gates
are built by coupling two FeFET transistors together, as shown
Fig. 2(b). The binary weight is stored in a complementary
manner in both transistors. Depending on the input signal B
and its complement B, the output will either be logic “1” or

“0”. In practise, the match line (M-Line) is charged to high,
and when there is a match between the input and the stored
value, both transistors will be off and no conducting path is
formed, leading to a logic “1”. Only when there is a mismatch,
a conducting path is formed, which causes the voltage at the
output line to drop, returning logic “0”.

With FeFET-based XNOR gates, the popcount can be com-
puted in the analog domain, i.e. the output currents of all
XNOR gates are summed by employing Kirchhoff’s circuit
law. The resulting m currents are passed to the interface
circuits for further processing.

The interface circuits consist of analog comparators, ADCs,
and also digital components, such as accumulators, registers,
and digital comparators, see Fig. 1.

C. Problem Definition

In the state of the art (SOTA) by Chen et al. [5], one
crossbar column has one interface circuit, each consisting of an
analog comparator, an ADC, an adder, registers, and a digital
comparator, illustrated in Fig. 1. In their design, m interface
circuits are needed for a crossbar of size (m × n). To avoid
using the ADCs and other digital components, their approach
employs an “analog path” (AP) in the interface circuit, which
only uses analog comparators. In contrast, the “digital path”
(DP) uses ADCs and other digital components.

However, the AP is only used when the number of weights
β per neuron is very small, i.e. β ≤ n, which is rarely the
case (in [5], n is only 64). High-performing BNN architectures
actually use a large β, and the size of β of a layer depends on
the number of neurons in the previous layer. For example, in
our VGG-based BNNs, β is large in every case, as shown in
Tab. V. Therefore, the DP is used in every crossbar invocation,
causing high energy usage and high latency. Further, the
interface circuit is the most area demanding part of the
crossbar accelerator, mainly due to the ADCs and registers,
while the other components also cannot be neglected.

Problem Definition: Given a trained BNN with high ac-
curacy and a crossbar accelerator, as described in Secs. III-A
and III-B respectively, in this work, we focus on the problem of
reducing the complexity of interface circuits in BNN crossbar
accelerators, to achieve inference using small area, low energy,
and low latency.

Next, we present our novel method, which enables us to
use the AP through most of the execution (i.e. for β ≤ mn)
and needs only one interface circuit for all crossbar columns
(instead of m interface circuits in the SOTA), at the cost of
approximations.

IV. LOCAL THRESHOLDING APPROXIMATION

We describe our method, the local thresholding approxima-
tion (LTA) in Section IV-A. Due to the approximations in LTA,
errors occur in the computations. We discuss countermeasures
in Section IV-B.

A. LTA Execution

We consider that the weights and activations are binary
values in {−1, 1} to denote XNOR as multiplication and

3

popcount as summation, without loss of generality. The
weights of one neuron (a certain row in W) are described
as W = (w1, w2, . . . , wβ), with wj ∈ {−1, 1} and with β as
the number of weights. The input (a column in X) is denoted
as X = (x0, x1, . . . , xβ) with xj ∈ {−1, 1}. We assume that
the layers have the following structure, without any operations
inbetween: Convolution, batch norm, binary activation. With
this assumptions in BNNs, the activations are computed by

a = 1[

β∑

i=1

wixi ≥ T]. (2)

T is the threshold for the neuron in W and 1[predicate] is
a modified Iverson bracket, which returns 1 if the condition
predicate holds and −1 otherwise. The computation in Eq.(2)
is precise, i.e. without any errors. To perform precise compu-
tations, m interface circuits with APs and DPs are needed, as
described in Sec. III-C.

To use the AP and interface circuits with less complexity,
we propose to employ local thresholdings using subsequent
samples of size n, and combine the results of local threshold-
ings with a majority function to obtain an approximate global
result. By this, the computation result of a crossbar column
with n XNOR gates is represented by one binary value. The
majority vote of m binary values from all crossbar columns is
then performed to reach a final approximate decision. This
means that local thresholdings are performed to reach an
approximate global thresholding result.

We call this way of computing the local thresholding ap-
proximation (LTA). In the LTA, the AP is triggered throughout
most of the execution, i.e. for β ≤ mn. Furthermore, only one
interface circuit is needed for the crossbar, whereas state of
the art by Chen et al. [5] requires m interface circuits. We
focus on the interface circuit and the corresponding workload
mapping in Sec. V, with a comparison to the state of the art.

For the LTA, local thresholdings in the form 1[
∑n
i=1 wixi ≥

T ∗] are performed, i.e. the sums are computed up to a value n,
which is the number of XNOR gates in a column of a crossbar.
The local thresholdings are performed with a local threshold
T ∗, followed by the majority vote of all local thresholdings.

The LTA is defined as:

1[

β∑

i=1

wixi ≥ T] ≈ 〈a1, a2, . . . , aN 〉

= 〈1[
n∑

i=1

wixi ≥ T ∗],1[
2n∑

i=n+1

wixi ≥ T ∗], . . . ,

1[

β∑

i=(N−1)n+1

wixi ≥ T ∗last]〉.

(3)

The majority is denoted as 〈a1, . . . , aN 〉 =
Majority(a1, . . . , aN). The threshold T ∗ for the local
thresholdings except the last is acquired by dividing the
global T by the number of local comparisons N =

⌈
β
n

⌉
. The

threshold T ∗last for the last window (which may have smaller
window size than other windows) is derived by scaling T ∗

1 -1 1 1 -1 1 -1 1

1[

β∑

i=1

wixi ≥ T]

1[
n∑

i=1

wixi ≥ T ∗] 1[
2n∑

i=n+1

wixi ≥ T ∗]

Majority vote

Precise execution

LTA execution

Fig. 3: Precise and LTA execution in BNNs for β = 8, n = 4.

according to the size of the rest β− (N −1) ·n. The formulas
for deriving the thresholds in Eq. (3) are

T ∗ = round

(
T

N

)
, T ∗last = round

(
T ∗
(
β

n
− (N − 1)

))
,

(4)
where the round function rounds to the nearest integer and
ties are broken by rounding up. An example for the LTA with
n = 4, β = 8, and N = 2 is shown in Fig. 3.

The number of local comparisons N depends on n, which
cannot be chosen to be arbitrarily high due to technological
limitations of crossbars. When n is large, N is small, since
N =

⌈
β
n

⌉
. When n becomes smaller, the global thresholdings

are increasingly based on approximations from local thresh-
oldings, which makes the approximations less precise.

The LTA execution is approximate, and the trade-offs con-
cerning level of approximation and inference accuracy have
to be evaluated (in Sec. VI-B, we will evaluate this trade-
off). To introduce a metric which compares the results of the
computations, and not only accuracy, we define the ratio R,
for a layer, as the number of equal activations divided by the
number of all activations (|A|), i.e.

R =
∑

a∈A

1

|A|1 [a = aLTA] , (5)

where a is the activation from the correct global thresholding
and aLTA the activation from the LTA.

B. Training with LTA

One method is to use the inherent error tolerance of BNNs
to tolerate the approximations stemming from the LTA. How-
ever, the approximations may be heavily dependent upon the
configurations. To make BNNs error tolerant, applying errors
during the training has been suggested in the literature [2],
[14], [16].

We use the idea of error application during training to make
the BNNs tolerant to the approximations of the LTA. To this
end, we replace the correct activations by the approximate
activations in the forward pass of the training procedure.

Our method for training with the LTA is illustrated in
Alg. 1. We refer to the functions of BNNs that perform the
operations of a layer (both 1D and 2D) as execution. During
inference, the BNN layers are first executed in the regular
way (i.e. convolution, batch norm, htanh, activation, Line 3),

4

Algorithm 1: Forward pass for LTA training
Input: model, X
Output: X

1 for each binarized layer do
2 Xcopy ← X.clone().detach()

// Regular execution
3 execution(X, regular), according to Eq. (2)

// LTA execution
4 for every neuronj for j = 1, 2, . . . , α do
5 derive µj ,σj , ψj , and ηj , see Subsec. III-A,

derived from Line 3;
6 Tj ← µj − σj

ψj
ηj ;

7 execution(X,LTA), according to Eq. (3) (applied
for each neuron);

8 X.data← Xcopy.data

9 return X

according to Eq. (2). After the regular execution is finished,
the thresholds for each neuron in the layer are extracted
(Line 6), from which the thresholds for the windows in the
LTA can be computed, see Eq. (4). Then the BNN operations
are performed with the LTA according to Eq. (3) (Line 7).
After the LTA, the tensor of the correct activations is replaced
with the tensor of the (approximate) LTA activations (Line 8).

In this method, the LTA operations are removed from
the computation graph. They are not considered during the
backpropagation, due to the copy and detach in Line 2.
Furthermore, only the values of X are replaced by the approx-
imated values Xcopy , see Line 8. This means that the training
is performed with the approximations and that the weights and
batch norm parameters of the layer in Line 3 are adapted in
the backpropagation based on the LTA.

V. DATA FLOW, INTERFACE CIRCUIT AND WORKLOAD
MAPPING FOR LTA

In this section, first describe the input data flow needed
for the LTA in Sec. V-A. We then describe our interface
circuit design for the LTA in Sec. V-B. After that, we explain
general workload mapping strategies in Sec. V-C and present
our mapping strategy for the LTA with a comparison to the
state of the art (SOTA) in Sec. V-D.

A. Input Data Flow in LTA

Our LTA approach requires a different way to apply inputs
(i.e. types of input data flows) compared to the baseline in [5].
In the following, we consider two ways of input data flow to
an accelerator with sub-components, such as crossbar columns
in BNN accelerators in our case. The two types of input data
flows have been explained by Kung in 1982 [17], in the context
of systolic arrays: (1) One input is broadcasted to all columns
(e.g. see design “B1” in [17]), which is a well-known method
in modern NN accelerators and is also applied in [5]. (2)
Multiple (different) inputs are applied to different columns,
e.g. the first input is applied to the first column, the second

input to the second column, etc. (see the designs “F” in [17]).
Our LTA method requires the second type of input data flow.

Fig. 4 illustrates the input data flow type required by the
LTA execution and the input data flow required by the baseline
for comparison. To move the input data to the accelerator,
FIFOs are used, which are called iFIFO here. The system
architecture regarding the FIFOs is inspired by [18]. In the
baseline case in Fig. 4(a), one input (striped area) is accessed
from the iFIFO. Then, the input is broadcasted to all columns.
In the LTA case in Fig. 4(b), m different inputs (striped areas
in the iFIFO) are accessed from the iFIFO. Then, the inputs
are moved into the crossbar columns.

In both cases in Fig. 4(a) and in Fig. 4(b), techniques and
corresponding circuits need to be used to move the data into
the crossbar columns, while considering the design trade-offs.
For example, for both cases, the inputs can be moved into the
crossbar array in an iterating manner over all columns and
inputs can be applied to multiple columns in parallel. The
difference between (a) and (b) with respect to the iFIFOs is
that in (a) a single input needs to be accessed and supplied to
the columns, while in (b), m inputs need to be accessed. If
inputs are applied to multiple columns in parallel, then in the
case of (a), the iFIFO needs one output port (since one input is
accessed), while in (b) multiple output ports are needed (since
multiple different inputs are accessed).

B. Interface Circuit for LTA

Our interface circuit design for an entire crossbar with m
columns and n XNOR gates computing with the LTA is shown
in Fig. 5. See also Fig. 4 for the overall architecture, i.e.
where the interface circuits are and that m interface circuits
are needed in the baseline, while only one interface circuit is
needed for the entire crossbar for the LTA. The interface circuit
in Fig. 5 has m incoming summed currents from m crossbar
columns. These currents are converted into voltages (e.g. V 1

L)
by the resistors R1 and then amplified with the operational
amplifiers (opamps) A1. The resulting voltages are compared
to thresholds in the analog comparators A2. The reference
voltages Vref are derived by dividing the original threshold,
see Eq. (4). The outputs of A2 are voltage levels, which are
converted to currents by the resistors R2. In the analog path
(AP) of the circuit, these currents are summed by Kirchhoff’s
circuit law, converted back to a voltage by R3, and then a
majority vote is performed with the analog comparator A3, by
which the final output V finalout is obtained.

The AP is employed in our LTA interface circuit design
when the workload has size β ≤ mn. If the workload is larger
than that, i.e. β > mn, then the digital path (DP) is used. In
the DP, the sum of currents from the opamps A2 are converted
into the digital domain using an ADC. Then, accumulations
are performed, whose results are stored in registers. When the
accumulation is finished, a binary comparison is performed
and the final result is obtained (details are described in
Sec. V-D).

Note that, for the LTA, the AP is used when β ≤ mn and
only one interface circuit for the entire crossbar is needed.
In comparison, the AP is used only when β ≤ n in the
SOTA [5], and m interface circuits are needed for the entire

5

iFIFO

IF IF IF

(a) Input data flow for baseline.

iFIFO

IF

(b) Input data flow for LTA.

Fig. 4: Comparison of input data flow between the (a) baseline and (b) the LTA execution. iFIFO: FIFO for input data.
C1, . . . Cm: Crossbar columns. IF: Interface circuit.

−
+
A1

−
+

A2

V 1
L

R1

V 1
out

Vref

..
.

−
+
A1

−
+

A2

V m
L

R1

V m
out

Vref

−
+

A3

R3

V Final
out

VMaj

R2

R2
+ Reg Bin

M
u
x

ADC

Analog path (AP), β ≤ mn

Digital path (DP), β > mn

Fig. 5: Our interface circuit design for our proposed LTA method. The voltages V 1
L and V mL in are input voltages from Fig. 2(a).

W X

α

β

β

δ
Strided (SOTA)

W X

α

β

β

δ
LTA (Our)

mn
mn

n

m

n

Crossbar:

n

(a) (b)

Fig. 6: Mapping schemes. (a): SOTA [5]. (b): LTA.

crossbar, which all need an ADC, an accumulator, registers,
and binarization logic.

The specifications of the interface circuit for the LTA and a
comparison to the state of the art are summarized in Tab. I, and
the table for explaining the notations is in Tab. II. The ADC
resolution for our LTA is dependent on the number of columns
m, and the number of bits is calculated by blog2(m)c+1, since
at maximum, there are m+1 analog states (currents) that need
to be distinguished by the ADC for m columns. For the SOTA,
the ADC resolution is dependent on the number of XNOR
gates n, and the number of bits is derived by blog2(n)c + 1,
since n+1 analog states need to be distinguished in the same
way as above.

Furthermore, note that with larger crossbar sizes (e.g. dou-

bling n or m), the LTA interface circuit gets more efficient, as
there is a higher chance that the analog path will always be
triggered, since in the LTA case, the condition for using the
analog path is β ≤ mn, whereas in the SOTA it is β ≤ n.
In the LTA, both n and m decide whether the analog path is
used, whereas in the SOTA, only n is the deciding factor. This
holds true until the case that n ≥ β, in which case the LTA
and the SOTA would use the same area and resources. In the
case of m = 1, the LTA also operates in the same way as the
SOTA.

C. Crossbar for Inference

For the BNN workload, we employ the matrix notation
using W and X as described in Sec. III-A. The crossbar

6

computes the matrix multiplication O = W × X. The
computation can be separated into two stages, programming
and application. In the programming stage, the weights of
neurons are programmed into the crossbar. In the application
stage, the inputs are applied to the crossbar and the results of
the matrix multiplication are returned.

The work in [5] applies a tile-based approach using a strided
workload mapping scheme, which minimizes the number of
reprogammings – an important issue in non-volatile-memory-
based (NVM-based) crossbars. In their approach, the crossbar
is programmed with a weight tile of n weights from m
neurons, where each neuron occupies one column of the
crossbar, as shown in Fig. 6(a) in W. Note that the tile
may not consist of all weights of the neurons. Then, parts
of the columns of X of size n, which are the corresponding
inputs for the programmed weights, are pushed to the crossbar,
such that all inputs that are possible to be processed with the
programmed weights are processed. This is performed so that
the programmed weights are reused without reprogramming.
After all the input columns (arrow in X in Fig. 6(a)) are
finished for the loaded weights of the current tile, the weights
of the next tile are programmed into the crossbar (arrow in
the W matrix for SOTA). This process is repeated over the
columns of X.

However, this mapping scheme rarely uses the AP, since
usually β � n, resulting in heavy use of the DP with a
high cost to digitalize and buffer many intermediate results.
For these operations, m DPs (for m crossbar columns) are
employed, using m ADCs, mδ registers, and m other digital
components with a large number of bits.

D. Our Workload Mapping for LTA

Consider now that a crossbar is given with the interface
circuit in Sec. V-B. In the LTA, the weights of one neuron
in W (one row in W) are programmed into the crossbar,
as shown with mn for the loaded weights in Fig. 6(b). The
weights are partitioned to the columns of the crossbar as
described in Eq. (3). Each column of the crossbar is mapped
to one window of Eq. (3). After programming, a column of
X is pushed to the crossbar as input, as shown in Fig. 6(b).
The crossbar is invoked and the majority vote of all m local
thresholdings is performed. This is repeated with the same
weights until all the columns in X are finished (arrow in X
in Fig. 6(b)). When all columns in X are processed, the same
procedure is repeated for the next neuron (arrow in W in
Fig. 6(b)). Only the AP is applied when the weights of one
neuron fit into one crossbar, i.e. when β ≤ mn.

When β > mn, the DP needs to be used to digitalize and
buffer the intermediate results, since the weights of one neuron
do not fit into the entire crossbar. When using the DP, the
crossbar is first programmed with mn weights of one neuron
in W. Then the inputs that need to be processed with the
programmed nm weights are supplied to the crossbar. The sum
of m currents from m analog comparators is converted to the
digital domain using the ADC. The results are accumulated in
a designated register for the column of X. This is repeated
until all columns of X are processed. Then, the next nm
weights of one neuron are processed. After all operations for

a neuron are finished, the values in the registers are binarized.
The same procedure is repeated for the subsequent neurons.

In Tab. I, we summarize the equations for the interface
circuit properties and equations regarding area, energy, and
latency. The notation is explained in Tab. II. As mentioned
above, the intermediate storage of values is only necessary, if
the crossbar is too small to hold all the values (β > mn).
In this case, the number of registers needed for the interface
circuit of the crossbar in LTA is δ. For the width of the digital
path in our LTA, the number of crossbar invocations for one
neuron (

⌈
β
mn

⌉
) is multiplied by the maximum popcount value

in each invocation (m), and to acquire the number of bits
to represent this, the log is applied, while a 1 is added to
cover the case in which the popcount result is 64 for each
invocation. For the width of the digital path in the SOTA,
there are

⌈
β
n

⌉
column invocations for one neuron, where the

maximum value in each invocation is n. In our LTA, only δ
registers are needed in the entire interface circuit, while for
the SOTA it is mδ. Finally, in the LTA, the entire crossbar
can be used for one neuron, therefore the number of crossbar
invocations is δα

⌈
β
mn

⌉
, whereas in the case of SOTA, since

each neuron is assigned to one crossbar column, the number
of invocations is δ

⌈
α
m

⌉ ⌈
β
n

⌉
.

To estimate area, energy, and latency, we add the individual
parts of each subcomponent in Tab. I. For example, for area,
we have the crossbar Acb (which include the XNOR gates), the
analog comparator with Aacomp, the ADC with Aadc and the
area of the digital components Aadd (adder), Areg (register),
and Abin (binarizer), where the superscript is either lta or
sota for distinguishing. For the energy calculations, the A is
replaced by E, and we use the number of crossbar invocations
Icb to multiply it with the energy used by each subcomponent
in with sample. For latency calculations, we replace E by L
and we also use Icb.

Note that, when β is small compared to the crossbar size,
i.e. β � mn, the LTA mapping above may not fully utilize the
crossbar in one invocation, since one neuron always occupies
the entire crossbar. For example, with 576 weights per neuron,
and 4096 XNOR gates in total, the crossbar utilization is
merely around 14.1% (and seven neurons could be computed
in parallel). This may lead to a long latency, since the number
of crossbar invocations is larger than the SOTA. To alleviate
this, when β ≤ mn

2 , multiple neurons can be mapped to one
crossbar, enabling parallel computation, which increases the
crossbar utilization. We call this extension LTA maximum uti-
lization (LTA-MU). Compared to LTA, LTA-MU additionally
divides the number of crossbar invocations I ltacb in Tab. I by
the factor f = bmnβ c, which means f neurons are processed in
parallel in one crossbar. However, when LTA-MU is used, the
number of interface circuits with analog comparators in Tab. I
needs to be multiplied by f . These trade-offs are evaluated and
compared to the SOTA in Sec. VI. Note that when β ≥ mn

2 ,
LTA-MU cannot be used, since multiple neurons cannot be
computed in parallel in this case. We note that using LTA-
MU instead of LTA never influences the inference accuracy,
because the computation are the same. The only difference is
that LTA-MU exploits parallelism.

7

Specification This work (LTA) State of the art (SOTA) [5]
ADC resolution blog2(m)c+ 1 blog2(n)c+ 1

Width digital path
⌊
log2(m

⌈
β
mn

⌉
)
⌋
+ 1

⌊
log2(n

⌈
β
n

⌉
)
⌋
+ 1

Registers δ mδ

Crossbar invocations Iltacb = δα
⌈
β
mn

⌉
Isotacb = δ

⌈
α
m

⌉ ⌈ β
n

⌉
Area Acb + (m+ 1)Aacomp +Aadc +Altaadd + δAltareg +Altabin Acb +m(Aacomp +Aadc +Asotaadd + δAsotareg +Asotabin)

For β ≤ mn: Acb + (m+ 1)Aacomp For β ≤ n: Acb +mAacomp
Energy Iltacb (Eltacb +mEacomp + Eadc + Eltaadd + Eltareg) + αδEltabin Isotacb Esotacb + Isotacb m(Eadc + Esotaadd + Esotareg) +

⌈
α
m

⌉
mδEsotabin

For β ≤ mn: Iltacb Ecb + (m+ 1)Iltacb Eacomp For β ≤ n: Isotacb Ecb +mIsotacb Eacomp

Latency Iltacb (Lcb + Lacomp + Ladc + Lltaadd + Lltareg) + αδLltabin Isotacb (Lcb + Ladc + Lsotaadd + Lsotareg) +
⌈
α
m

⌉
δLsotabin

For β ≤ mn: Iltacb Lcb + 2Iltacb Lacomp For β ≤ n: Isotacb Lcb + Isotacb Lacomp

TABLE I: Crossbar interface circuit comparison between LTA (this work) and the state of the art (SOTA) in [5], for a crossbar
size of m columns and n XNOR gates per column. The notations are described in Tab. II. The formulas for the SOTA in [5]
can acquired by the following substitutions: α = Cout, β =WFHFCin, δ =WOHO, S =

⌈
β
n

⌉
, m = N , and n =M .

Variable Definition
m Number of columns in a crossbar
n Number of XNOR gates per column
α Number of neurons in a layer
β Number of weights (of neurons) in a layer
δ Second dimension of the input matrix
Icb Number of crossbar invocations
A, E, L Area, energy, and latency of a component, respectively
lta Local thresholding approximation
sota State of the art
cb Crossbar
acomp Analog comparator
adc Analog-to-digital converter
reg Register
bin Digital binarizer
add Digital accumulator

TABLE II: Notation for Tab. I.

VI. EXPERIMENTS

In Sec. VI-A, we present the experiment setup, in Sec. VI-B
the trade-off of the LTA regarding accuracy, and in Sec. VI-C
we evaluate the area energy, and latency of BNN inference
with the LTA and our efficient interface circuit. Since there
can be different types of noise in the circuit, especially when
analog computing is employed, we perform a general noise
analysis and how it can be overcome by training with the noise
together with the LTA in Sec. VI-D. In Sec. VI-E, we discuss
the feasibility of the LTA input data flow. In Sec. VI-F we
discuss other methods to improve the LTA that we explored
and in Sec. VI-G, we discuss the limitations of BNNs models
that can be used with the LTA in its current form. Finally, in
Sec. VI-H, we explore the consequences of different ADC bit
widths in our design.

A. Experiment Setup

We evaluate following BNNs: A VGG3-based convolu-
tional BNN, with FashionMNIST and KuzujishiMNIST, and a
VGG7-based BNN with the SVHN, CIFAR10, and Imagenette
(image size is scaled to 64 × 64 and an additional maxpool
layer is added to the VGG7 BNN). VGG3 and VGG7 are
modified versions of the VGG-architectures [19], adapted for
the image sizes in the above datasets. We use moderately diffi-
cult prediction tasks, with a small convolutional BNN (VGG3)

Name # Train # Test # Dim # classes
FashionMNIST 60000 10000 (1,28,28) 10
KuzushijiMNIST 60000 10000 (1,28,28) 10
SVHN 73257 26032 (3,32,32) 10
CIFAR10 50000 10000 (3,32,32) 10
IMAGENETTE 9470 3925 (3,64,64) 10

TABLE III: Datasets used for experiments.

and a relatively large BNN (VGG7), which are suitably sized
examples for resource constrained inference. Please note that
we use the weakest variant of BNNs, with binarized weights
and binarized activations, which are the hardest to train. The
details of the datasets and BNN architectures are presented in
Tab. III and Tab. IV respectively. The BNNs use convolutional
(C) layers with size 3×3, fully connected (FC) layers, maxpool
(MP) with size 2× 2, and batch normalization (BN) layers.

We use Adam for optimizing BNNs in a PyTorch-based
framework. We use the modified hinge loss (MHL) with the
hyperparameter b = 128 (see [14]) to achieve high accuracy
and error tolerance by margin-maximization. The batch size
is 256 for all models, except for Imagenette, where the batch
size is 128. We use an initial learning rate of 10−3 for in
all cases. We halve the learning rate every 10th epoch for
Kuzujishi, Fashion, SVHN, and halve it every 50th epoch for
CIFAR10 and Imagenette. For each model we train 100 epochs
for Kuzujishi, Fashion, SVHN, and 200 epochs for CIFAR10
and Imagenette.

The LTA execution is not supported in PyTorch, and cannot
be performed using the standard MAC engine of PyTorch. To
execute the BNNs with the LTA in PyTorch, we developed
our framework (https://github.com/myay/LTA-BNN) using a
custom MAC library, with our own custom CUDA extensions.
The calls to nn.linear and nn.conv2D layers in PyTorch are
redirected to our custom CUDA kernels, which implement the
local thresholding and majority voting for the BNN layers.

When we train with the LTA, i.e. apply Alg. 1, we always
train from scratch with the LTA execution. This means we
always start a completely new training process when we train
with the LTA. This includes the cases in which we train with
a certain number of XNOR gates (Sec. VI-B) and the cases
in which we perform the noise analysis (Sec. VI-D).

8

https://github.com/myay/LTA-BNN

4 8 16 32 64 128 256
0

10
20
30
40
50
60
70
80
90

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

FASHION

4 8 16 32 64 128 256
0
10
20
30
40
50
60
70
80
90

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

KUZUJISHI

4 8 16 32 64 128 256
0

10
20
30
40
50
60
70
80
90

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

SVHN

4 8 16 32 64 128 256
0
10
20
30
40
50
60
70
80
90

Nr. of XNOR gates
A

cc
ur

ac
y

(%
)

CIFAR10

4 8 16 32 64 128 256
0

10
20
30
40
50
60
70
80

Nr. of XNOR gates

A
cc

ur
ac

y
(%

)

IMAGENETTE

Baseline (no noise)
LTA-train (no noise)
Baseline-Noise-1%
Baseline-Noise-2%
Baseline-Noise-5%

Fig. 7: Accuracy over number of XNOR gates for different datasets. In the baseline case, the BNN is executed with the LTA
for varying numbers of XNOR gates, called “baseline” (the training employs only standard methods). In the “LTA-train” case,
the BNN is trained with a specified number of XNOR gates. The original test accuracy is shown with the dashed line. The
accuracy trade-off is explained in Sec. VI-B. Since there can be different types of noise in the analog circuit, we show the
baseline BNN accuracy with a general type of noise injected alongside applying the LTA (the evaluations regarding noise are
explained in Sec. VI-D).

Name Architecture
VGG3 In → C64 → MP2 → C64 → MP2 → FC2048 → FC10

VGG7 In → C128 → C128 → MP2 → C256 → C256 → MP2
→ C512 → C512 → MP2 → FC1024 → FC10

TABLE IV: BNN architectures. Layer types are fully con-
nected (FC), convolutional (C), and maxpool (MP). Each
convolutional layer is followed by a batch normalization layer,
except the output layer.

B. Accuracy Trade-off in LTA

In Fig. 7, we show the accuracy trade-off for the LTA.
We use Eq. (4) for acquiring the local thresholds from the
global thresholds and in the inference we apply the LTA
computation scheme as shown in Eq. (3). In the black line,

NN Architecture Layer index W(α, β) X(γ, δ)
VGG3 1 (64, 576) (576, 196)

2 (2048, 3136) (3136, 1)
VGG7 1 (128, 1152) (1152, 1024)

2 (256, 1152) (1152, 256)
3 (256, 2304) (2304, 256)
4 (512, 2304) (2304, 64)
5 (512, 4608) (4608, 64)
6 (1024, 8192) (8192, 1)

TABLE V: Matrix dimensions of the weight matrix W and
input X.

the accuracy under the LTA without any countermeasures is
shown. For all datasets, we observe that with an increase of the
number of XNOR gates (n), the accuracy increases. However,
the accuracies fluctuate and the accuracy drops can be large,

9

SOTA (VGG3)

LTA (VGG3)

LTA-MU (VGG3)

SOTA (VGG7)

LTA (VGG7)

LTA-MU (VGG7)

101
102
103
104
105
106
107
108
109
1010

A
re

a
(µ
m

2
)

(a) Area

SOTA (VGG3)

LTA (VGG3)

LTA-MU (VGG3)

SOTA (VGG7)

LTA (VGG7)

LTA-MU (VGG7)

101
102
103
104
105
106
107
108
109
1010

E
ne

rg
y

(p
J

)

(b) Energy

SOTA (VGG3)

LTA (VGG3)

LTA-MU (VGG3)

SOTA (VGG7)

LTA (VGG7)

LTA-MU (VGG7)

101
102
103
104
105
106
107
108
109
1010

L
at

en
cy

(p
s)

(c) Latency

Fig. 8: Area, energy, and latency comparison for the crossbar and interface circuits between the state of the art (SOTA), and
our proposed method (LTA). Note that the y-axes are in log scale. For the BNN models, VGG3 and VGG7 are used, see
Tab. IV.

Interface circuit parameters (28 nm technology node)
Component Specification Energy (pJ/op) Area (µm2) Latency (ps)
Analog Comparator See [20] 0.163 78 74
ADC See [21] 2.55 2000 1000
Digital path SOTA VGG3 | VGG7 1.61 | 4.51 1282.10 | 4011.00 270
Digital path LTA VGG7 0.223 150.9 240

TABLE VI: Energy, area, and latency configurations of the interface circuit’s subcomponents, based on the literature
(analog components) and own evaluations (i.e. in Cadence Genus using commercial 28nm FDSOI technology for the digital
components). For the digital components, β = 3136 for VGG3, and β = 8192 for VGG7. Note that for VGG3 under LTA,
digital components are not used. The total energy, area, and latency of the BNN crossbar and interface circuit are calculated
based on the values in this table, which are substituted in the area, energy, and latency formulas in Tab. I.

compared to the original accuracy. An explanation for this is
that the majority vote is disturbed by the rest in Eq. (4) because
of the layer dimensions.

To alleviate these issues, we apply the LTA-train method in
Sec. IV-B. In these cases, the accuracy is high consistently, and
the difference to the original accuracy becomes small without
any fluctuations. For example, for n = 64 XNOR gates,
which is a reasonable number for a crossbar, the accuracy of
Kuzushiji is 89.25% (93.74% baseline), for Fashion 88.34%
(90.68% baseline), for SVHN is 91.88% (92.84% baseline),
and for Imagenette 72.00% (72.15% baseline). For CIFAR10,
the accuracy tradeoff is larger, i.e. it is 77.85 (85.50% base-
line), which reaches the maximum of 82.05% for 192 XNOR
gates. The reason for the low accuracy in case of CIFAR10
is that the CNN cannot tolerate the approximations for this
dataset. SVHN uses the same BNN architecture and is a
less challenging dataset than CIFAR10, while having high
accuracy. For CIFAR10, a more approximation tolerant CNN
model needs to be chosen, to apply the LTA with higher
accuracy.

In Fig. 9, we show the ratio R (see Eq. (5)) of different
activations, between the traditional and the LTA execution
for the Fashion dataset as an example. We observe for both
layers L1 and L2, that on average, the ratio gets smaller for
a higher number of XNOR gates n. This means, the larger n,
the more activations in the LTA execution equal the traditional
execution. This is also in line with the results in Fig. 7.

Case Standard BNN Training LTA training (Alg. 1)
VGG3 5.00, (0.06, 0.02) 23.50, (0.20, 0.33)
VGG7 53.03 (0.34, 0.96) 599.82, (0.99, 3.79)

TABLE VII: Avg. and (max.-avg., avg.-min.) training run-
times in seconds for ten epochs (FashionMNIST for VGG3,
CIFAR10 for VGG7). For LTA training, the number of XNOR
gates is set to n = 64. Hardware: Intel Core i7-8700K 3.70
Ghz, 32 GB RAM, GeForce GTX 1080 8 GB.

Especially for L1, the higher the accuracy, the smaller the
ratios. When the accuracy has a large drop, the ratio also peaks.
For the other datasets and models the figure looks similar.

In the Table VII, we have provided the time for training
BNNs and also for training the LTA (for training from scratch
with LTA). For VGG3, the standard BNN training time (with-
out LTA) per epoch is 5 seconds and with LTA it is 23.50
seconds on average. For VGG7 the numbers are 53.03 seconds
and 599.82 seconds per epoch on average respectively. The
reason for the long experiment run-times of the LTA training
in our framework is the fact that we replaced the standard
MAC engine in PyTorch with our own custom MAC engine,
as explained in Sec. VI-A.

C. Area, Energy, and Latency

The area, energy, and latency are calculated based on the
formulas in Tab. I. The formulas are composed of variables

10

4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

Nr. of XNOR gates

R

FASHION

L1
L2

Fig. 9: The plots show the ratio of different activations (first
and second layer in Fashion VGG3) between the traditional
and the LTA execution, over the number of XNOR gates.

for A (area), E (energy), and L (latency). The variables are
defined in Tab. II. The values for these variables (A, E, and
L) are acquired for digital components by own simulations (in
Cadence Genus using 28nm FDSOI technology). For the ADC
and the analog comparator, the values are taken from other
studies. For the latency and energy usage of the FeFET-based
crossbar, we perform circuit simulations based on HSPICE.
We explain the details in the following.

We assume the same crossbar configurations as in [5], i.e. it
is based on FeFET technology and it has the dimensions m =
64× n = 64. In the literature, FeFET-based XNOR crossbars
have been built for 64 × 64 in [5] and for 48 × 64 in [6].
Importantly, in [22], a full FeFET-based crossbar array for
a commercial 28nm technology node from GlobalFoundries
is demonstrated, and their design only supports activating 64
FeFET gates at once to combat effects from variations and
avoid the cost of large ADCs. In order to compare the LTA
to the SOTA in our manuscript, we use the size 64× 64 for a
specific example of a realistic analog-based BNN accelerator.

In our evaluations, the crossbar energy and latency for
application are relevant, since the number of crossbar invo-
cation differs among the LTA/LTA-MU and SOTA execution
schemes. To estimate the energy and latency of the crossbar,
we employ accurate circuit simulations using HSPICE after
careful calibrations against measurements. First the industry-
compact model for the FinFET technology (BSIM-CMG) is
calibrated to reproduce measurement data from Intel 14nm
FinFET. We calibrate the transistor, which forms the underly-
ing FET device, against experimental measurements. The elec-
trostatics, charge carrier transport, mobility models, and other
device parameters are carefully tuned until TCAD simulations
come with an excellent agreement with the measurement
data in which transfer characteristics obtained by our TCAD
simulations for Ids-Vgs under various Vds biases and Ids-Vds
under various Vgs biases reproduce very well the experimental
measurements. Next, the high-κ dielectric in the gate-stack of
the transistor is replaced with a thick (10nm) HfO2-based FE
layer. The key parameters of the HfO2 layer (i.e., remnant
polarization, saturation polarization, and coercive field) are
also calibrated against measured QFE - VFE data from a
metal-ferroelectric-metal capacitor [23]. Further details on the

FeFET calibration and modeling are available in our previous
works [24], [25]. Then, we incorporate a physics-based model
that captures the ferroelectric behaviour in the high-κ layer in
the transistor gate stack. The ferroelectric parameters such as
remnant polarization and coercive field are obtained from a
fabricated FeCap (ferroelectric capacitor) after measuring the
P-V loop. To form an XNOR logic, two Fe-FinFET devices are
connected in parallel, as shown in Fig. 2(b). They always store
the data in a complementary manner. Therefore, whenever an
input data is applied, the device will conduct a current only
in the case of mismatch (i.e., when the coming data and the
stored data are different). Afterwards, we form from such an
FeFinFET-based XNOR device an array and we then measure
the delay, power, and energy using HSPICE. Depending how
many mismatches between the input vector data and stored
data, the array will conduct more or less current (i.e., the
higher the mismatches level, the larger the current). We then
calculate the energy and latency for the worst case in which
the highest level of mismatches occurs.

Based on the above, the energy usage of the crossbar for
application (without reprogramming) is 1.32 pJ per crossbar
column. To calculate the energy usage of an entire crossbar,
this number is multiplied by the number of used crossbar
columns. The latency of one FeFET-based XNOR gate (and
therefore the entire crossbar due to parallelism) is 706 ps. We
do not need to incorporate the reprogramming performance of
the XNOR gates, since the number of reprogrammings is the
same in the LTA and the SOTA execution. The area usage of
the XNOR gates is also not incorporated, since the crossbar
is assumed to be the same in each technique.

To evaluate the LTA, the area, energy, and latency of
the analog and digital components of the interface circuit
is reported in Table VI. For the digital path we synthesized
the hardware for the two highest values of β = 3136 and
8192 (for VGG3 and VGG7 respectively, such that all layers
of one BNN model can be executed with one device) using
Cadence Genus and is mapped to a commercial 28nm FDSOI
technology. For the analog components, we have selected from
the literature the ADC and the analog comparator designed in
the same technological node size as we used to synthesize the
digital paths (i.e. 28nm). In particular, we selected the ADC
in [21] for our study because it can be inferred from the survey
in [26] that it has the best area and energy tradeoff among the
reported 28nm ADCs. In a similar way, we selected the analog
comparator in [20] since it has the best performance among
the 28nm comparators we could find in the literature.

By considering that the interface circuit of our analog
BNN accelerator is composed of these analog and digital
subcomponents, it enables us to compare our proposed LTA
to the SOTA with up-to-date subcomponents. For calculating
area/energy/latency and compare our LTA to the SOTA, we
rely on the formulas in Tab. I, for which the notation is
explained in Tab. II.

With the crossbar sizes n = m = 64 and the corresponding
interface circuit data, we evaluate the area, energy, and latency
of our LTA/LTA-MU computation schemes and compare them
to the SOTA in Fig. 8. For the BNN models in our work, in
VGG3 only the AP in Fig. 5 is used. For VGG7 the DP is only

11

used for layers 5 and 6 (see Tab. V). Our results show that
the proposed LTA technique is able to reduce the total area by
a factor of 42× and 54× for VGG3 and VGG7, respectively,
compared to the SOTA. Furthermore, the energy consumption
is reduced by a factor of 2.7× and 4.2× for VGG3 and VGG7
compared to the SOTA, respectively. LTA does not show a
reduction of latency. It is 2.5× and 1.12× higher than the
SOTA, for VGG3 and VGG7 respectively. However, when
the LTA-MU scheme is employed, the latency is reduced by
3.8× and 1.15× compared to the SOTA for VGG3 and VGG7,
respectively. As a drawback, the LTA-MU requires up 9.2%
(VGG3) and 2.2% (VGG7) more area compared to its LTA
counterpart.

D. Impact of Noise on LTA

When n XNOR gates are in a crossbar column, then the
analog comparator needs to be able to differentiate between n
different states. However, n cannot be arbitrary large. Due to
inherent variations of the analog signals an arbitrary number
of different states cannot be accomodated.

There are multiple potential sources of noise in our analog
hardware design. Although the sources of noise are not limited
to the following cases, for explaining the concept, we focus
on noise caused by variation sources due to: (1) FeFET-based
crossbar columns and (2) resistance value of the resistors.
(1) In the crossbar columns, the FeFET-based XNOR gates
consist of FeFET devices, which are prone to errors when
there are temperature fluctuations during run-time (however,
in our study, we assumed no major fluctuations in operating
temperature during run-time). In our previous work, we have
demonstrated and investigated the impact of temperature in [3]
for single FeFET devices. Since FeFET-based XNOR gates
consist of two FeFET devices, the current coming out of the
XNOR gates will have variations due to high temperature
fluctuations as well. Due to the variations of the XNOR gate
currents, the summed current also experiences variation. This
in turn may lead to errors of the comparator outputs (flips
from 0 to 1 or from 1 to 0) that binarize the result of one
crossbar column. (2) The resistors connected to the output of
the comparators (see R2 in Fig 5) may suffer from varying
resistance values as well (e.g. due to issues in fabrication or
temperature), leading to current variation. The effect of the
noise from points (1) and (2) above continues to propagate
through the circuit, which has two paths: The analog path and
the digital path. In the analog path, the result of the majority
comparator may be flipped due to the current variations (i.e.,
the output may also flip from 0 to 1 or from 1 to 0). In
the digital path, the ADC may convert the analog signal to
an erroneous digital value, which will be accumulated and
binarized in the digital domain. In both cases, any variations
in the analog computations (e.g. in points (1) and (2) above)
will affect the result of the last binarization. In the analog path,
the output of the last analog comparator will be affected. In the
digital path, the output of the digital binarizer will be affected.
Therefore, we simulate the noise in the circuit by flipping the
output of the last binarization with a certain error probability.

Noise Analysis: To conduct a general noise study, we model
the noise by using the flip probabilities 1%, 2%, and 5% for

the outputs of the last binarizations. Please note that we are
not limited to these error rates, they are merely examples. Any
other error rate can be applied in our open-source framework.
When we write “Noise training” or “Noise+LTA training”, we
refer to the cases in which we always train from scratch with
noise and also the LTA (Alg. 1). In Fig. 7, we show the plots
for the accuracy results achieved by the BNNs under the noise
in combination with the LTA. We observe that for small noise,
the accuracy degradation is also small. The larger the noise, the
higher the accuracy degradation. In Tab. VIII, we also show
the result of the training together with the LTA and noise in
combination for the crossbar column dimension n = 64. We
also add the results with no noise for reference. We observe
that in all cases of our experiments, although the noise causes
large accuracy drops, a significant amount of accuracy can be
regained by training with the noise.

E. Feasibility of LTA Input Data Flow

To show the feasibility of the input application method, we
implement the two types of data flow (SOTA and LTA, as
presented in Sec. V-A) in VHDL. The crossbar dimensions
are n = m = 64. For the SOTA case, we consider that one
input is broadcasted to all computing columns. For the LTA
case, we assume that each column receives a different input.
In both designs, the weights are set once and stay the same
throughout the computations to simulate the strided move.

To focus on the dataflow, we simulate the input application
to the XNOR gates of all columns. We synthesize the designs
using Cadence Genus with 28nm FDSOI technology (as in the
previous digital circuits). For the SOTA dataflow, 15928 µm2

is required, along with 273.55 mW of power consumption. For
the LTA dataflow, 24733 µm2 is required, along with 360.05
mW of power consumption. Both data flows are configured
for 300 ps.

We observe that the LTA data flow uses 31.6% more power
and 55.3% more area. However, note that when considering
the entire crossbar accelerator, the SOTA requires 128000 µm2

of area for the ADCs alone, while the LTA only needs 2000
µm2 of area for the ADCs alone. This is a decrease by 64×
(since in the SOTA circuit, m = 64 ADCs are needed for
m = 64 computing columns, and in the LTA only 1 ADC
is needed for m = 64 computing columns) and the mere
increase of LTA by 55.3% is small compared to the 64× area
reduction. Calculations in the similar scale can be performed
for the energy consumption as well.

The main contribution for area and power in the LTA
dataflow implementation is the increased number of wires (for
area) and the different signals (power) that need to be driven,
compared to the SOTA. We illustrate this by the implemen-
tation in Fig. 10 using combinational circuits consisting of
wires, which are placed between the memory and the BNN
crossbar. Note that memory and the crossbar could also be
connected in a different way, Fig. 10 is one example. In the
SOTA, in Fig. 10(a), a single input bitvector x (with length n)
is retrieved, and then it is replicated as many times as there are
parallel columns (i.e. m) in the crossbar. This means, to enable
the SOTA dataflow, the single input bitvector x is replicated m
times with a combinational circuit (i.e. single in, multiple out)

12

Name No noise, no LTA No noise No noise+LTA training Noise 1% | Noise+LTA training Noise 2% | Noise+LTA training Noise 5% | Noise+LTA training
FashionMNIST 90.68 81.34 88.34 78.79 | 87.89 76.38 | 87.41 65.03 | 86.90
KuzushijiMNIST 93.74 83.05 89.25 80.50 | 88.55 76.16 | 87.19 64.31 | 85.38
SVHN 92.84 78.62 91.88 73.39 | 91.01 67.13 | 90.54 42.09 | 88.14
CIFAR10 85.50 43.07 77.85 35.08 | 74.46 28.23 | 73.44 14.79 | 67.31
IMAGENETTE 72.15 57.02 72.00 52.89 | 71.69 48.31 | 70.55 31.75 | 70.37

TABLE VIII: Comparison of test accuracy (%) for the assumed cases in our with crossbar size 64×64. The LTA approximation
is applied in each column unless specified otherwise. In cases of “no noise”/“no LTA”, we train without noise/without LTA.
“Noise” followed by a percentange means that noise with this percentage is injected, while in “Noise training”, we train with
the noise. “Noise+LTA training” refers to the case in which we inject noise during the training while simultaneously applying
Alg. 1.

Combinational circuit

(a) Input data flow circuit for SOTA.

Combinational circuit

(b) Input data flow circuit for LTA.

Fig. 10: Examples of using combinational circuits consisting of wires to connect the BNN crossbar to memories (e.g between
the FIFOs in Fig. 4 and the BNN crossbar). (a) SOTA and (b) the LTA connections using combinational circuits. The wi are
the weight vectors that are composed of n bits. The weight wires transfer the weights to the ith column of the crossbar. In the
SOTA, the input vector (composed of n bits) is the same for each crossbar column (it is replicated). In the LTA, each crossbar
column i receives a different input xi.

and then the m same bitvectors of x are passed to the crossbar.
In the LTA method, m different inputs are needed, labelled
xi in Fig. 10(b), which are then applied to the m crossbars
(multiple in, multiple out). In summary, the increased area and
power usage of the LTA are due to the number of wires and
their driving with different signals.

F. Discussion of Other Methods

We have also evaluated other methods to improve the
accuracy of BNNs under LTA. However, the only method
that worked consistently is the LTA-train method, as explained
above. We summarize these ideas here.

For each layer and every of its neurons in the BNN we
use the same method: To acquire the local thresholds of a
neuron, we divided the original threshold of that neuron by
the number of windows N (that have size n), as shown in
Eq. (4). We have also evaluated other methods for acquiring
local thresholds. Instead of using the same threshold for all
windows, we have attempted to tune the local thresholds. We
have first incremented or decremented all the local thresholds
by the same small numbers, i.e. +1, -1, +2, -2, etc., but
noticed that when manually changing the local thresholds this
way, the inference accuracy was severely dropping. Then,
we modified the local threshold settings based on the mean
popcount value within the windows of size n. For this, we
considered the local thresholds T ∗ from Eq. (4) as a starting
point and considered to manipulate them with constants. We
attempted to add constants to T ∗ by increasing the T ∗ of
the windows that have a larger mean, while decreasing the
T ∗ of the windows that have a smaller mean. The thresholds
were adapted based on the data in the training set. However,
it did not lead to higher test accuracy, and even lead to
higher drops of accuracy the higher the change in the local
thresholds. This indicates that different thresholds for different

windows do not lead to superior results. The reason may be
the following: We observed that most popcount results in the
windows of size n have similar values that are closely around
the mean, and that there are not any patterns to exploit for
different thresholds. We show the histograms of the popcount
values for the layers in VGG3 for FashionMNIST training
dataset in Fig. 11. The frequencies are acquired by recording
the popcount values in windows of size n = 64 over the
training data. We observe that the values follow a normal
distribution, where most values are close to the mean of 32
for n = 64 (note that the y-axes are logarithmic). For other n
and other datasets, we also observe the mean n

2 and similar
distributions. In general, modifying the thresholds in BNNs
manually to optimize certain properties has been reported to
be unsuccessful in other work as well [27].

Please note that it is highly challenging to manually tune the
threshold configurations, as there are thousands of neurons in
our BNN architectures, which all have individual thresholds.
Furthermore, the number of local thresholds is approximately
one order of magnitudes larger than the total number of
neurons in the BNN architectures.

We observed a similar case for the majority vote. In our
framework, the majority can be shifted, meaning it can be
configured that for a “1” (instead of “0”) as output, there
needs to be a majority and a certain number of additional
local thresholds that are “1”, for a “1” in the final output.
Introducing majority vote shifts based on the oberserved mean
“1”s in the local thresholds also lead to none or when the shifts
become high, to poorer accuracy results.

Another idea for the LTA is to use a smaller stride than n
by moving the windows such that there are overlaps, leading
to more local thresholdings. In our explorations, this only
alleviated the sharp drops in accuracy by a small amount (see
the accuracy drops in the black plots in Fig. 7). It did not lead

13

to an increase in accuracy for the peaks. With a smaller stride,
more computations need to be performed, taking up crossbar
space, which is a high cost.

Note the operation with custom thresholds, the shifted
majority votes, and using different strides are all implemented
in our framework as command line parameters and can be can
be evaluated by the users to perform more research.

G. Discussion of Other BNN Models

To demonstrate the proof of concept of the LTA approx-
imation, we assume in Sec. IV-A that the layers have the
following structure, without any operations inbetween: Con-
volution, batch norm, activation. Currently, our proposed LTA
cannot be used with architectures that do not comply with
this assumption. One notable example are skip connections,
such as those in ResNets or MobileNets. For computing the
skip connection, a convolution is computed, then the result of
another convolution is added to the previous result, after which
an activation is applied. To enable the LTA for other structures,
such as the skip connections, the BNN structure needs to be
modified, which may also require the modification of the BNN
acceleration hardware and the training procedure. We plan to
extend the LTA for other BNN structures in future work.

H. Discussion of ADC Modifications

In Tab. VI, we observe that the ADC resource usage is
significantly higher than the other components. Therefore, we
discuss the expected impact of using an ADC with smaller
resolution compared to our selected 8-bit ADC from [21].

The ADC we have selected is not configurable with respect
to the resolution. Therefore, we rely on the data in the study
in [28] (Fig. 7), where the resource consumption (area, latency,
power, energy) of ADCs are shown as a function of the number
of bits (3-6 bits) at the 40 nm technology node. The data
for Successive Approximation Register (SAR) ADC and Flash
ADC are shown in [28] (Fig. 7). SAR ADCs are more suitable
for low-resource scenarios such as efficient inference in BNNs,
since the Flash ADCs require a significantly larger number of
comparators when compared to SAR ADCs. For SAR ADCs,
we observe in [28] (Fig. 7) that when the number of bits is
halved (e.g. from 6 bits to 3 bits), then the area, latency, and
energy are approximately halved as well. More generally, from
the data in [28] (Fig. 7), we observe a linear trend in resource
usage when the number of bits is changed. To summarize,
based on the study in [28], we expect that when a smaller
number of bits are used in the ADC, the resource costs for
the ADC will be proportionally smaller.

However, when an ADC with a smaller resolution is used
for our proposed LTA method, then the analog path will be
triggered in less cases. This opposes our main design idea to
trigger the analog path in as many cases as possible. Recall
that in the LTA method, the condition for triggering the analog
path (i.e. ADC-less execution) for a layer is β ≤ mn. In our
study, the required ADC resolution depends on the crossbar
dimension m (number of crossbar columns), i.e. the required
ADC resolution is blog2(m)c+1. Therefore, the smaller the m,
the smaller the required resolution of the ADC. The drawback

0 20 40 60

101
102
103
104
105
106
107

Popcount result

A
bs

.f
re

qu
en

cy

(Conv)

0 20 40 60

101
102
103
104
105
106
107

Popcount result

A
bs

.f
re

qu
en

cy

(FC)

Fig. 11: Histograms of average popcount values (absolute
frequency, over the training dataset) of a layer in sampling
windows of size n = 64 for the FashionMNIST baseline BNN.

of this is that when m is reduced, then the analog path will be
triggered in less cases, because the right side of the condition
β ≤ mn for triggering the analog path will be smaller.
In addition to that, a smaller number columns increases the
inference latency approximately by the factor of the crossbar
column reduction.

VII. CONCLUSION

We proposed a novel BNN inference scheme, called Local
Thresholding Approximation (LTA), which approximates the
global thresholdings in BNNs by local thresholdings. In BNN
crossbar accelerators, this enables the use of only analog
comparators through most of the execution, which significantly
increases the interface circuit efficiency compared to the
state of the art. However, employing the LTA without any
countermeasures to the approximations results in a significant
accuracy drop. To retain the original accuracy, we propose
a training scheme that accounts for the degradation induced
by the LTA, which consistently achieves high accuracy under
approximations. Our results for two BNN models show that
using the LTA reduces the area by factors of 42× and 54×, the
energy by 2.7× and 4.2×, and the latency by 3.8× and 1.15×,
compared to state-of-the-art crossbar-based BNN accelerators.

One possible future direction to improve the LTA accuracy
is to explore methods that attempt to automatically find local
thresholds and majority vote shifts in the LTA (note that
in our framework, local thresholds and majority vote shifts
can be manipulated conveniently). This can be done in a
fine-grained manner, i.e. window or neuron based, or in a
more coarse-grained manner, i.e. on the layer level. However,
automatically finding or training the local thresholds and
majority vote shifts introduces many additional parameters,
as there can be many thousands or more neurons in a BNN,
while the number of local thresholds is approximately one
order of magnitude larger than the total number of neurons
in the BNN. Furthermore, the optimization of thresholds also
competes with the function of the batch norm layer, as the
traditional (global) thresholds are derived from the batch norm
parameters, without which BNNs are reported to achieve poor
training performance [15].

14

ACKNOWLEDGMENT

This paper has been supported by Deutsche Forschungs-
gemeinschaft (DFG) project OneMemory (405422836), by
the DFG project ACCROSS (428566201), by the Collabo-
rative Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis” (project number 124020371),
subproject A1, by the Federal Ministry of Education and Re-
search of Germany and the state of NRW as part of the Lamarr-
Institute for ML and AI, LAMARR22B, and by PON Ricerca
Innovazione - MUR (grant 062 R24 INNOVAZIONE), Min-
istero dell’Università e della Ricerca, Italian Government.

REFERENCES

[1] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in neural information processing
systems, 2016, pp. 4107–4115.

[2] T. Hirtzlin et al., “Outstanding bit error tolerance of resistive ram-based
binarized neural networks,” in International Conference on Artificial
Intelligence Circuits and Systems, AICAS, 2019, pp. 288–292. [Online].
Available: https://doi.org/10.1109/AICAS.2019.8771544

[3] M. Yayla, S. Thomann, S. Buschjäger, K. Morik, J.-J. Chen, and
H. Amrouch, “Reliable binarized neural networks on unreliable beyond
von-neumann architecture,” IEEE Transactions on Circuits and Systems
I: Regular Papers, pp. 1–13, 2022.

[4] M.-L. Wei, M. Yayla, S.-Y. Ho, J.-J. Chen, C.-L. Yang, and H. Amrouch,
“Binarized snns: Efficient and error-resilient spiking neural networks
through binarization,” in 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2021, pp. 1–9.

[5] X. Chen, X. Yin, M. Niemier, and X. S. Hu, “Design and optimization of
fefet-based crossbars for binary convolution neural networks,” in 2018
Design, Automation Test in Europe Conference Exhibition (DATE), 2018,
pp. 1205–1210.

[6] T. Soliman, R. Olivo, T. Kirchner, C. D. l. Parra, M. Lederer, T. Kämpfe,
A. Guntoro, and N. Wehn, “Efficient fefet crossbar accelerator for
binary neural networks,” in 2020 IEEE 31st International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2020, pp. 109–112.

[7] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[8] G. Burr, R. Shelby, C. di Nolfo, J. Jang, R. Shenoy, P. Narayanan,
K. Virwani, E. Giacometti, B. Kurdi, and H. Hwang, “Experimental
demonstration and tolerancing of a large-scale neural network (165,000
synapses), using phase-change memory as the synaptic weight element,”
in IEEE International Electron Devices Meeting, 2014.

[9] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, “Vortex: Variation-
aware training for memristor x-bar,” in Design Automation Conference
(DAC), 2015.

[10] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: Programming 1t1m crossbar to accelerate
matrix-vector multiplication,” in Design Automation Conference (DAC),
2016.

[11] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 65–74. [Online]. Available:
https://doi.org/10.1145/3020078.3021744

[12] U. Saxena, I. Chakraborty, and K. Roy, “Towards adc-less compute-in-
memory accelerators for energy efficient deep learning,” in 2022 Design,
Automation and Test in Europe Conference and Exhibition (DATE),
2022, pp. 624–627.

[13] H. Kim, Y. Jung, and L.-S. Kim, “Adc-free reram-based in-situ acceler-
ator for energy-efficient binary neural networks,” IEEE Transactions on
Computers, pp. 1–13, 2022.

[14] S. Buschjäger, J.-J. Chen, K.-H. Chen, M. Günzel, C. Hakert, K. Morik,
R. Novkin, L. Pfahler, and M. Yayla, “Margin-maximization in binarized
neural networks for optimizing bit error tolerance,” in 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), 2021, pp.
673–678.

[15] E. Sari, M. Belbahri, and V. P. Nia, “How does batch normalization help
binary training?” arXiv:1909.09139, 2019.

[16] M. Yayla, S. Buschjäger, A. Gupta, J.-J. Chen, J. Henkel, K. Morik, K.-
H. Chen, and H. Amrouch, “Fefet-based binarized neural networks under
temperature-dependent bit errors,” IEEE Transactions on Computers, pp.
1–1, 2021.

[17] Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp. 37–
46, 1982.

[18] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 367–379.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, (ICLR), 2015.

[20] A. T. Ramkaj, M. S. J. Steyaert, and F. Tavernier, “A 13.5-gb/s 5-
mv-sensitivity 26.8-ps-clk–out delay triple-latch feedforward dynamic
comparator in 28-nm cmos,” IEEE Solid-State Circuits Letters, vol. 2,
no. 9, pp. 167–170, 2019.

[21] D.-R. Oh, K.-J. Moon, W.-M. Lim, Y.-D. Kim, E.-J. An, and S.-T.
Ryu, “An 8b 1gs/s 2.55mw sar-flash adc with complementary dynamic
amplifiers,” in 2020 IEEE Symposium on VLSI Circuits, 2020, pp. 1–2.

[22] T. Soliman, F. Müller, T. Kirchner, T. Hoffmann, H. Ganem, E. Karimov,
T. Ali, M. Lederer, C. Sudarshan, T. Kämpfe, A. Guntoro, and N. Wehn,
“Ultra-low power flexible precision fefet based analog in-memory com-
puting,” in 2020 IEEE International Electron Devices Meeting (IEDM),
2020, pp. 29.2.1–29.2.4.

[23] M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta,
“Ferroelectric fet analog synapse for acceleration of deep neural network
training,” in IEEE International Electron Devices Meeting (IEDM),
2017.

[24] A. Gupta, K. Ni, O. Prakash, X. S. Hu, and H. Amrouch, “Temperature
dependence and temperature-aware sensing in ferroelectric fet,” in 2020
IEEE International Reliability Physics Symposium (IRPS). IEEE, 2020,
pp. 1–5.

[25] K. Ni, S. Thomann, O. Prakash, Z. Zhao, S. Deng, and H. Amrouch, “On
the channel percolation in ferroelectric fet towards proper analog states
engineering,” in IEEE International Electron Devices Meeting (IEDM),
2021.

[26] B. Murmann, “ADC Performance Survey 1997-2021 [Online],”
accessed 2022-05-23. [Online]. Available: Available:http://web.stanford.
edu/∼murmann/adcsurvey.html.

[27] S. Buschjäger, J. Chen, K. Chen, M. Günzel, C. Hakert, K. Morik,
R. Novkin, L. Pfahler, and M. Yayla, “Towards explainable bit error
tolerance of resistive ram-based binarized neural networks,” CoRR, vol.
abs/2002.00909, 2020. [Online]. Available: https://arxiv.org/abs/2002.
00909

[28] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory
chips for deep learning: Recent trends and prospects,” IEEE Circuits
and Systems Magazine, vol. 21, no. 3, pp. 31–56, 2021.

Mikail Yayla is currently pursuing the Ph.D. degree
at the informatics chair ”Design Automation for
Embedded Systems” in the Technical University of
Dortmund, under the supervision of Prof. Jian-Jia
Chen. His research focuses on robust and efficient
machine learning for emerging resource-constrained
systems. He has published in major EDA confer-
ences and journals, including DATE, ICCAD, DAC,
TC, and TCAS-I. He has one best paper nomination
at DATE’21.

15

https://doi.org/10.1109/AICAS.2019.8771544
https://doi.org/10.1145/3020078.3021744
Available: http://web.stanford.edu/~murmann/adcsurvey.html.
Available: http://web.stanford.edu/~murmann/adcsurvey.html.
https://arxiv.org/abs/2002.00909
https://arxiv.org/abs/2002.00909

Fabio Frustaci (M’14-SM’22) is an Associate Pro-
fessor with the Computer Science, Electronics, Mod-
eling and Systems Department at the University of
Calabria, Rende, Italy. He received the M.S. and
the Ph.D. degree in electronic engineering from the
University Mediterranea of Reggio Calabria, Italy,
in 2003 and 2007, respectively. In 2006, he was
a Visiting Scholar at the ECE Department of the
University of Rochester, Rochester, NY. In 2011-
2013 he was a Visiting Researcher at the EECS
Department of the University of Michigan, Ann

Arbor, MI. He has authored more than 60 papers in the field of VLSI design.
Currently, he is a member of the editorial board of Microelectronics Journal.
His research interests include low power and high performance VLSI circuits,
design techniques for emerging technologies, reconfigurable architectures,
embedded systems.

F anny Spagnolo (M’20) was born in Belvedere
M. (CS), Italy, on April 20, 1991. She received the
Master degree in Electronics Engineering from the
University of Calabria, Italy, in 2016. In June 2016,
she won a research grant funded by the Department
of Informatics, Modeling, Electronics and System
Engineering of the University of Calabria. In 2019,
she earned her Ph.D. in Information and Communi-
cation Technologies, at the University of Calabria,
where she is currently appointed as Assistant Pro-
fessor. She has coauthored of more than 30 papers

in the field of VLSI design. Her research interests include VLSI architectures
for image processing, high-performance reconfigurable circuits, embedded
systems design, emerging technologies and approximate computing techniques
for low-power Deep Neural Networks.

Jian-Jia Chen is Professor at Department of Infor-
matics in TU Dortmund University in Germany. He
was Juniorprofessor at Department of Informatics in
Karlsruhe Institute of Technology (KIT) in Germany
from May 2010 to March 2014. He received his
Ph.D. degree from Department of Computer Science
and Information Engineering, National Taiwan Uni-
versity, Taiwan in 2006. He received his B.S. degree
from the Department of Chemistry at National Tai-
wan University 2001. Between Jan. 2008 and April
2010, he was a postdoc researcher at ETH Zurich,

Switzerland. His research interests include real-time systems, embedded
systems, energy-efficient scheduling, power-aware designs, temperature-aware
scheduling, and distributed computing. He received the European Research
Council (ERC) Consolidator Award in 2019. He has received more than
10 Best Paper Awards and Outstanding Paper Awards and has involved in
Technical Committees in many international conferences.

Hussam Amrouch (S’11-M’15) is Professor head-
ing the Chair of AI Processor Design within the
Technical University of Munich (TUM). He is, ad-
ditionally, with the Munich Institute of Robotics
and Machine Intelligence (MIRMI) in Germany.
Further, he is the head of the Semiconductor Test
and Reliability (STAR) within the University of
Stuttgart, Germany. Prior to that, he was a Research
Group Leader at the Karlsruhe Institute of Tech-
nology (KIT) where he was leading the research
efforts in building dependable embedded systems.

He currently serves as Editor at the Nature Scientific Reports Journal. He
received his Ph.D. degree with the highest distinction (Summa cum laude)
from KIT in 2015. His main research interests are design for reliability and
testing from device physics to systems, machine learning for CAD, HW
security, approximate computing, and emerging technologies with a special
focus on ferroelectric devices. He holds eight HiPEAC Paper Awards and
three best paper nominations at top EDA conferences: DAC’16, DAC’17 and
DATE’17 for his work on reliability. He has served in the technical program
committees of many major EDA conferences such as DAC, ASP-DAC,
ICCAD, etc., and as a reviewer in many top journals like Nature Electronics,
T-ED, TCAS-I, TVLSI, TCAD, TC, etc. He has more than 220 publications
in multidisciplinary research areas (including 90+ journals) across the entire
computing stack, starting from semiconductor physics to circuit design all
the way up to computer-aided design and computer architecture. His research
in HW security and reliability have been funded by the German Research
Foundation (DFG), Advantest Corporation, and the U.S. Office of Naval
Research (ONR).

16

	Introduction
	Related Work
	Background
	Binarized Neural Networks
	BNN Crossbar Accelerators
	Problem Definition

	Local Thresholding Approximation
	LTA Execution
	Training with LTA

	Data Flow, Interface Circuit and Workload Mapping for LTA
	Input Data Flow in LTA
	Interface Circuit for LTA
	Crossbar for Inference
	Our Workload Mapping for LTA

	Experiments
	Experiment Setup
	Accuracy Trade-off in LTA
	Area, Energy, and Latency
	Impact of Noise on LTA
	Feasibility of LTA Input Data Flow
	Discussion of Other Methods
	Discussion of Other BNN Models
	Discussion of ADC Modifications

	Conclusion
	References
	Biographies
	Mikail Yayla
	Fabio Frustaci
	F
	Jian-Jia Chen
	Hussam Amrouch

