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Abstract. Approximate memories reduce the resource demand of ma-
chine learning (ML) systems at the cost of bit errors. ML models have
an intrinsic error resilience and are therefore suitable candidates to use
with approximate memories. Although the error resilience of neural net-
works has been considered in many studies, tree-based applications have
received less attention. In addition, there is no tool available to specifi-
cally evaluate the error resilience of tree-based models. In this work, we
present TREAM, a general tool built upon the sklearn framework for
injecting bit flips during the inference of tree-based models. TREAM is
capable of injecting bit flips into the tree and input parameters, i.e. fea-
ture and split values, in addition to feature and children indices. It can
also be used for both floating point and integer values.
Furthermore, we provide an abstract assessment of bit flip injection into
the aforementioned parameters. Based on this, we construct a set of
experiments using TREAM for different random forest structures and
datasets over a set of bit error rates, where the relation between ac-
curacy and bit error rate is considered for error resilience. The results
demonstrate that child indices have the highest deviations in accuracy
under bit errors. Moreover, the results give us insights into how varying
numbers of trees, depth and different datasets affect the resilience.

Keywords: Random forest · Decision tree · Approximate memory · Er-
ror resilience · Bit errors

1 Introduction

Over the past decade, machine learning (ML) algorithms have become ubiquitous
on various hardware platforms. For instance, by integrating ML into embedded
devices, data can be processed directly at the edge instead of being sent over
the network [4,7]. Among ML algorithms, decision trees (DTs) are one of the
most widely used [3]. This popularity is due to their interpretability, simplicity
and excellent results, specifically in the form of random forests (RFs) [16]. DT-
s/RFs can be successfully applied to complex problems, such as high-dimensional
data [17] and can even outperform other ML models, such as neural networks for
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structured data [4]. Therefore, they are suitable candidates for ML application
in resource-constrained embedded systems [7].

To achieve competitive inference accuracy, high depths and a large number
of trees are recommended, which requires storing large amount of data in the
memory. Hence, the memory subsystem is the main resource used in tree-based
models [2], which makes it a challenge to apply them on conventional memories.

Recent studies have explored the use of approximate memory realized by re-
ducing the memory supply voltage and tuning latency parameters. Although an
approximate memory can achieve lower power consumption and faster access,
it can cause high bit error rates (BERs). This has been explored for a variety
of state-of-the-art and emerging memory technologies, e.g. for volatile memories
(SRAM [19], DRAM [11]), and approximate non-volatile memories (RRAM [9],
MRAM or STT-RAM [10], FeFET [20]). Furthermore, various studies have in-
vestigated the error resilience of ML models by creating a bit flip (i.e. faults)
injector tool. Most of these studies focus on deep neural networks and propose
several tools. The framework in [12] enables the modeling of bit flips into various
parts of the hardware. Similarly, [15,5,13] propose tools and techniques to quan-
tify the error resilience and accuracy trade-offs of neural networks. Although
TensorFI [6] injects bit flips into any generic ML program written using Tensor-
Flow, faults are only injected into the TensorFlow operators and not into the
memory used by the program. In addition, it is not designed specifically for RFs
or other tree-based models.

Hence, a tool for evaluating the accuracy of tree-based models under errors
from approximate memory would allow us to conduct design space exploration
in this domain. To the best of our knowledge, this work is the first study that in-
vestigates the error resilience of DTs/RFs with bit-flip injection into the DT/RF
data. Specifically, we assess tree-based models with approximate memory, for
which there are also no corresponding studies in the literature. This makes it
possible to explore the future low-power systems employing tree-based models
with approximate memory.

Ultimately, this tool allows users to inject the bit flips into DT/RF data for all
the above-mentioned memory types. In this manner, after selecting the injection
site or node data type, the injection into the integer or floating point data values
can be performed in the form of multiple bit flips. All intended configurations are
first recorded and then executed during the inference phase. Therefore, it enables
the investigation of the impact of errors on tree-based models in approximate
memory.

Our contributions are as follows:

– We present TREAM, which makes possible to evaluate the accuracy un-
der errors from approximate memories or other sources of bit errors for
tree-based ML-models. It is based on the popular machine learning library
sklearn. We plan to publish the tool along with the paper.

– We provide an abstract assessment of the effects of bit flips into the different
error sites, i.e. split and feature values, and feature and child indices.
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– Using our tool, we conduct a series of experiments on different datasets for
evaluating the inference accuracy degradation of the tree-based models due
to errors. In the analyses, we identify the most susceptible parts of trees to
errors, and determine the influence of the number of trees and depth on the
accuracy.

The rest of this paper is organized as follows. In Section 2, we present the
system model along with the posed research questions. TREAM and its imple-
mentation as the bit flip injector tool is shown in Section 3. In Section 4, we
address the effect of bit flips in tree-based models. The experimental results and
answers to the research questions are presented in Section 5. The tool TREAM
is available at https://github.com/myay/TREAM.

2 System Model

Let us consider a supervised learning problem to build a prediction model M
from a labeled training dataset D = {(xi, yi)|i = 1, . . . , N}. The model’s input
is a vector xi = (x1i , . . . , x

d
i )
> ∈ X ⊆ Rd, and a prediction yi ∈ Y is a class

index c ∈ N0. Note that the indices 1 . . . d in the components of xi represent the
dimension and not exponents. The model M : x → c is applied to predict the
class for an input x, where it may be an unseen input (x /∈ D).

A decision tree (DT) is a flow-like process used as a model for predicting
unseen data, based on the learned information from the training data. Suppose
that G = (V,E) is a DT composed of |V| vertices (typically called nodes in this
context) and |E| directed edges, in which |E| = |V| − 1. There is one root in V,
which has no incoming edge. We consider binary DTs, in which a node v ∈ V
is either a leaf without any outgoing edge or an internal node with exactly
two outgoing edges. In a binary DT, a leaf provides a classification label and
an internal node v ∈ V is a split decision based on a comparison of a certain
feature (fv) from the input data with the split value (sv), also called threshold,
learned during the training to further classify the input using either the left or
the right child.

The depth (K) of a DT is the longest path from the root to one of the leaves.
An example of a binary DT is presented in Fig. 1a. Each comparison divides the
possible feature space into subsections with hyperplanes at the thresholds, such
as in Fig. 1b, which operates with five classes using four thresholds.

A DT’s inference process from the root to a leaf can be implemented either
in the if-else or in the native form [2]. Sklearn uses the native realization with a
high level structure similar to Listing 1.1 written in Cython. The type SIZE_t
in the node is an unsigned integer and DOUBLE_t is a floating point value with
double precision. The data used on the node for feature, split, leftchild,
and rightchild are shown in Listing 1.1. There are also other data, e.g. a binary
value to mark a node as leaf (not shown here).

A RF is an ensemble made of multiple DTs, predicting by majority votes. For
brevity, the term tree-based models is used hereafter as an RF with T decision
trees with T ≥ 1.
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v1

v2 v3

v5 : C1 v6 : C3 v7 : C2 v4

v8 : C4 v9 : C5

(a) A binary decision tree
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2

(b) Hyperplane visualization

Fig. 1: Left: A DT with 4 internal nodes (in circle) and 5 leafs (in rectangular).
Right: Partitions of space by the nodes (hyperplanes) of a DT into five classes.

cde f s t r u c t node :
SIZE_t f e a tu r e # targe t ed f e a tu r e
DOUBLE_t s p l i t # thre sho ld
SIZE_t l e f t c h i l d
SIZE_t r i g h t c h i l d
. . .

# a l l nodes and l e a f s o f a t r e e are s to r ed in t h i s array
Node t r e e = [ [ 3 5 0 , 1 4 3 . 5 , 1 , 2 , . . . ] , [ 1 , 7 . 5 , 3 , 4 ] , . . . ]
# high−l e v e l d e s c r i p t i o n o f p r ed i c t func t i on
de f p r ed i c t (X) :

i = 0
while node i s not l e a f :

i f X[ t r e e [ i ] . f e a tu r e ] <= t r e e [ i ] . s p l i t :
i = node . l e f t c h i l d

else :
i = node . r i g h t c h i l d

re turn t r e e [ i ] . p r ed i c t i on

Listing 1.1: Native realization of a DT in Cython

2.1 Memory and Error Model

Using the native realization of the DTs from Listing 1.1, the node data for
making decisions includes the split value, feature value, feature index and two
child indices. We suppose that they are stored in a one-dimensional array data
structure in the memory with possible bit flips. In this study, we assume that
the hardware (i.e. memory) may suffer from transient faults captured in a bit
error model. Application of this model on the bit representation of the data
is realized by injecting bit flips into the memory. Specifically, we consider that
the bit errors are manifested as multiple-bit flips, and that they are symmetric,
i.e., the probability for flipping 0 → 1 is the same as 1 → 0. This assumption
characterizes the probability of bit flips every time when a bit is read from the
unreliable memory, also referred to as approximate memory.
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We consider that errors occur during the inference phase of tree-based models
with the probability of error, referred to as bit error rate (BER). This can occur
in the bit representation of the mentioned node data read from the unreliable
memory. Consequently, bit flips are injected into the binary representations of
split and feature values, and the indices for features and children, according to
the bit error model of the hardware. This model matches the assumptions in re-
cent studies about approximate volatile memories (SRAM [18], DRAM [11]), and
non-volatile memories (RRAM [9], MRAM or STT-RAM [10], and FeFET [20]).
Errors stemming from other types of faults may also be applied using this model.

2.2 Definitions for Error Resilience

Let us use Aβ to quantify the accuracy of models (M) under bit flip injection
with BER (β). When this accuracy is measured using a set of experiments with
β ∈ B, we define the error resilience as:

RM (B) = 100

|B| ×A0

∑

∀β∈B
Aβ [%] (1)

In this formulation A0 represents the accuracy of the original model without any
bit flip injection and is used as the reference. Higher drops in the accuracy will
reduce the nominator and result in smaller resilience factors.

2.3 Research Questions

Considering a tree-based model with approximate memory storing the node’s
data, the main goal is to analyze the impact of bit errors on the inference accu-
racy. To this end, the following research questions will be evaluated:

– RQ1: Which data in the tree-based model is more sensitive to the errors?
– RQ2: What is the influence of depth and the number of trees in the ensemble

on the error resilience?
– RQ3: Are there differences concerning error resilience among different datasets?

3 TREAM: An extension to sklearn

TREAM is an extension for the well-known machine learning library sklearn [14].
Sklearn provides implementations of common supervised and unsupervised ML
algorithms with a Python-based interface. It is one of the most efficient ML-tools
available due to its use of Numpy and Cython in the back-end [14].

3.1 High-level Overview of TREAM

According to the structure of DT in Listing 1.1, the bit flip injection into the
following data sites are considered: 1) Split value, 2) feature value, 3) feature
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index, and 4) child indices. These sites can be selected individually or in any
combination to perform the error resilience and accuracy evaluation.

Algorithm 1 shows the high-level overview of how TREAM works. It first ini-
tializes the experiment parameters and then activates bit flip injection into the
aforementioned sites depending on the flags. From Line 11 on, the program iter-
ates over the specified BERs in the experiment parameters. The bit flip injection
takes place during the model inference and are only injected into the accessed
data for efficiency. The accuracy estimation is repeated for the specified number
in REPs (i.e. repetitions, specified in the experiment parameters). When the
execution of the loop is finished, a list of accuracies is returned.

Algorithm 1: TREAM high-level overview
Input: Trained Model M , Input X, Set of BERs (B)
Output: Accuracy A over B

1 Initialize experiment parameters
2 Initialize list of accuracies A
3 if BitFlipSplitValue then
4 activate SplitValueInjection

5 if BitFlipFeatureValue then
6 activate FeatureValueInjection

7 if BitFlipFeatureIdx then
8 activate FeatureIndexInjection

9 if BitFlipChildIdx then
10 activate ChildIndexInjection

11 for β in B do
12 for rep in REPs do
13 Apply model M(X) under β
14 Append Aβ to A

15 return A

The process of bit flip injections into tree-based models can be configured
through an external configuration file (ECF) to enable fast design space ex-
ploration for error resilient systems. It provides the required parameters and
configurations to train a model (or load a pre-trained model) and inject bit flips
in the specified sites during inference. This workflow is shown in Fig. 2.

Load Dataset

Import
DT/RF model

Set DT/RF
configuration

Train DT/RF
model

Set configu-
ration for bit
flip injection

Bit error
generator

Bit flip in-
jection in

DT/RF data
Accuracy over bit error rates

Fig. 2: TREAM operational steps.
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3.2 Implementation

The back-end of the tree computations in sklearn is implemented in the pro-
gramming language Cython [1]. Cython code uses Python-based syntax, with
optional syntax inspired by the programming language C (such as specifying
data types). When the implementation is complete and the code should be ex-
ecuted, it is compiled to C/C++ code first, and then processed further. This not
only produces efficient machine code, it also allows direct bit-level access to the
DT’s data, enabling the iteration through the binary representation of values
and their manipulation. Hence, this is used to implement the bit flip injection
during the inference. In the following, we explain how we extended the sklearn
codebase to support bit flip injection into the DT data.

New Files are files that were not part of sklearn and are added for the
implementation of TREAM.

sklearn/tree/_bfi.pdx: This file includes type and function definitions for
bit flip injections, for floating point and integer representations with any number
of bits. For example, the function for the floating point format is cdef DTYPE_t
bfi_float (DTYPE_t x, DTYPE_t ber). Input (x) and bit error rate (BER, in
decimal) need to be specified.

sklearn/tree/_bfi.pyx: This file provides the implementation of the bit flip
injection. We note that floating-point numbers are represented by the IEEE 754
binary format in modern computing systems. Therefore, bit flip injection can be
directly applied onto the binary representation of floating points or integers. To
achieve this in Cython, the corresponding bits, denoted as a, of a floating point
number or an integer are copied using the memcpy function (to work around the
strict-aliasing rule). Then, a loop iterates over each bit that can flip, and if the
corresponding random value is smaller than the BER, the bit is marked as ’1’,
i.e., to be flipped; otherwise, marked as ’0’, i.e., kept as it is. Suppose that m
is the resulting bit vector of the above operation. Then, m is considered as a
mask and the bit flips are performed using the a := m xor a, in which xor
is a bit-wise xor operation. In the end, the bit vector a containing the original
input (with flips, if bits have been flipped) are copied to the original value, again
using memcpy.

Modified Files are files that have been part of the original sklearn but are
modified for the TREAM implementation.

sklearn/tree/_tree.pxd and sklearn/tree/_tree.pyx: with values to turn
on and off bit flip injection into different types of DT data during inference. BERs
can also be specified for each type of data. In the function apply_dense, the bit
flip injection function calls are performed (the case sparse application is not
supported, but can easily be added).

sklearn/tree/setup.py: To compile sklearn with the changes, this instal-
lation file has been extended with the new files related to _bfi.pyx.
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4 The Effect of Bit Flips in Tree-based Models

In this section we give an overview of the effects of bit flips in the different bit flip
sites in tree-based models and how bit flips are related to the model structure.
By this we intend to give context for the research questions, before conducting
the bit flip injection experiments.

4.1 Bit Flips in Split and Feature Value

Let us denote the nodes’ comparison using x ≤ s, where x is an input feature and
s the split value. When bit flips occur in the bit representation of s (independent
of the data type), the representation with bit flips (s∗) encodes either a larger
or a smaller value. Depending on the values of x and s, i.e. whether x > s or
x ≤ s, the magnitude of s∗ determines whether the node chooses the wrong
child. For the wrong child to be chosen, the magnitude of s∗ has to be small or
large enough to invert the result of the comparison x ≤ s. The same principle
holds for bit flips in the bit representation of the feature value x.

We now explain how a wrong child (by bit flips in s and/or x) can affect
the prediction. Consider a DT with only two features, splitting the space with
hyperplanes hi as shown in Fig. 1. For h1 and h4, the split to the left child
corresponds to splitting the feature space such that the space on the left remains.
For s2 and s3, a split to the left child corresponds to splitting the feature space
such that the space above remains. For right children, the space is partitioned the
other way around. As an example, consider a two-dimensional input x = (x1, x2)
belonging to the class C2. The model has to predict this class from the five classes
denoted as C1 - C5. A wrong child selection in v1 will fall either in C1 or C3,
which are the wrong classes. The same principle applies to all the other nodes.
In each case, one wrong split leads to a wrong classification.

4.2 Bit Flips in Child Indices

Child indices are unsigned integers, one pointing to the index for the left and
one for the right child. Considering that only the child indices have bit flips in
their bit representation, following cases can occur:

1. The index under bit flips gets out of array bounds. In this case, a memory
address which is not inside the memory region reserved for the nodes will be
accessed which may store any other data. This memory address could also
be protected by the operating system, and an access attempt could cause a
segmentation fault, leading to a termination of the program.

2. The index under bit flips stays inside the array bounds reserved for the node.
In this case, the wrong index will be used, though it is a valid node in the
tree. If the execution jumps to a parent node, the execution is repeated. If
this happens repeatedly, the execution time may become longer.
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4.3 Bit Flips in Feature Index

Bit flips in the bit representation of the feature index (also an unsigned integer)
can have the following outcomes:

1. The feature index under bit flips gets out of bounds. This case is the same
as case 1 for the child index.

2. The feature index under bit flips stays inside the array bounds reserved
for the feature values. In this case, a wrong feature will be chosen which
may have a value different to the correct one. This is similar to the case in
Section 4.1.

5 Evaluation

To demonstrate the TREAM tool, we introduce bit flips into tree-based ML
models. We focus on RFs with depths and number of trees in {5, 10}. As datasets,
we use MNIST, sensorless-drive, wine-quality, and adult, from the UCI machine
learning repository [8].

For training RFs, the standard sklean libraries, without any error tolerance
or correction methods are used. After training an RF, the accuracy under errors
is evaluated using TREAM with BERs between 10−5% and 50%. To acquire
precise estimates of the accuracy, the inference under each BER is repeated
five times for each RF. All experiments are run on a machine with Intel Core
i7-8700K 3.70GHz, 32GB RAM.

We inject bit flips into the bit representations of the floating point format of
the split and feature values. TREAM also supports bit flip injection into integer
representations. The feature index is an unsigned integer, into which bit flips are
also injected. A check finds out-of-bounds errors in the index of the feature value
(explained in Section 4.1) and sets it to zero which retrieves the first feature. If
it is within the bounds, the feature at the wrong index is retrieved by the node.
The child indices are unsigned integers as well. If bit flips cause the child indices
to get out of bounds, the execution of the tree is terminated and the class with
index zero is returned as the prediction. If the indices are within the bounds, a
wrong node is retrieved as the next child node.

Using TREAM, the effect of bit flip injection on all data sites on the RF
accuracy of two example datasets are presented in Fig. 3. The value K refers to
the maximum depth of the trees, and T refers to the number of trees in the RFs.

The extracted accuracies after bit flip injections can be used to quantify the
error resilience of each data site for each dataset using Eq. (1). From collected
data this value is presented for all datasets in Table 1. Using accuracy drops and
extracted resilience factors we refer to the research questions posed in Section 2.3.

RQ1: According to Fig. 3 (fourth column), we observe that the child indices
are most sensitive to errors. This leads to wrong decisions with one bit flip,
which causes a high accuracy drop despite small BERs. Bit flips in the split
value, feature value, and feature index (columns one to three in Fig. 3) are less
sensitive to errors compared to the child index. In these three cases, bit flips
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Fig. 3: Accuracy over BERs for different RFs, varying bit flip sites, datasets, and
RF architectures. Row 1: MNIST, Row 2: sensorless-drive.

Table 1: Error resilience (in percent) of different experiments with bit flip in-
jection on Feature Value (FV), Threshold Value (TV), Feature Index (FI) and
Child Index (CI)

Model MNIST Sensorless-drive Wine quality Adult
FV TV FI CI FV TV FI CI FV TV FI CI FV TV FI CI

T5 / K5 87.9 93.3 88.3 31.9 88.5 87.9 89.7 28.1 93.4 95.0 96.9 86.1 98.1 97.8 98.6 91.5
T5 / K10 87.9 91.6 88.6 24.3 86.8 87.5 90.3 22.0 90.6 90.8 94.1 80.9 97.5 96.0 97.8 89.3
T10 / K5 89.2 94.6 89.3 32.4 88.7 88.9 91.3 30.0 95.9 96.9 97.4 85.9 98.5 97.8 98.4 90.6
T10 / K10 89.0 93.4 89.9 27.2 88.4 88.8 91.7 24.9 92.0 92.2 94.3 78.2 98.1 97.1 98.1 89.2

may not always lead to a wrong decision. The bit flips may be tolerated without
a change of the nodes traversed to reach a leaf. The resilience values in Table 1
also support this. The values for the CI are the lowest among one dataset.

RQ2: In Table 1 we observe for all datasets and for the first three bit flip
injection sites (split value, feature value and feature index), that inclusion of
more trees in the RF can enable a slightly better resilience. However, in some
cases this is a weak improvement or may not hold (e.g. CI in wine-quality, and
FI and CI in adult). Furthermore, the variance of the accuracy for child index
plots is high, which makes observations challenging. Regarding the influence of
the tree depth on resilience, no consistent observations can be made from Fig. 3
and Table 1.

RQ3: Among the datasets, a certain amount of bit flips are tolerated with-
out significant accuracy degradation, for small BERs. We also observe that a
higher BER directly increases the accuracy drop. Furthermore, the BERs at
which the accuracy drops drastically is similar (between 10−1 and 101) for the
threshold value, feature value, and feature index. For the child index this region
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Table 2: Execution times (in seconds) for the MNIST dataset averaged from 40
times on the test set sized 10 000 elements.

Model TREAM [s] sklearn [s]
average avg.-min. max.-avg. average avg.-min. max.-avg.

T5 / K5 3.64 9 · 10−2 0.16 6.5 · 10−2 5 · 10−3 4 · 10−3

T5 / K10 7.15 0.22 0.63 7.5 · 10−2 0 3 · 10−3

T10 / K5 7.29 0.19 0.71 8.4 · 10−2 0 0
T10 / K10 13.71 1.64 0.5 0.11 0 1 · 10−3

is between 10−5 and 10−4. However, we observe that the resilience values vary
largely in Table 1. MNIST and sensorless-drive have CI resilience around 20-30
percent, while wine-quality and adult have values around 78-90 percent. The
high resilience values for CI for adult and wine-quality are due to the inherent
imbalance in these datasets.

To provide a sense on the effect of bit flip injection on the execution time,
latency evaluations are provided in Table 2. Each set of values is averaged from
five repetitions on the test set performed for eight different BERs, each for 10 000
samples. We observe that TREAM has additional timing overheads compared
to the sklearn. This overhead is to be expected, since bit flips are injected into
the parameters during the inference phase.

6 Conclusion

We present TREAM, an extension of sklearn, for error resilience analysis of tree-
based models (DT/RF). TREAM can be configured to inject bit flips into the
node data and input data, i.e. split and feature value, and feature and child
indices, during the inference phase. The evaluations demonstrate that the child
index is the most sensitive parameter of the node to the bit flips. Moreover, more
trees in an RF can tolerate more errors and the accuracy of various datasets
under bit flip injections can vary. We believe that this tool will help the research
community explore the design of efficient systems using ML on the resource-
constrained edge.

As a future work, we plan to find solutions for the timing overhead in the
TREAM tool, which occurs due to the fact that the bit flip injections are per-
formed every time the data is fetched from the memory. Furthermore, we plan
to use TREAM to evaluate tree-based models under specific approximate mem-
ories, with the goal of quantifying the efficiency benefits.

Acknowledgements This paper has been supported by Deutsche Forschungs-
gemeinshaft (DFG) as part of the Collaborative Research Center SFB 876 “Pro-
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