
DAEBI: A Tool for Data Flow and Architecture

Explorations of Binary Neural Network

Accelerators

Mikail Yayla1,2 ID , Cecilia Latotzke3 ID , Robert Huber1, Somar Iskif1,

Tobias Gemmeke3 ID , and Jian-Jia Chen1,2 ID

1 Technical University of Dortmund, Germany
2 Lamarr Institute for Machine Learning and Arti�cial Intelligence, Germany

3 RWTH Aachen University, Germany
{mikail.yayla, robert.huber, somar.iskif, jian-jia.chen}@tu-dortmund.de

{latotzke, gemmeke}@ids.rwth-aachen.de

Abstract. Binary Neural Networks (BNNs) are an e�cient alternative
to traditional neural networks as they use binary weights and activations,
leading to signi�cant reductions in memory footprint and computational
energy. However, the design of e�cient BNN accelerators is a challenge
due to the large design space. Multiple factors have to be considered
during the design, among them are the type of data �ow and the orga-
nization of the accelerator architecture. To the best of our knowledge, a
tool for the design space exploration of BNN accelerators with regards
to these factors does not exist.
In this work, we propose DAEBI, a tool for the design space explo-
ration of BNN accelerators, which enables designers to identify the most
suitable data �ow and accelerator architecture. DAEBI automatically
generates VHDL-code for BNN accelerator designs based on user spec-
i�cations, making it convenient to explore large design spaces. Using
DAEBI, we conduct a design space exploration of BNN accelerators for
traditional CMOS technology using an FPGA. Our results demonstrate
the capabilities of DAEBI and provide insights into the most suitable
design choices. Additionally, based on a decision model, we provide in-
sights for the design of BNN accelerator speci�cations that use emerging
beyond-CMOS technologies.

Keywords: Binarized neural networks · Digital circuit design · Data
�ow · Hardware architecture · FPGA · ASIC

1 Introduction

Neural networks (NNs) have been applied successfully in various �elds, such
as image and speech recognition, natural language processing, and autonomous
driving. They surpass traditional algorithms and human performance in various
challenges, e.g., Convolutional Neural Networks (CNN) in the ImageNet Chal-
lenge [11] or in the PhysioNet Challenge [13]. However, NNs rely on a large

https://orcid.org/0000-0002-4134-952X
https://orcid.org/0000-0001-6536-820X
https://orcid.org/0000-0003-1583-3411
https://orcid.org/0000-0001-8114-9760


number of parameters and need to perform a massive amount of computations
to achieve high accuracy, leading to high resource demand. Yet, many use cases
require e�cient and intelligent decision making, which necessitate the inference
to be performed on the edge to reduce latency and increase privacy. However,
edge devices provide only limited resources in terms of energy and computational
units as well as memory, posing a profound challenge for the design of e�cient
yet capable AI systems on such devices.

Traditional NN accelerators require substantial data transfers between mem-
ory and processing units, resulting in considerable energy consumption and la-
tency [15]. To address the cost of data transfers, the word-length of the data is
commonly reduced. The most extreme form of word-length reduction is binariza-
tion [25]. NNs with binary weights and activations, known as Binary Neural Net-
works (BNNs), can reduce the memory footprint of �oating-point NNs by a factor
of 32× while maintaining high accuracy [4,9,17]. Furthermore, BNNs reduce the
computational energy required for processing by replacing the energy-intensive
multiply-accumulate (MAC) operations with XNOR and popcount operations,
which can be implemented more e�ciently than in higher-precision NNs [2].

BNN accelerators have been implemented in both digital and analog ICs
and several recent studies have demonstrated their e�ciency as well as e�ec-
tiveness [1,3,18,27,34]. BNN accelerators and general NN accelerators typically
utilize classical CMOS-based ICs like microcontrollers, FPGAs, and ASICs. How-
ever, beyond-CMOS technologies are emerging rapidly as an alternative. Exam-
ples of emerging-beyond CMOS technologies are Resistive Random-Access Mem-
ory (RRAMs) [26], Ferroelectric Field-E�ect transistors (FeFETs) [7,24,32], and
Magnetoresistive Random-Access Memory (MRAM) [6,22].

In addition to the technology choice, two types of data �ow methods, i.e.,
output stationary (OS) and weight stationary (WS), de�ned in [8], can be used
e�ciently for BNN accelerators [7]. In OS, new input activations and weights
are streamed in each cycle, which necessitates only one accumulation register
per computing unit. In WS, the weights are programmed into the XNOR gates
once and reused as much as possible for multiple input activations, such that
the number of new weight writes to the XNOR gates is minimized. This however
necessitates a large amount of registers for storing intermediate results. The
bene�t of OS is a lower area footprint than in WS, as the partial sums are not
intermediary stored but directly accumulated. The bene�t of WS is the high
reuse of the weights, requiring a signi�cantly smaller number of rewrites to the
XNOR gates compared to OS.

In emerging technologies, such as NVM-based XNOR gates, the cost of writ-
ing new weights is typically larger than applying input activations and reading
the output. WS can be more e�cient in these cases, see [3, 7] in Table 1. How-
ever, Table 1 also shows that there is not clear pattern in the choice of WS or
OS for BNN acceleration. The reason is that the decision process for the optimal
data �ow is highly time consuming for designers of BNN accelerators, because it
requires to design all possible BNN accelerator versions for comparisons. There-
fore, a tool which automatically generates the BNN accelerator designs for dif-

2



Table 1: BNN accelerator data �ows with CMOS and beyond-CMOS technology
Data �ow CMOS based accelerator Beyond-CMOS based accelerator

WS [18] [3, 7]

OS [1, 34] [27]

ferent data �ow con�gurations would be highly bene�cial for the design space
exploration of BNN accelerators in the industry and in the research community.

In this work, we present the tool DAEBI, which enables designers to identify
fast and conveniently the most suitable data �ow and architecture for the BNN
accelerators, for both classical CMOS and emerging beyond-CMOS technologies.
Our contributions are as follows:

� We present DAEBI, a tool for the design-space exploration of BNN accel-
erators regarding di�erent types of data �ow and architectures. DAEBI au-
tomatically generates VHDL-code of BNN accelerator designs based on the
user speci�cations.

� We further propose a decision rule for the data �ow choice when di�erent
technologies are used to implement the BNN accelerator.

� To demonstrate the capabilities of DAEBI, we conduct a design space ex-
ploration of BNN accelerators with regards to data �ow and accelerator
architectures for the traditional CMOS technology on an FPGA. Further-
more, based on our decision model, we provide insights for the design of BNN
accelerator speci�cations which use emerging beyond-CMOS technologies.

The paper is structured as follows. In Sec. 2 we introduce the basics of BNNs,
BNN accelerators, and the data �ow options OS and WS. In Sec. 3, we present
our tool DAEBI and describe its usage and implementation. We then present
the decision rule for determining the data �ow of BNN accelerators in Sec. 4.
Finally, we demonstrate the capabilities of DAEBI in Sec. 5. The DAEBI tool is
fully open-source and available at https://github.com/myay/DAEBI.

2 System Model

We assume for a convolution layer of an NN a weight matrix W with dimensions
(α × β), where α is the number neurons and β the number of weights of a
neuron. The input matrix X has dimensions (γ × δ), where β = γ (i.e., matrix
multiplication between W and X can be performed) and δ is the number of
convolution windows, i.e., unfolded kernels in the input. We leave out any layer
indices for brevity. Every convolution (1D, 2D, etc.) of a conventional NN can
be mapped to this matrix notation.

In general, each convolution layer in an NN (fully connected, 2D convolu-
tion, other convolution types) computes its outputs by performing the matrix
multiplication W × X, resulting in an output matrix with dimensions α × δ.
A matrix multiplication is performed by scalar products of di�erent combina-
tions of rows from W and columns from X. These scalar products are the MAC
operations. An activation function is speci�ed to convert the convolution layer
outputs (MAC values) to the activations A.

3

https://github.com/myay/DAEBI


.
.
.

w1

w2

wn

x1

x2

xn

+
Registers Binarization

Popcount

+

+

+

Fig. 1: Overview of a BNN computing unit.

2.1 Binarized Neural Networks (BNNs)

In BNNs, the weights and activations are binarized. The output of a BNN layer
can be computed with

2 ∗ popcount(XNOR(W,X))−#bits > T, (1)

where XNOR(W,X) computes the XNOR of the rows in W with the columns
in X (analogue to matrix multiplication), popcount counts the number of set
bits in the XNOR result, #bits is the number of bits of the XNOR operands,
and T is a vector of learnable threshold parameters, with one entry for each
neuron. The thresholds are computed with the batch normalization parameters,
i.e., T = µ− σ

ψη, where each neuron has a mean µ and a standard deviation σ over

the result of the left side of Eq. (1), and ψ and η are learnable parameters. For
further details about the batch normalization parameters, please refer to [9,23].
Finally, the comparisons against the thresholds produce binary values.

2.2 BNN Accelerators

The high-level overview of a BNN accelerator computing unit is shown in Fig. 1.
The design is inspired by the studies in [10,21]. The binary inputs and weights,
which are in form of bitstrings of length n, are loaded into the XNOR gates.
The XNOR gates (representing the binary multiplication) return the result of
the XNOR operations as a bitstring of length n as well. Then, the popcount unit
counts the number of bits that are �1�. Subsequently, the result of the popcount
unit is accumulated in the registers. The binarizer returns binary value once all
accumulations are completed.

Multiple computing units of the form in Fig. 1 can be used in parallel to
increase the throughput. Such accelerators are organized withm computing units
and n XNOR gates per computing unit, i.e., they have size (m × n), which
determines the workload they can process. Accelerators of size (m × n) can
further be embedded into a higher hierarchy, i.e., multiple accelerators of size
(m× n) on the same chip.

In general, hardware (HW) is designed, synthesized, and evaluated in Elec-
tronic Design Automation (EDA) tools. This is done by creating the description
of the HW and its behavior in a hardware description language (HDL), such as
VHDL. The �nal HW designs will always be in some form of HDL, and could
be engineered or generated in di�erent ways.

4



m

n

W

α

X

β

β

δ

OS

X

β

δ

WS

. . .

. . .

. . .

X

β

δ

WS (less registers)

δ

q
= δstepOS �ow WS �ow

Weight tile with
m = 3 computing units

Weight data�ow

Input data�ow

Fig. 2: OS and WS data �ows.

2.3 Data �ow in BNN Accelerators: OS and WS

To classify the data �ow in BNNs, we use the categorization proposed in [8].
Applicable to BNNs in an e�cient way are the output stationary (OS) and the
weight stationary (WS) approach. For the workload, we use the matrix nota-
tion of the weight matrix W with dimensions α × β and input matrix X with
dimensions β × δ.

The OS data �ow is shown in Fig. 2 (top left). In OS, an input of length n
is retrieved from the �rst column of the input matrix (input column δstep = 1).
This input is broadcasted to all computing units. The popcount result of the
XNOR between inputs and weights is then stored in the accumulator. In the
next iteration, the subsequent n weights of the currently computed set of neurons
are loaded into the computing units. Then the subsequent n inputs are applied,
which are also in the input column with δstep = 1. Afterwards, the popcount
values are accumulated. This continues until all β of the neurons are processed,
taking dβne iterations for a neuron and input column combination. When the
input column processing is completed, the accumulator is reset and the next
input column (δstep = 2) is processed. In total, δdβne iterations are needed for

5



one neuron. When the �rst set of neurons have been processed, the next set of
neurons is processed and it is repeated for d αme iterations.

The WS data �ow is shown in Fig. 2 (top middle). Note that WS requires a
certain number of registers per computing unit to store intermediate popcount
values, as opposed to OS, which uses only one accumulation register per com-
puting unit. In WS, the corresponding input (input column δstep = 1) of length
n is retrieved from the input matrix and is broadcasted to all computing units
as well. The popcount result of the XNOR between inputs and weights is then
stored in the �rst register (δstep = 1). Then, the the subsequent input (from
input column δ = 2) of length n is retrieved and applied to all computing units.
The popcount result is stored in the second register (δstep = 2). This continues
until all columns in the input matrix are processed, i.e., when δstep = δ. Note
that the loaded weights stay the same for all δstep. When δ columns have been
processed, then the next n weights are loaded into the computing units. The
process is repeated again, i.e., for δstep = 1, the result is added to the �rst reg-

ister, for δstep = 2, the result is added to the second register, etc., taking δdβne
iterations for the set of neurons. When the �rst set of neurons have been pro-
cessed, the next set of neurons is processed and in total there are d αme iterations.
The number of required registers can be high (see Table 4). WS can also be used
with less registers than δ, i.e., with δ

q , where q is the register reduction factor.
WS with less registers works the same way as WS, but only until the all registers
are full. Then, an OS step is performed by loading a di�erent set of weights. The
WS data �ow is continued again until all registers have been iterated and the
process repeats (see Fig. 2).

A summary of the required number of executions of computing units and
their resources is described in Table 2. The preferred data �ow used for NVMs
is WS, since it minimizes the number of writes to the XNOR gates and in
NVMs typically the writes to memory cells are more costly than the reads [7].
However, neither for classical CMOS-based designs nor for emerging beyond-
CMOS designs exists a clear recipe for the most suitable data �ow choice between
OS and WS in the case of BNNs.

Table 2: Number of registers, number of weight loads, and number of invocations
for di�erent data �ow approaches in BNN accelerators.

Speci�cation OS WS WS (less registers)

Nr. of registers m δm d δ
q
em

Nr. of weight writes δαd β
n
e αd β

n
e qαd β

n
e

Nr. of accelerator invocations δd α
m
ed β
n
e δd α

m
ed β
n
e δd α

m
ed β
n
e

6



De�ne
workload
dimensions
(α, β, δ)

Is data�ow
OS or WS?

Con�g. OS
as data�ow

Con�g. WS
as data�ow

Initialize
m, n, data
width, nr.
of registers

Generate
VHDL

designs and
testbenches

Run TCL
script for
automatic
evaluations

if OS

if WS

Fig. 3: Work�ow of our DAEBI tool. Blue: data �ow, purple: accelerator ar-
chitecture. Blue and green are speci�cations from user. Gray: automatic steps
performed by the tool.

3 Our Tool DAEBI

DAEBI enables designers of BNN accelerators to evaluate whether OS or WS is
the most suitable data �ow approach for their speci�c accelerator architecture
and technology. The code of DAEBI is fully open source and available at https:
//github.com/myay/DAEBI.

In the following, in Sec. 3.1, we describe the high-level overview of our DAEBI
tool and its work�ow. Then, in Sec. 3.2, we explain the implementation and
structure of DAEBI, as well as the BNN accelerator designs that are available
in our tool.

3.1 High-Level Overview of DAEBI

The work�ow of DAEBI is shown in Fig. 3. The user �rst de�nes the type
of data �ow used (OS or WS) and then de�nes the accelerator architecture
(m,n, and the nr. of registers in case of WS). Subsequently, the user speci�es
the workload that needs to be processed by the accelerator (α. β, δ). From
these inputs, the BNN accelerator is generated automatically in the form of
VHDL with corresponding realistic simulated workloads in testbenches to run
the designs. Then, the generated �les can be loaded into EDA tools for syntheses
and evaluations based on TCL scripts. After the EDA tools return the results, the
user can recon�gure the accelerator design and repeat the steps for performing
design space explorations.

3.2 Implementation of DAEBI and the Hardware Designs

Our implemented BNN accelerator, which includes options for OS and WS data
�ows and di�erent architecture con�gurations is designed in VHDL. For auto-
matic code generation from templates, we use the templating tool Jinja2. We
also use Python scripts for various steps of creating designs for enabling con-
�gurability regarding the data �ow and accelerator architecture. All the code
regarding the accelerator and its related tools are released as open source in
https://github.com/myay/DAEBI.

The BNN accelerator is con�gurable, i.e., with respect to the number of
computing units m (accelerator elements in parallel), the number of XNOR

7

https://github.com/myay/DAEBI
https://github.com/myay/DAEBI
https://github.com/myay/DAEBI


gates n per computing unit, the number of required bits in the registers, and
the number of registers in the WS approaches. Furthermore, for the speci�ed
number of XNOR gates, the popcount unit (realized by an adder tree with
log2(n) levels) is generated with corresponding minimal number of bits in the
adders and pipeline registers. The generated hardware designs in our tool for
the OS data �ow and WS data �ow are shown in Fig. 4 and 5 respectively. Both
designs operate in a pipelined fashion. Note that the OS design only needs one
accumulation register. The WS design needs δ registers (less registers can also
be used). The registers in WS are implemented as a register �le, which requires
ports for read and write data, register selection, and write enable.

In the rtl/ folder is the VHDL code of all the components used for OS
and WS designs. For the OS design, there are VHDL �les for the XNOR gates,
the XNOR gate array, the popcount unit (with registers and adders), a simple
accumulator, and the binarizer. For the WS design, the components are the same,
except that it uses a reg�le with multiple registers and ports. If the user want to
change any of these subcomponents, modi�cations have to be performed here.
However, with modi�cations, the functionality of the higher-level design needs
to be tested.

For building the designs of entire accelerators with WS and OS (and for
multiple computing units in parallel), we use the templates in the templates/

folder. If the user wants to change the high-level design of the OS or WS hard-
ware, modi�cation have to performed in the �les of this folder. Here we also
include the templates of the testbenches used for evaluation. Note that when

+
Register Binarization

popc

ind

rst

clk

od

Fig. 4: Design of OS data �ow in our DAEBI tool for one computing unit.

+
Reg�le Binarization

popc

.
.
. δ

rdwd

wa

ra

clk

rst

we

Fig. 5: Design of WS data �ow in our DAEBI tool for one computing unit.

8



the debug �ag is set during the accelerator architecture de�nition, the results of
the computations are simulated in the testbench and are printed in the console.

In the sim/ folder, the tests for the subcomponents and the computing units
can be found. The tests have been written in cocotb with a high number of test
cases. The tests can be rerun by the user with more test cases and with di�erent
seeds. In case of modi�cations on any part of the design, the tests should be rerun
and, if needed, changed to test the correctness of modi�ed designs. A script for
testing all components and the higher-level designs is provided this folder.

4 Decision Model for using OS or WS

In general, the major energy cost in NNs is due to data transfers [15]. Here, we
focus on the energy of the data transfer. For the cost of OS, COS, EOS equals
2× the read energy ERD per Partial Sum (PS), since the weights and inputs are
changed each cycle. The area AOS is one register (REG) per computing unit as
the resulting popcount is computed and stored in one register (see Eq. (2)). The
processing time TOS is described in Table 3. All in all, the cost is considered to
be a product of energy E, area A, time T .

COS = AOS ∗ EOS ∗ TOS = 1REG ∗ 2ERD

PS
∗ (dlog2(n)e+ 4)cycle (2)

WS uses as many registers as input columns δ per computing unit. The input
columns δ are predetermined by the NN model and can be high (e.g. 50176, see
ResNet-18 in Table 4). Using less registers is also possible with the register
reduction factor in Sec. 2.3. However, WS reuses the weights which are a key
driver of its e�ciency. This weight reuse allows to keep the once loaded weights
in the computing units until all δ columns have been processed. The cost CWS

increases signi�cantly with δ but is for small n lower than COS (see Eq. (3)).
Hence, WS requires less data transfers compared to OS.

CWS = AWS ∗ EWS ∗ TWS = δREG ∗ ERD

PS
∗ (dlog2(n)e+ 6) ∗ 3cycle (3)

As both options, WS and OS, are valid for a BNN data �ow, the open question
remains, when to use which option. For this, we introduce a threshold τ which

Table 3: Number of clock cycles needed by our designs

Component OS WS

XNOR array - -
Popcount unit dlog2(n)e+ 3 dlog2(n)e+ 3
Accumulator 1 3
Binarizer - -

9



De�ne CRD
and CWR

τ < 1?

OS is best
data �ow
for design

WS is best
data �ow
for design

true

false

Fig. 6: Decision diagram for τ and the data �ow selection.

indicates the optimal trade-o� point for each data �ow option (see Eq. 4). As
the cost COS is for most cases except for small n and small δ larger than the cost
CWS, it might seem obvious to choose always OS. However, the cost CRD and
CWR for writing data depends highly on the technology [33]. Here, CWR can cost
146× more than CRD. It is worth noting that, CWR as well as CRD, depend only
on time and energy as no additional registers are needed for the data movement
between the global bu�er and XNOR gates. The threshold τ takes CWR

CRD
as well

as COS
CWS

into account (see Eq. 4). Eq. 4 can be transformed to Eq. 6. To conclude,
it is best to use OS up to τ equals 1.

τ =
CWR

CRD
∗ COS
CWS

(4)

CWR

CRD
=
TWR ∗ EWR

TRD ∗ ERD

(5)

τour design =
2 ∗ TWR ∗ EWR

δ ∗ TRD ∗ ERD

∗ (dlog2(n)e+ 4)

(dlog2(n)e+ 6) ∗ 3
(6)

5 Evaluation

We �rst introduce the experiment setup in Sec. 5.1. Then, in Sec. 5.2, we use
our tool DAEBI to perform design space explorations for BNN accelerators for
a CMOS-based FPGA, with regards to data �ow and architecture. Finally, in
Sec. 5.3, we provide insights based on our decision model for using OS or WS
on di�erent beyond-CMOS technologies.

5.1 Experiment Setup

We use our DAEBI tool to perform a design space exploration of BNN accel-
erators with respect to the data �ow con�gurations (OS and WS) and di�erent
architectures (m, n). For the traditional CMOS-based case study in this work
we use the Zynq Ultrascale+ ZCU104 evaluation board FPGA.

For area, energy, and latency estimations we synthesize our design for the
FPGA using Vivado. We use the out-of-context mode to avoid I/O limitations.
To evaluate the designs generated with DAEBI, we use the generated testbenches

10



Table 4: Maximum matrix dimensions of the weight matrix W and input X in
three typical BNN architectures used for e�cient edge inference

NN architecture Dataset Top-1 accuracy W : max(α),max(β) X : max(γ),max(δ)

VGG3 [31] FMNIST 90.68% 2048, 3136 3136, 196

VGG7 [31] CIFAR10 90.37% 1024, 8192 8192, 1024

ResNet-18 [29] ImageNet 58.71% 512, 4608 4608, 50176

and create saif �les (which store information about the switching activity based
on simulations with testbenches). The testbenches contain representative work-
loads (i.e., α, β, δ, as shown in Table 4) for the BNNs, such that the HW is
operated in a fully utilized manner. To estimate the energy consumption after
the synthesis and implementation steps in Vivado, we feed the saif-�les created
during post-implementation simulation with the testbenches to the power ana-
lyzer. For area estimations, we rely on the utilization report in Vivado. For the
latency, we measure the number of clock cycles the designs needs to compute one
data frame and multiply that by the clock frequency, which is always maximized
such that no timing errors occur.

5.2 Results of Experiments for Classical CMOS Technology

In the following, we present the results of design space exploration using our
tool DAEBI for the classical CMOS technology on the FPGA. The resulting
designs are analyzed with regards to their costs in energy, area and time. To
identify the optimal design, the di�erent designs are compared in a Pareto plot.
Here, two objectives, the energy and the area-time (AT) complexity, are used
to identify the points with the best trade-o�. We consider that the Look-Up
Tables (LUTs) represent the area cost, as they are the most important elements
to build computing units in FPGAs. Time in our evaluation is the required
processing time per sample. The results are shown for OS and WS (and di�erent
architecture con�gurations) in Fig. 7.

Regarding the comparison between OS and WS, we observe that OS performs
better in AT and energy by around one order of magnitude. This is due to the
fact that in our FPGA, the read and write costs are the same, and using more
registers in WS increases the area cost signi�cantly. As expected, more registers,
e.g. from 196 to 1024 (we show this case for n downto 64 since the resource
use becomes too high), lead to higher cost in AT and energy. Furthermore, we
observe that in all cases, designs become better as n increases. Hence, the designs
with the largest n, i.e., n = 512 in our case, lead to the Pareto-optimal solutions.

The experiment results further show that the resource increases more with m
(multiple computing units in parallel) than with n (i.e., increasing the number of
XNOR gates in one component and thereby increasing the the number levels in
the popcount unit). For example when n = 256, m = 2 instead of n = 512, m =
1 is used, the second option is always better. Therefore, doubling m and halving
n does not lead to more e�cient designs for both OS or WS. As examples for
this case we show two points with m = 2 for OS in Fig. 7.

11



3,000 3,200 3,400 3,600

350

400

450

Area-Time complexity (LUT·ns)

E
n
er
g
y
(p
J
)

OS

n = 16 m = 1
n = 32 m = 1
n = 64 m = 1
n = 128 m = 1
n = 256 m = 1
n = 512 m = 1
n = 256 m = 2
n = 128 m = 2

0 1 · 105 2 · 105 3 · 105

0

5,000

10,000

15,000

Area-Time complexity (LUT·ns)

E
n
er
g
y
(p
J
)

WS

n = 16 r = 196 m = 1
n = 32 r = 196 m = 1
n = 64 r = 196 m = 1
n = 128 r = 196 m = 1
n = 256 r = 196 m = 1
n = 512 r = 196 m = 1
n = 64 r = 1024 m = 1
n = 128 r = 1024 m = 1
n = 256 r = 1024 m = 1
n = 512 r = 1024 m = 1

Fig. 7: OS (left) and WS (right) data �ow designs with di�erent architecture
con�gurations evaluated on Xilinx Zynq Ultrascale+ ZCU104 FPGA. n: Nr. of
XNOR gates. m: Nr. of computing units in parallel. r: Nr. of registers in WS.
Two separate plots are shown due to the large di�erences among OS and WS.

5.3 Insights for Beyond-CMOS Technology

In Table 5, the cost for di�erent memory technologies are presented. As some
memory technologies may vary in read and write cost per device, we state the
cost with regards to the range in our references [5, 12, 14, 16, 19, 20, 28, 30]. The
result of the quotient of cost in Eq. 6 di�er with regards to the initial read and
write cost for the memory technology. Hence, we state two di�erent δ values for
the minimum read and write cost and maximum read and write cost of each
technology. The cost refers here to the read and write delay as well as read and
write energy. Eq. 6 is used with n = 512 because this value performed best in
the analysis in Fig. 7.

If τ < 1, OS is the best data �ow, whereas if τ ≥ 1 WS is the best data
�ow. Thus, the δ in Table 5 is chosen such that τ < 1 is achieved. As δ can be
only an integer value, all numbers smaller than the presented δ enable a τ ≥ 1.
Furthermore, the smaller δ is always used in the following as the threshold to
determine whether OS or WS shall be used. This is due to the fact that the range
of cost for each device type has to be taken into account to prevent unfavorable
data �ow choices. This means that for SRAM memory technology, always a data
�ow of OS is preferable. However, for designs with reasonable sized δ, WS can
be a better data �ow than OS. This is especially the case for FeFET, FeRAM,
PCM, and ReRAM, i.e., WS is preferred as data �ow for FeFET for a δ < 20,
for FeRAM for a δ < 10, for PCM for a δ < 10, and for ReRAM for a δ < 8. For
STT-RAM, only small δ allow a reasonable choice of OS, i.e., for a δ < 5 WS is
preferred as data �ow.

To conclude, Table 5 summarizes for di�erent memory technologies the cases
in which the data �ow types OS or WS should be used. The initial technol-
ogy dependent cost can be changed to support other technologies. Afterwards,
DAEBI can be used to verify the decision with evaluations in EDA tools.

12



Table 5: Evaluation of τ based on our decision model in Sec. 4. Read and write
cost are also shown for di�erent memory technologies with n = 512.

Memory TRD TWR ERD EWR δ for min cost δ for max cost
technology (ns) (ns) (pJ) (pJ) τ < 1 τ < 1

SRAM [5,19] �0.2-2 �0.2-2 574 643 ≥ 1 ≥ 1

STT-RAM [5,19,28] 2-35 3-50 550 3243 ≥ 6 ≥ 5

ReRAM [5,14,30] �10 �50 1.6-2.9 4-14 ≥ 8 ≥ 14

PCM [5,28] 20-60 20-150 12.4 210.3 ≥ 10 ≥ 25

FeRAM [5,28] 20-80 50-75 12.4 210 ≥ 25 ≥ 10

FeFET [12,16,20] 0.279 0.55 0.28 4.82 ≥ 20 ≥ 20

6 Conclusion

We present DAEBI, a tool for the design space exploration of BNN accelerators
that enables designers to identify the most suitable data �ow and architecture.
DAEBI automatically generates VHDL-code for BNN accelerator designs based
on user speci�cations, making it convenient to explore large design space. Us-
ing DAEBI, we perform a design space exploration for a classical CMOS-based
FPGA to demonstrate the tool's capabilities. In addition to the automatic de-
sign generation, we also provide guidance on how to choose between OS and WS
for hardware based on emerging beyond-CMOS technologies. We believe that
DAEBI will be valuable to both research and industry for exploring the design
of e�cient BNN hardware in resource-constrained AI systems.

Acknowledgements This paper has been supported by Deutsche Forschungs-
gemeinschaft (DFG) project OneMemory (405422836), by the Collaborative Re-
search Center SFB 876 �Providing Information by Resource-Constrained Analy-
sis� (project number 124020371), subproject A1 (http://sfb876.tu-dortmund.de)
and by the Federal Ministry of Education and Research of Germany and the state
of NRW as part of the Lamarr-Institute for ML and AI, LAMARR22B.

References

1. Ando, K., et al.: BRein memory: A single-chip binary/ternary recon�gurable in-
memory deep neural network accelerator achieving 1.4 TOPS at 0.6 W. IEEE
Journal of Solid-State Circuits (JSSC) 53(4), 983�994 (2017)

2. Andri, R., Cavigelli, L., Rossi, D., Benini, L.: YodaNN: An ultra-low power convo-
lutional neural network accelerator based on binary weights. In: 2016 IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI). pp. 236�241 (2016)

3. Bertuletti, M., noz Martín, I.M., Bianchi, S., Bonfanti, A.G., Ielmini, D.: A Multi-
layer Neural Accelerator With Binary Activations Based on Phase-Change Mem-
ory. IEEE Transactions on Electron Devices 70(3), 986�992 (2023)

13



4. Blott, M., et al.: FINN-R: An end-to-end deep-learning framework for fast explo-
ration of quantized neural networks. ACM Transactions on Recon�gurable Tech-
nology and Systems (TRETS) 11(3), 1�23 (2018)

5. Boukhobza, J., Rubini, S., Chen, R., Shao, Z.: Emerging NVM: A Survey on Ar-
chitectural Integration and Research Challenges 23(2), 1084�4309 (2017)

6. Chang, L., et al.: PXNOR-BNN: In/with spin-orbit torque MRAM preset-XNOR
operation-based binary neural networks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 27(11), 2668�2679 (2019)

7. Chen, X., Yin, X., Niemier, M., Hu, X.S.: Design and optimization of FeFET-based
crossbars for binary convolution neural networks. In: 2018 Design, Automation,
Test in Europe (DATE). pp. 1205�1210 (2018)

8. Chen, Y.H., Emer, J., Sze, V.: Eyeriss: A Spatial Architecture for Energy-E�cient
Data�ow for Convolutional Neural Networks. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). pp. 367�379 (2016)

9. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)

10. Dave, A., Frustaci, F., Spagnolo, F., Yayla, M., Chen, J.J., Amrouch, H.: HW/SW
Codesign for Approximation-Aware Binary Neural Networks. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 13(1), 33�47 (2023)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR09 (2009)

12. George, S., et al.: Nonvolatile memory design based on ferroelectric FETs. In: 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC). pp. 1�6 (2016)

13. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic signals. Circulation" 101(23),
e215�e220 (2000)

14. Hirtzlin, T., et al.: Outstanding Bit Error Tolerance of Resistive RAM-Based Bi-
narized Neural Networks. In: 2019 IEEE International Conference on Arti�cial
Intelligence Circuits and Systems (AICAS). pp. 288�292 (2019)

15. Horowitz, M.: 1.1 computing's energy problem (and what we can do about it).
In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). pp. 10�14. IEEE (2014)

16. Ko, D.H., Oh, T.W., Lim, S., Kim, S.K., Jung, S.O.: Comparative Analysis and
Energy-E�cient Write Scheme of Ferroelectric FET-Based Memory Cells. IEEE
Access 9, 127895�127905 (2021)

17. Latotzke, C., Gemmeke, T.: E�ciency versus accuracy: a review of design tech-
niques for dnn hardware accelerators. IEEE Access 9, 9785�9799 (2021)

18. Li, G., Zhang, M., Zhang, Q., Lin, Z.: E�cient binary 3D convolutional neural
network and hardware accelerator. Journal of Real-Time Image Processing 19(1),
61�71 (2022)

19. Li, Y., Chen, Y., Jones, A.K.: A Software Approach for Combating Asymmetries
of Non-Volatile Memories. In: Proceedings of the 2012 ACM/IEEE International
Symposium on Low Power Electronics and Design. pp. 191�196. ISLPED '12 (2012)

20. Ni, K., Li, X., Smith, J.A., Jerry, M., Datta, S.: Write Disturb in Ferroelectric
FETs and Its Implication for 1T-FeFET AND Memory Arrays. IEEE Electron
Device Letters 39(11), 1656�1659 (2018)

21. Nurvitadhi, E., She�eld, D., Sim, J., Mishra, A., Venkatesh, G., Marr, D.: Accel-
erating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC.
In: 2016 International Conference on Field-Programmable Technology (FPT). pp.
77�84 (2016)

14



22. Resch, S., et al.: PIMBALL: Binary neural networks in spintronic memory. ACM
Transactions on Architecture and Code Optimization (TACO) 16(4), 1�26 (2019)

23. Sari, E., Belbahri, M., Nia, V.P.: How Does Batch Normalization Help Binary
Training? arXiv:1909.09139 (2019)

24. Soliman, T., et al.: E�cient FeFET Crossbar Accelerator for Binary Neural Net-
works. In: 2020 IEEE 31st International Conference on Application-speci�c Sys-
tems, Architectures and Processors (ASAP). pp. 109�112 (2020)

25. Stadtmann, T., Latotzke, C., Gemmeke, T.: From quantitative analysis to synthesis
of e�cient binary neural networks. In: 2020 19th IEEE International Conference
on Machine Learning and Applications (ICMLA). pp. 93�100. IEEE (2020)

26. Sun, X., et al.: Fully parallel RRAM synaptic array for implementing binary neural
network with (+ 1,- 1) weights and (+ 1, 0) neurons. In: 2018 23rd Asia and South
Paci�c Design Automation Conference (ASP-DAC). pp. 574�579 (2018)

27. Sunny, F.P., Mirza, A., Nikdast, M., Pasricha, S.: Robin: A Robust Optical Binary
Neural Network Accelerator. ACM Transactions on Embedded Computing Systems
(TECS) 20(5), 1�24 (2021)

28. Suresh, A., Cicotti, P., Carrington, L.: Evaluation of emerging memory technologies
for HPC, data intensive applications. In: 2014 IEEE International Conference on
Cluster Computing (CLUSTER). pp. 239�247 (2014)

29. Tu, Z., Chen, X., Ren, P., Wang, Y.: AdaBin: Improving Binary Neural Networks
with Adaptive Binary Sets (2022)

30. Wu, Q., et al.: A Non-volatile Computing-in-Memory ReRAM Macro using Two-
bit Current-Mode Sensing Ampli�er. In: 2021 IEEE 10th Non-Volatile Memory
Systems and Applications Symposium (NVMSA). pp. 1�6 (2021)

31. Yayla, M., Chen, J.J.: Memory-e�cient training of binarized neural networks on
the edge. In: Proceedings of the 59th ACM/IEEE Design Automation Conference
(DAC) (2022)

32. Yayla, M., et al.: Reliable Binarized Neural Networks on Unreliable Beyond Von-
Neumann Architecture. IEEE Transactions on Circuits and Systems I: Regular
Papers 69(6), 2516�2528 (2022)

33. Zangeneh, M., Joshi, A.: Performance and Energy Models for Memristor-Based
1T1R RRAM Cell. In: Proceedings of the Great Lakes Symposium on VLSI
(GLSVLSI '12). pp. 9�14 (2012)

34. Zhang, Y., Chen, G., He, T., Huang, Q., Huang, K.: ViraEye: An Energy-E�cient
Stereo Vision Accelerator with Binary Neural Network in 55 nm CMOS. In: Pro-
ceedings of the 28th Asia and South Paci�c Design Automation Conference. pp.
178�179 (2023)

15


	DAEBI: A Tool for Data Flow and Architecture Explorations of Binary Neural Network Accelerators 

