www-ai.cs.tu-dortmund.de/LEHRE/VORLESUNGEN/MLRN/WS1314/Folien/4SVM2MLV.pdf
K2(~xi , ~xj ) = 〈 ~xi , ~xj
〉2
= ((xi1 , xi2 ) ∗ (xj1 , xj2 ))2 = (xi1xj1 + xi2xj2 )2
= x2 i1x
2 j1 + 2xi1xj1xi2xj2 + x2
i2x 2 j2
= (x2 i1 , √
2xi1xi2 , x 2 i2 ) ∗ (x2
j1 , √
2xj1xj2 , x 2 j2 )
=: 〈 [...]
K2(~xi , ~xj ) = 〈 ~xi , ~xj
〉2
= ((xi1 , xi2 ) ∗ (xj1 , xj2 ))2 = (xi1xj1 + xi2xj2 )2
= x2 i1x
2 j1 + 2xi1xj1xi2xj2 + x2
i2x 2 j2
= (x2 i1 , √
2xi1xi2 , x 2 i2 ) ∗ (x2
j1 , √
2xj1xj2 , x 2 j2 )
=: 〈 [...] Beispiel: d = 2, ~xi , ~xj ∈ R2.
K2(~xi , ~xj ) = 〈 ~xi , ~xj
〉2
= ((xi1 , xi2 ) ∗ (xj1 , xj2 ))2 = (xi1xj1 + xi2xj2 )2
= x2 i1x
2 j1 + 2xi1xj1xi2xj2 + x2
i2x 2 j2
= (x2 i1 , √
2xi1xi2 , x 2 i2 ) ∗ (x2
j1 , √ …