To content

Bring Your Idea into Reality: Design and Implement Your Own Embedded Systems (English)


Design of Embedded Systems


Please send us your preference for different topics.

Deadline: 19th of April 2021

Explanation of SS2020

Due to the corona crisis, TU Dort­mund suggests to host the lectures in the summer semester 2020 completely online unless there is any further notification in the fu­ture. The organization team of the Fachproject discussed possible forms to host this course online. However, this is basically impossible even if the uni­ver­si­ty opens in May. After brainstorming, we have decided to bring your idea to online projects. We will de­sign some small projects which can be completely carried out online without any specialized hardware requirement. We will give a wide range of proj­ect topics that range from embedded machine learning, real-time operating systems, hardware/software codesign (in simulation), and cyber-physical systems (in simulation). Some of them can be further continued as Bachelor thesis topics if you would like. We will first host a seminar meeting to introduce the topics that are offered from our side. You are then requested to join one of the projects designed by us or form a team of 3 people with your own ideas. If you do not like this transformation and would not like to participate in the new format of this Fachproject, please kindly let me know. I will help you de-register from this course.

Decision of SS2021

Due to the unknown fu­ture of SS2021, we decided to provide an online version of Fachprojekt in the upcoming summer semester 2021 as well. We provided 3 sub-topics which are related to embedded systems, and each student can make a decision to join one of these sub-topics.


  1. We have in total 24 students, and each group can have at most 3 students. 
  2. In the first meeting, supervisors will give brief presentations to introduce the topics. Each group can select one of these topics and work on it. 
  3. In the end, each group have to give a talk to present what they have done and submit a report.



  • Build your own CPU in Minecraft introduction slides
    • up to two groups
    • Supervised by Christian Hakert
    • Minecraft, as a popular computer game, implements the basic of boolean algebra and therefore allows to build arbitrary binary (di­gi­tal) circuits. In this proj­ect, students should start from simple logic gates, de­sign components like adders, multiplexers, memories, ... and then assemble them to a minimal computing core, executing a very simple program. The groups are free in their de­sign decisions.
  • Design Your Own CPU introduction slides
    • Up to two groups
    • Supervised by Mikail Yayla
    • In this proj­ect, the students first learn the basics of VHDL to build a single cycle MIPS processor that can execute a few selected instructions (lw, sw, addi, beq, etc.). Then, the students are expected to either implement extensions for this processor or de­sign a completely new processor from scratch.
  • Deploy Machine Learn­ing Applications on A Swarm introduction slides
    • Up to two groups
    • Supervised by Junjie Shi
    • In this proj­ect, the students first establish a simulation based platform, i.e., Paparazzi UAV (detailed can be found in Afterwards, a distributed embedded system is designed, i.e., a swarm consists of several drones. Each drone can be considered as an embedded system. Then, an ensemble learning algoritm is implemented, e.g., detect an item using several images from different points of view that are obtained by different drones. In the end, the perforamnce of the application on the system is evaluated.   
  • Benchmarking batteryless systems de­sign paradigms introduction slides
    • Up to two groups
    • Supervised by Mojtaba Masoudinejad
    • There are multiple de­sign strategies for developing batteryless systems using pure hardware or software and their combination. However, each one performs better in some specific application type.
      The idea in this proj­ect is to develop scenarios according to the real world case studies. Then after studying available de­sign paradigm they have to be applied and checked on the experiments to evaluate their performance.
      TI MSP430FRxxx will be used for the development and implementation of the benchmark experiments.


Location & approach

The campus of TU Dort­mund Uni­ver­sity is located close to interstate junction Dort­mund West, where the Sauerlandlinie A 45 (Frankfurt-Dort­mund) crosses the Ruhrschnellweg B 1 / A 40. The best interstate exit to take from A 45 is "Dort­mund-Eichlinghofen" (closer to Cam­pus Süd), and from B 1 / A 40 "Dort­mund-Dorstfeld" (closer to Cam­pus Nord). Signs for the uni­ver­si­ty are located at both exits. Also, there is a new exit before you pass over the B 1-bridge leading into Dort­mund.

To get from Cam­pus Nord to Cam­pus Süd by car, there is the connection via Vo­gel­pothsweg/Baroper Straße. We recommend you leave your car on one of the parking lots at Cam­pus Nord and use the H-Bahn (suspended monorail system), which conveniently connects the two campuses.

TU Dort­mund Uni­ver­sity has its own train station ("Dort­mund Uni­ver­si­tät"). From there, suburban trains (S-Bahn) leave for Dort­mund main station ("Dort­mund Hauptbahnhof") and Düsseldorf main station via the "Düsseldorf Airport Train Station" (take S-Bahn number 1, which leaves every 20 or 30 minutes). The uni­ver­si­ty is easily reached from Bochum, Essen, Mülheim an der Ruhr and Duis­burg.

You can also take the bus or subway train from Dort­mund city to the uni­ver­si­ty: From Dort­mund main station, you can take any train bound for the Station "Stadtgarten", usually lines U41, U45, U 47 and U49. At "Stadtgarten" you switch trains and get on line U42 towards "Hombruch". Look out for the Station "An der Palmweide". From the bus stop just across the road, busses bound for TU Dort­mund Uni­ver­sity leave every ten minutes (445, 447 and 462). Another option is to take the subway routes U41, U45, U47 and U49 from Dort­mund main station to the stop "Dort­mund Kampstraße". From there, take U43 or U44 to the stop "Dort­mund Wittener Straße". Switch to bus line 447 and get off at "Dort­mund Uni­ver­si­tät S".

The AirportExpress is a fast and convenient means of transport from Dort­mund Airport (DTM) to Dort­mund Central Station, taking you there in little more than 20 minutes. From Dort­mund Central Station, you can continue to the uni­ver­si­ty campus by interurban railway (S-Bahn). A larger range of in­ter­na­tio­nal flight connections is offered at Düsseldorf Airport (DUS), which is about 60 kilometres away and can be directly reached by S-Bahn from the uni­ver­si­ty station.

The H-Bahn is one of the hallmarks of TU Dort­mund Uni­ver­sity. There are two stations on Cam­pus Nord. One ("Dort­mund Uni­ver­si­tät S") is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the "Technologiepark" and (via Cam­pus Süd) Eichlinghofen. The other station is located at the dining hall at Cam­pus Nord and offers a direct connection to Cam­pus Süd every five minutes.

The facilities of TU Dort­mund Uni­ver­sity are spread over two campuses, the larger Cam­pus North and the smaller Cam­pus South. Additionally, some areas of the uni­ver­si­ty are located in the adjacent "Technologiepark".

Site Map of TU Dort­mund Uni­ver­sity (Second Page in English).